
Saarland University
Faculty of Natural Sciences and Technology VI

Department of Computer Science

Master Thesis

Scheduler-Quantified Time-Bounded Reachability for
Distributed Input /Output Interactive Probabilistic Chains

submitted by

Georgel Ionuţ C̆alin

Supervisor

Prof. Dr-Ing. Holger Hermanns

Advisor

Pepijn Crouzen, MSc.

Reviewers

Prof. Dr-Ing. Holger Hermanns

Prof. Bernd Finkbeiner, PhD









Acknowledgements

Many people have helped getting this thesis to its present state. I sincerely thank them all.
First of all, I would like to thank professor Holger Hermannsfor bringing forth such an

interesting topic of investigation. I am also grateful to professor Bernd Finkbeiner for the
helpful recent discussions we’ve had and for accepting to bea reviewer of my thesis.

I am especially thankful to Pepijn Crouzen, my advisor, for his always competent and timely
suggestions and remarks, as well as for his calm straightforwardness, which helped greatly to
keep my work on track. Thank you very much!

Without the help of Ernst Moritz Hahn, Pedro D’Argenio and Lijun Zhang, much of the
thesis content would not be as clear as one may find it now. You all have my gratitude!

Furthermore, I would like to thank my colleagues and friends, and especially to Raphael
Reischuk, Markus Rabe and Mihai Grigore for reading parts ofmy thesis and offering helpful
advice which I truly value.

Last, but certainly first in my heart, my deepest gratitude goes to my parents and elder
sisters for their continued support during my studies. Thank you!





Contents

0 Introduction 1
0.1 Structure of the Thesis. . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 I/O Interactive Probabilistic Chains 5
1.1 Interactive Probabilistic Chains. . . . . . . . . . . . . . . . . . . 5
1.2 Input/Output Interactive Probabilistic Chains. . . . . . . . . . . 7

1.2.1 Parallel Composition. . . . . . . . . . . . . . . . . . . . 8
1.2.2 Vanishing and Tangible States. . . . . . . . . . . . . . . 9
1.2.3 Paths in I/O-IPCs . . . . . . . . . . . . . . . . . . . . . . 9

2 I/O-IPC Nondeterminism Resolution 11
2.1 Local Schedulers. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Distributed Schedulers. . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Strongly Distributed Schedulers. . . . . . . . . . . . . . . . . . 14
2.4 Induced Probability Measure. . . . . . . . . . . . . . . . . . . . 17

3 I/O-IPC Time-Bounded Reachability 19
3.1 Parametric Markov Chains. . . . . . . . . . . . . . . . . . . . . 19
3.2 Scheduler-Quantified I/O-IPCs are PMCs. . . . . . . . . . . . . 20

3.2.1 Repeated Coin Flip & Guess Revisited. . . . . . . . . . 20
3.2.2 I/O-IPC and PMC Reachability. . . . . . . . . . . . . . 21

4 Implementation Workflow 27
4.1 Unfolder Overview . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Object-Oriented Basic I/O-IPCs . . . . . . . . . . . . . . . . . . 29
4.3 Tree Representation of Local I/O-IPC Paths . . . . . . . . . . . . 30
4.4 Object-Oriented PMCs. . . . . . . . . . . . . . . . . . . . . . . 33



iv Contents

4.5 Model Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Case Studies 37
5.1 Mastermind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Dining Cryptographers. . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Randomized Scheduler Example. . . . . . . . . . . . . . . . . . 42
5.4 Distributed Random Bit Generator. . . . . . . . . . . . . . . . . 44
5.5 Car Platooning . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions 49
6.1 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51



Chapter 0
Introduction

This thesis considers the computation of extremal reachability probabilities for
compositional models that present both probabilistic and nondeterministic behav-
ior. Such models arise, for instance, in the field of distributed algorithms, where
probabilistic behavior is used to break symmetries in the system. Nondeterminism
may appear due to the uncertain order of events occurring in separate processes or
due to unspecified and some times unknown behavior.

Various examples of safety-critical and verifiable systemsdeployed nowadays
can be abstracted through systems which present both nondeterministic and prob-
abilistic behavior. Especially in automotive and aircraftcontrol related settings
(but not only) they are of high importance. Attempting to improve on the verifi-
cation of such distributed systems will continue to be one ofthe cornerstones yet
to be overcome in model checking.

