Exercises to the lecture Algorithmic Automata Theory Sheet 2

Dr. Prakash Saivasan Peter Chini

Delivery until 02.05.2018 at 09:00

Exercise 2.1 (WMSO to Finite Automata)

Using the method presented in the lecture, construct a finite automaton that accepts the language defined by the formula

$$\varphi = \exists x \exists y \colon x < y \land P_a(x) \land P_a(y) \; .$$

Exercise 2.2 (WMSO Expressiveness)

- a) Show that WMSO[<, suc] and WMSO[suc] are equally expressive.
- b) Show that WMSO[<, suc] and WMSO[<] are equally expressive.

Exercise 2.3 (Star-Free Languages)

Prove or disprove whether the following languages over $\Sigma = \{a, b\}$ are star-free:

- a) $(ab \cup ba)^*$
- b) $(a \cup bab)^*$
- c) $L_{odd} = \{ w \in \Sigma^* \mid w \text{ has odd length} \}.$

Exercise 2.4 (Star-Free \Rightarrow FO[<]-definable)

a) Let $w = a_0 \dots a_n \in \Sigma^*$ be a word and let $i, j \in \mathbb{N}$ such that $0 \le i \le j \le n$. Show that for every closed FO[<]-formula φ and FO-variables x, y with $\mathcal{I}(x) = i, \mathcal{I}(y) = j$, there is a formula $\psi(x, y)$ such that

 $\mathcal{S}(w), \mathcal{I} \vDash \psi$ if and only if $\mathcal{S}(a_i \dots a_j) \vDash \varphi$.

- b) Deduce from a) that FO[<]-definable languages are closed under concatenation.
- c) Prove using structural induction that every star-free language is FO[<]-definable.

Delivery until 02.05.2018 at 09:00 into the box next to 343