Traditional analysis techniques for probabilistic modelswith nondeterminism
compute the maximal and minimal probability to reach a set ofconfigurations
by considering all possible resolutions of the nondeterminism [1]. It has been
shown that this approach may lead to unrealistic results formodels of distributed
systems or algorithms [2]. Briefly, the issue is that the traditional approach al-
lows processes to use non-local information to influence their decisions. To avoid
this problem, and guarantee an extended separation of localinformation between
components, using a new type of schedulers has been proposed[2].

Distributed schedulersrestrict the resolution of nondeterminism by assuring
that local decisions of the processes are based solely on local knowledge.Strongly
distributed schedulers, additionally, ensure that the relative probability of choos-
ing between two different components does not change with time, provided these
components remain idle and uninformed of the progress of therest of the system.

When considering distributed (or strongly distributed) schedulers, bounds for
reachability probabilities are both undecidable and unapproximable in general [3].



2 Chapter 0. Introduction

Howevertime-boundedreachability probabilities, i.e., the probability to reach a
set of configurations within a specified time-period, can be computed.

For distributed schedulers, this is due to the fact that optimal solutions in this
setting can be computed by only taking into account the subset of deterministic
distributed schedulers, which is finite if the system under consideration is finite
and acyclic. The theoretical complexity of the method presented is exponential in
the number of states and the given time bound.

The case of strongly distributed schedulers turns out to be more difficult. In
this setting, optimal solutions may lie on pure probabilistic schedulers [2]. There-
fore, exploring all possible solutions is not an option.

In this thesis, it is proposed to reduce the problem of computing time-bounded
reachability probabilities for distributed, probabilistic, and nondeterministic mo-
dels, under distributed (or strongly distributed) schedulers to a nonlinear opti-
mization problem. As modeling vehicle, the formalism ofinput/output interactive
probabilistic chains(I/O-IPCs) is used.

The computation of time-bounded reachability probabilities is achieved by
reformulating the models as parametric Markov chains, where the parameters are
the decisions of the schedulers and the distributed model isunrolled up to the
specified time-point. The time-bounded reachability probability can therefore be
expressed as a polynomial function and numerical bounds canbe computed for it
by optimizing the function under certain constraints – as indicated by the involved
scheduler.

For distributed schedulers, the only restriction on the variables of the poly-
nomials is that, appropriately grouped, they form a distribution (i.e. all variables
take values between 0 and 1 and each group of variables sum up to 1). The case
of strongly distributed schedulers, however, requires some additional and more
complex restrictions, the optimal value of the property being calculated through
more involved nonlinear programming techniques.

0.1 Structure of the Thesis

This thesis describes the means for computing extremal time-bounded reachability
probabilities for distributed I/O-IPCs, a new formalism in the spirit of probabilistic
input/output timed automata (PIOTA) [4, 5]. The thesis is structured as follows:

• Chapter 1provides an introduction to interactive probabilistic chains and
describes their restriction to input/output interactive probabilistic chains.
Subsequently, how I/O-IPCs are parallelized, what are vanishing/tangible
states and I/O-IPC paths is specified.



0.2. Contribution 3

• Chapter 2presents the adaptation of distributed and strongly distributed
schedulers – initially introduced for PIOTA – to the I/O-IPC settings. The
schedulers are introduced in a bottom-up manner, starting with schedulers
for the components of a distributed I/O-IPC and continuing with distributed
and strongly distributed schedulers. Last, the induced probability measure
for scheduled distributed I/O-IPCs is presented.

• Chapter 3introduces parametric Markov chains (PMCs) and describes how
distributed I/O-IPCs, arbitrarily scheduled, can be interpreted as PMCs by
unfolding up to a given time-bound. It is then proved that time-bounded
reachability in a distributed I/O-IPC corresponds to time-unbounded reach-
ability in the associated unfolded PMC.

• Chapter 4describes the implementation workflow for checking time-boun-
ded reachability of scheduler-quantified distributed I/O-IPCs. The imple-
mentation description focuses on the unfolder which produces the unfolded
PMC out of a given distributed I/O-IPC.

• Chapter 5illustrates several case studies that have been performed with our
prototype implementation.

• Chapter 6concludes by presenting remaining open questions as well aspos-
sible directions for future research on the topic.

0.2 Contribution

Although various model checkers for verifying reachability of distributed, nonde-
terministic and probabilistic systems exist, none of them has built-in the means of
ruling out unrealistic behaviour due to inadequate scheduling.

The aim of this thesis is to describe an automated method for determining
extremal time-bounded reachability probabilities. The method involves a new type
of distributed formalism – derived from interactive probabilistic chains – which is
subject to (timed) probabilistic and (non-timed) nondeterministic behaviours.

The computation is performed by quantifying over the classes of distributed
and strongly distributed schedulers, thus casting out fromthe start unrealistic re-
sults produced by inadequate scheduling freedom.

An early version of this thesis has been accepted for publication at the “17th

International SPIN Workshop on Model Checking of Software”as joint work with
Pepijn Crouzen, Pedro D’Argenio, Moritz Hahn and Lijun Zhang [6, 7].





Chapter 1
I/O Interactive Probabilistic Chains

Input/output interactive probabilistic chains represent a restricted compositional
modeling formalism based on interactive probabilistic chains (IPCs) [8, 9].

The following brief description of interactive probabilistic chains is an adapta-
tion of the information which can be found in [9]. Note that the process algebraic
way of defining IPCs will not be used for presenting the I/O-IPC restricted for-
malism.

1.1 Interactive Probabilistic Chains

Interactive probabilistic chains (IPCs) are state-based models that combine dis-
crete time Markov chains and labelled transition systems [9]. IPCs can be used to
compositionally model probabilistic systems. An important feature of IPCs is that
probabilistic transitions and action-labeled transitions are handled orthogonally.

For a probabilistic process calculus over a set of actionsA (including internal
actionτ), assuming that actions are instantaneous and that probabilistic choices
take precisely one time step, abehaviouris described by the following grammar:

B := δ
∣∣∣ a; B

∣∣∣
∑

p::B
∣∣∣ B[ ]B

∣∣∣ B[A]B
∣∣∣ B/A

∣∣∣ B̃,

whereA ⊆ A \ {τ}. The used operators are: termination (δ), sequentialization (;),
probabilistic choice (

∑
), nondeterministic choice ([ ]), parallel composition with

synchronization setA ([A]), hiding of actions (/) and process calls (˜•).
A (possibly recursive) process is defined by a rule of the formB̃ = B andB is

used to denote the set of all behavioursB. The semantics of the formalism can be
seen as a probabilistic extension of labeled transition systems (see Figure1.1).

Let⇀⊆ X×Y represent a partial function relation fromX to Y and letDist(X)
be the set of all probability distributions overX for any finite setX and any setY.



6 Chapter 1. I/O Interactive Probabilistic Chains

δ
1
=⇒ δ a; B

1
=⇒ a; B

∑
i pi ::Bi

pi
=⇒ Bi

B1
p1
=⇒ B′1 B2

p2
=⇒ B′2

B1[ ]B2
p1p2
=⇒ B′1[ ]B′2

B1
p1
=⇒ B′1 B2

p2
=⇒ B′2

B1[A]B2
p1p2
=⇒ B′1[A]B′2

B̃ = B B
p
=⇒ B′

B̃
p
=⇒ B′

B̃ = B B
a−→ B′

B̃
a−→ B′

B1
a−→ B′1

B1[ ]B2
a−→ B′1[ ]B2

B2
a−→ B′2

B1[ ]B2
a−→ B1[ ]B′2

B1
a−→ B′1 B2

a−→ B′2 a ∈ A

B1[A]B2
a−→ B′1[A]B′2

B1
a−→ B′1 a < A

B1[A]B2
a−→ B′1[A]B2

B2
a−→ B′2 a < A

B1[A]B2
a−→ B1[A]B′2 a; B

a−→ B

B
p
=⇒ B′

B/A
p
=⇒ B′/A

B
a−→ B′ a < A

B/A
a−→ B′/A

B
a−→ B′ a ∈ A

B/A
τ−→ B′/A

Figure 1.1: Operational Semantics of the IPC Modeling Language

Definition 1. An IPC is a quintupleP = 〈S,A,→,⇒, ŝ〉, where: S is a finite set of
states withŝ ∈ S the initial state,A is a finite set of actions including the internal
actionτ,→⊆ S × A × S is the set of interactive transitions and⇒: S⇀ Dist(S)
is the set of probabilistic transitions.

Definition 2. The operational semantics of a behaviourB̂ overA is defined as
the IPCP = 〈B,A,→,⇒, B̂〉 with→ and⇒ as given by the rules of Figure1.1.

The operators’ binding order – from the strongest-binding one to the lowest-
binding one – is the following: ”˜•” ≻ ”/” ≻ ”[]” ≈ ”[ •]” ≻ ”; ” ≻ ”

∑
”.

The second rule of Figure1.1enriches the language with thearbitrary waiting
property by assuring that time may advance even while part ofthe process is
blocked, waiting for a synchronization to happen. As arguedin [9], these rules
inspired by Hansson [10] ensure that time may always advance synchronously.

Example 1. Synchronization of nondeterministic and probabilistic behaviours.

X1[{a}]X2 X1[{a}]X2

b

c

aa
c

a
b

b

c

”(a[ ]b; X1)[{a}](a[ ]c; X2)”

Y1[∅]Y2

Y1[∅]Y1

Y2[∅]Y2

p1q1

p2q2

p1q2 + p2q1

”(p1::Y1 + p2::Y2)[∅](q1::Y1 + q2::Y2)”



1.2. Input/Output Interactive Probabilistic Chains 7

The formalism is also subject to themaximal progressassumption [11]: a
process cannot delay an internal transition – if a choice exists between a pro-
babilistic and an internal transition, the internal transition will have precedence.
Although not integrated into the semantics, the maximal progress assumption can
be taken care of through bisimulation equivalences [9].

For I/O-IPCs, the specific variant of the maximal progress assumption is han-
dled through the induced path measure (see Definition12).

1.2 Input/Output Interactive Probabilistic Chains

I/O-IPCs, a restricted variant of IPCs with a strict separation of local and non-local
behavior, are used as modeling formalism in the present study. The restriction of
IPCs to I/O-IPCs follows the one of interactive Markov chains (IMCs) to I/O-
IMCs in the continuous-time setting [12].

The separation between local and non-local behavior is achieved by partition-
ing the I/O-IPC actions ininput, output, and internal actions. Let⊎ denote the
“disjoint set” union. As we will not make use of the process algebra approach in
the I/O-IPC setting, I/O-IPCs can be described in a more intuitive way as follows.

Definition 3. A basic I/O-IPCP is a quintuple〈S,A,→P,⇒P, ŝ〉, where: S is a
finite set of states witĥs ∈ S the initial state,A = AI ⊎AO⊎Aint is a finite set of
actions,→ ⊆ S×A×S is the set of interactive transitions and⇒ : S⇀ Dist(S)
represents the set of probabilistic transitions.

Input actions are suffixed by “?”, output actions by “!” and we require that an
I/O-IPCP is both input-enabled, i.e. for each statesand each input actiona there
is at least one states′ such that (s, a, s′) ∈→P. We also require that the I/O-IPC
is action-deterministic, that is, for each states and each actiona there is at most
one states′ such that (s, a, s′) ∈→P. The nondeterminism then stems from the
choice between different actions. Finally we require that every state has at least
one outgoing, internal, output, or probabilistic transition.

We say that an I/O-IPC isclosedif it has no input actions, i.e.,AI = ∅. Note
that the requirement of action-determinism is introduced only to simplify the the-
oretical framework around schedulers. Nondeterministic choices between input
transitions can be handled in a similar way as nondeterministic choices between
output or internal transitions [2].

Given an actiona, we use the shorthand notations
a→P s′ for an interactive

transition (s, a, s′) ∈→P of P. Given a distributionµ over the states ofP we use
the shorthand notations⇒P µ for (s, µ) ∈⇒P. We often leave out the subscript
when it is clear from the context.



8 Chapter 1. I/O Interactive Probabilistic Chains

As a running example a simple repeating “coin flip & guess” experiment is
used: one player repeatedly flips a coin, while a second player (nondeterministi-
cally) guesses the outcome (see Figure1.2). We are interested in the probability
that the second player guesses correctly at least once within t rounds.

Although this probability is 1−
(

1
2

)t
, it has been shown that standard analysis

methods produce a probability of 1 for anyt > 0 [2]. The issue is that, from a
globalpoint of view, the optimal resolution of the nondeterministic guess uses the
outcome of the flip as a guide and therefore knows which is the correct guess.

s0s1 s2

1
2

1
2

th! tt!
s3 s4

1

gh!

gt!CF : CG :

The coin-flip is depicted on the left-hand side and the coin-guess on the right-hand
side. Initial states are indicated by arrows; interactive transitions are labelled with
their actions and probabilistic transitionss⇒ µ are depicted by arrows froms to
the support ofµ, where each arrow is labeled with the associated probability.

Figure 1.2: Basic I/O-IPC Models of the Repeated Coin-Flip Experiment

1.2.1 Parallel Composition

Distributed I/O-IPCs are obtained through parallelizing (‖ ) simpler I/O-IPCs.

Definition 4. Two I/O-IPCsP andQ are composable ifAO
P ∩AO

Q = AP ∩Aint
Q =

Aint
P ∩AQ = ∅. If P andQ are composable thenC := P‖Q will be

〈SP × SQ,AI
C ⊎AO

C ⊎Aint
C ,→C,⇒C, (ŝP, ŝQ)〉,

whereAO
C := AO

P ∪ AO
Q, AI

C :=
(
AI
P ∪ AI

Q

)
\ AO

C , Aint
C = Aint

P ∪ Aint
Q and the

transition relations are

→C = {〈s, t〉
a→C 〈s′, t〉 | s

a→P s′, a ∈ AP \ AQ}
∪ {〈s, t〉 a→C 〈s, t′〉 | t

a→Q t′, a ∈ AQ \ AP}
∪ {〈s, t〉 a→C 〈s′, t′〉 | s

a→P s′, t
a→Q t′, a ∈ AP ∩AQ}

⇒C = {〈s, t〉 ⇒C (µs × µt) | s⇒P µs ∧ t ⇒Q µt}
with µs × µt denoting the product distribution on SP × SQ. Parallel composition
can be extended to any finite set of parallelizable I/O-IPCs in the usual way. Let
#C denote the number of components of a distributed I/O-IPCC.

The result of synchronizing an input action with an output action through I/O-
IPC parallelization will be an output action in the resulting model. As an example,
the composition of the basic I/O-IPCs of Figure1.2 is depicted in Figure1.3.



1.2. Input/Output Interactive Probabilistic Chains 9

s03s14 s24

s03
×h

s03

√
h

s03√
t

s03

×t

s13

s13

s04

1
2

1
2

s23

s23

s04

gt!

gh!
th!

th!

th!

gt!

gh! gh!

gt!

tt!

tt!

tt!

gh!

gt!
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

In the labelled states, the two I/O-IPCs in Figure1.2distribute over the next states
according to their possible combined choices. Otherwise, their actions are inter-
leaved. The shorthand notationsi j is used to describe the distributed state〈si , sj〉.
The flip matching the guess is represented by the

√
-labeled “goal” states.

Figure 1.3: Distributed I/O-IPC Model of the Repeated Coin-Flip Experiment

1.2.2 Vanishing and Tangible States

The use of distinct probabilistic and instantaneous transitions separates the con-
cerns of time and interaction. In essence, it allows us to specify interactions be-
tween components which are instantaneous and do not have to be modeled with
explicit time steps.

Internal and output transitions are considered to beimmediatewhile proba-
bilistic transitions aretimed. The maximal progress property for IPCs translates
in the following way to I/O-IPCs: a process cannot delay an immediate transition
– e.g. if given the choice between an immediate and a timed (probabilistic) tran-
sition, the immediate transition has precedence. The dissociation present between
immediate and timed transitions is also reflected in the system states.

Definition 5 (Vanishing/Tangible States). A state is called vanishing if at least one
outgoing immediate transition is enabled in it. Conversely, if only probabilistic
transitions are enabled in a state then it is called tangible.

In Figures1.2 and1.3, the black-colored nodes are vanishing states and the
remaining ones are tangible states. For simplicity, in thisthesis only non-Zeno
models are considered: cycles consisting of only immediateactions are not rea-
chable/present in the analyzed distributed models.

1.2.3 Paths in I/O-IPCs

An I/O-IPCpathdescribes one possiblerun of the I/O-IPC. In such a run, we start
in a particular state, follow a transition to another state,and so forth.



10 Chapter 1. I/O Interactive Probabilistic Chains

Definition 6. A finite path of length n∈ N of an I/O-IPC P = 〈S,A,→,⇒, ŝ〉
is a sequenceσ := s0a0 . . .an−1sn of alternating states si ∈ S and actions or
distributions ai ∈ A∪Dist(S). For consecutive si, si+1 inσ it must hold that: either
ai ∈ A and si

ai→ si+1, or ai ∈ Dist(S), si is tangible, si ⇒ ai and ai(si+1) > 0.
The last state of a finite pathσ is denoted by last(σ). An infinite path ofP is

an infinite sequence s0a0s1a1 . . . of alternating states and actions/distributions.

For studying time-bounded reachability, we need a notion oftime. We follow
the definition of time in IPCs and say that onlyprobabilistictransitions take time,
while interactive transitions are considered to take placeimmediately [13].

Definition 7. Theelapsed timealong a finite pathσ – notationt(σ) – is defined
recursively, for states s, actions a and distributionsµ over states:

t(σ) =



0 if σ = s

t(σ′) if σ = σ′as

t(σ′) + 1 if σ = σ′µs

Example 2. Let SCF = {s0, s1, s2}, SCG = {s3, s4} be the state spaces of the I/O-
IPCs in Figure1.2andµCF : SCF ⇀ Dist(SCF ), µCG : SCG ⇀ Dist(SCG) describe
the next-state probability distributions forCF andCG.

Abstracting away the indexing,µ(s) is the probability distribution for states
reachable through⇒ from s andµ(s)(s′) is the probability of reaching s′ from s.

Then (e.g.) for the pathσ = s0µCF (s0)s1ths0µCF (s0)s2tts0 of CF and for the
pathσ′ = s3µCG(s3)s4gts3µCG(s3)s4gts3 of CG we have:

t(σ) = t(s0µCF (s0)s1ths0µCF (s0)s2) = t(s0µCF (s0)s1ths0) + 1

= t(s0µCF (s0)s1) + 1 = t(s0) + 2 = 2

t(σ′) = t(s3µCG(s3)s4gts3µCG(s3)s4) = t(s3µCG(s3)s4gts3) + 1

= t(s3µCG(s3)s4) + 1 = t(s3) + 2 = 2

The(σ, σ′)-pair of local paths induces all of the following paths inCF ‖CG:

• 〈s0, s3〉
1/2⇒ 〈s1, s4〉

th→ 〈s0, s4〉
gt→ 〈s0, s3〉

1/2⇒ 〈s2, s4〉
tt→ 〈s0, s4〉

gt→ 〈s0, s3〉
• 〈s0, s3〉

1/2⇒ 〈s1, s4〉
th→ 〈s0, s4〉

gt→ 〈s0, s3〉
1/2⇒ 〈s2, s4〉

gt→ 〈s1, s3〉
tt→ 〈s0, s3〉

• 〈s0, s3〉
1/2⇒ 〈s1, s4〉

gt→ 〈s1, s3〉
th→ 〈s0, s3〉

1/2⇒ 〈s2, s4〉
tt→ 〈s0, s4〉

gt→ 〈s0, s3〉
• 〈s0, s3〉

1/2⇒ 〈s1, s4〉
gt→ 〈s1, s3〉

th→ 〈s0, s3〉
1/2⇒ 〈s2, s4〉

gt→ 〈s1, s3〉
tt→ 〈s0, s3〉

where the valueµ(s)(s′) is used to decorate the transition s
µ(s)
=⇒ s′ instead ofµ(s).

The highlighting of the switched labels in the above transitions underline that
multiple “distributed” paths correspond to the same(σ, σ′)-pair.

The latter is due to different interleaving possibilities inCF ‖CG.



Chapter 2
I/O-IPC Nondeterminism Resolution

The probability of reaching a set of goal states in a distributed I/O-IPC depends on
how the nondeterminism of chosing an action is handled. By assigning probabili-
ties to the available actions, a scheduler can be seen as an I/O-IPC refinement such
that the induced model becomes deterministic. It can thus besaid that a scheduler
enables us to determine reachability probabilities in a deterministic fashion.

However, the class of all schedulers for the model of a distributed system con-
tains schedulers that are unrealistic in that they allow components of the system to
use non-local information to guide their local decisions. To overcome this prob-
lem,distributedschedulers have been introduced, that restrict the possible choices
of a scheduler in a distributed setting [2]. Distributed schedulers, originally intro-
duced for (switched) probabilistic input/output timed automata [1], are adapted
here for the input/output interactive Markov chains formalism.

To illustrate the necessity of distributed schedulers we consider the game de-
scribed in Figure1.3where an unbiased coin is repeatedly tossed and guessed by
two independent entities at the same time. We are interestedin the probability to
reach the set of states labelled

√
within a specified numbert of timed (probabilis-

tic) steps. This is exactly the probability that the guessing player guesses correctly
within at mostt tries. Intuitively, for each matching toss/guess, since the tossing
player makes its choice probabilistically and the guessingplayer does not observe
the outcome, the guessing player should have a probability of one half to make
the right guess and win the game.

However, it is clear that in the composed model there is a scheduler that arrives
with probability one at a

√
state within at most one timed step. This scheduler

simply chooses the actionth if heads is tossed andtt if tails is tossed, thereby al-
ways winning. The purpose of distributed schedulers is to ensure that the decision
betweenth andtt is made only based onlocal information.



12 Chapter 2. I/O-IPC Nondeterminism Resolution

2.1 Local Schedulers

We have to associate paths of an I/O-IPC with probabilities. The usual way of
doing it is by defining the probability of a path as the multiplication of the prob-
abilities of its transitions. To define such a probability for paths in an I/O-IPC
we need some way of resolving the nondeterministic choice between interactive
transitions in vanishing states of an I/O-IPC.

For all statess ∈ S, let Aen
s,P = {a ∈ AO|∃s′.s

a→ s′} ∪ {a ∈ Aint|∃s′.s
a→ s′} be

the set of enabled immediate actions fors.

Definition 8. A functionηP : Paths(P)→ Dist(AP) is a scheduler for an I/O-IPC
P if positive probabilities are assigned only to immediate actions enabled in the
last state of a path:∀σ ∈ Paths(P), ηP(σ)(a) > 0 implies a∈ Aen

last(σ),P.

If P is closed, then a scheduler determines the probability to observe a certain
path, which also allows us to define time-bounded reachability probabilities. We
give the details, in the context of distributed schedulers,in Chapter 3.

Example 3. Let SCF = {s0, s1, s2}, µCF : SCF ⇀ Dist(SCF ) and SCG = {s3, s4},
µCG : SCG ⇀ Dist(SCG) as in Figure1.2, i.e. the non-zero entries of the proba-
bilistic transitions inCF andCG are given by:

µCF (s0)(s1) = µCF (s0)(s2) =
1
2

andµCG(s3)(s4) = 1.

Further consider the pathsσ = s0µCF (s0)s1ths0µCF (s0)s2 of CF , respectively
σ′ = s3µCG(s3)s4gts3µCG(s3)s4 ofCG.

Knowing thatAO
CF = {th!, tt!}, respectivelyAO

CG = {gh!, gt!} and given a pair
of schedulersηCF : Paths(CF ) → Dist(AO

CG), ηCG : Paths(CG) → Dist(AO
CG) of

CF andCG, for σ andσ′ above it must hold that:

ηCF (σ)(th) + ηCF (σ)(tt) = ηCF (σ)(tt) = 1 andηCG(σ
′)(gh) + ηCG(σ

′)(gt) = 1.

2.2 Distributed Schedulers

The main principle of distributed schedulers is to use a separate scheduler for
each of the components of the system such that each has accessonly to their own
scheduling history.

To be able to reason aboutlocal information we have to first introduce path
projections. For any distributed I/O-IPCC = P1‖. . . ‖Pn and pathσ ∈ Paths(C),
the projectionσ[Pi] of σ onC’s i th basic component is given by:

• (ŝC)[Pi] = πi(ŝC)



2.2. Distributed Schedulers 13

• (σas)[Pi] =


σ[Pi] if a < APi

(σ[Pi])a(πi(s)) if a ∈ APi

• (σ(µ1 × · · · × µn)s)[Pi] = (σ[Pi])µi(πi(s)).

whereπi (〈s1, . . . , sn〉) = si for all 〈s1, . . . , sn〉 ∈ SC.
A local scheduler forP is simply any scheduler forP as given by Definition8.

A local scheduler resolves the nondeterminism arising fromchoices between en-
abled output and internal actions in one of the components.

However, nondeterminism may also arise from the interleaving of the different
components. In other words, if for some state in a distributed I/O-IPC, two or
more components have enabled immediate actions, then it must be decided which
component acts first. This decision is made by theinterleaving scheduler.

Definition 9. A functionI : Paths(C) → Dist({P1, . . . ,Pn}) is an interleaving
scheduler for the distributed I/O-IPC C := P1‖. . . ‖Pn if it is defined for paths
σ such that last(σ) is vanishing and if it chooses probabilistically an enabled
component of the distributed system:

I(σ)(Pi) > 0 implies Aen
last(σ[Pi ]),Pi

, ∅.

Example 4. Let ηCF , ηCG be local schedulers for the coin-flipCF and the coin-
guessCG of the game described in Figures1.2and1.3.

Then every functionI : Paths(CF ‖CG) → Dist({CF ,CG}) such that for all
pathsσ ∈ Paths(CF ‖CG):

last(σ[CF ]) , s0 ∧ last(σ[CG]) = s4⇒ I(σ)(CF ) + I(σ)(CG) = 1

last(σ[CF ]) , s0 ∧ last(σ[CG]) = s3⇒ I(σ)(CF ) = 1

last(σ[CF ]) = s0 ∧ last(σ[CG]) = s4⇒ I(σ)(CG) = 1

belongs to the class of interleaving schedulers ofCF ‖CG.

Local schedulers and an interleaving scheduler form adistributed scheduler.

Definition 10. A functionηC : Paths(C)→ Dist (AC) is a distributed scheduler for
the I/O-IPCC = P1‖. . . ‖Pn if, given local schedulersηP1, . . . , ηPn and interleaving
schedulerI, for all σ ∈ Paths(C) with last(σ) vanishing and for all a∈ AC:

ηC(σ)(a) =
n∑

i=1

I(σ)(Pi) · ηPi (σ[Pi])(a)

We denote the set of all distributed schedulers byDS.



14 Chapter 2. I/O-IPC Nondeterminism Resolution

Example 5. LetηCF , ηCG be local schedulers for the coin-flipCF and coin-guess
CG, andI be an interleaving scheduler for the distributed I/O-IPCCF ‖CG.

Then every functionη : Paths(CF ‖CG) → Dist
(
ACF ‖CG

)
belongs to the class

of distributed schedulers ofCF ‖CG if ∀σ ∈ Paths(CF ‖CG) it holds that:
• if last(σ[CF ]) = s1 ∧ last(σ[CG]) = s4 then

η(σ)(th!) = I(σ)(CF )

η(σ)(gh!) = I(σ)(CG) · ηCG(σ[CG])(gh!)

η(σ)(gt!) = I(σ)(CG) · ηCG(σ[CG])(gt!)

• if last(σ[CF ]) = s2 ∧ last(σ[CG]) = s4 then

η(σ)(tt!) = I(σ)(CF )

η(σ)(gh!) = I(σ)(CG) · ηCG(σ[CG])(gh!)

η(σ)(gt!) = I(σ)(CG) · ηCG(σ[CG])(gt!)

• if last(σ[CF ]) = s1 ∧ last(σ[CG]) = s3 then

η(σ)(th!) = I(σ)(CF ) = 1

• if last(σ[CF ]) = s2 ∧ last(σ[CG]) = s3 then

η(σ)(tt!) = I(σ)(CF ) = 1

• if last(σ[CF ]) = s0 ∧ last(σ[CG]) = s4 then

η(σ)(gh!) = I(σ)(CG) · ηCG(σ[CG])(gh!)

= ηCG(σ[CG])(gh!)

η(σ)(gt!) = I(σ)(CG) · ηCG(σ[CG])(gt!)

= ηCG(σ[CG])(gt!).

2.3 Strongly Distributed Schedulers

Although the class of distributed schedulers already realistically restricts the lo-
cal decisions of processes in a distributed setting, in certain cases there exist
distributed schedulers, where the interleaving schedulers are too powerful. In
essence, the problem is that a distributed scheduler may useinformation from a
componentP1 to decide how to pick between componentsP2 andP3. In certain
settings this is unrealistic. To counter this problem, strongly distributed schedulers
have been introduced [2].



2.3. Strongly Distributed Schedulers 15

Given any two componentsPi, P j of a distributed I/O-IPCC = P1‖ . . . ‖Pn,
consider the following property: for allσ, σ′ such thatσ[Pi] = σ′[Pi] and
σ[P j] = σ′[P j], if I(σ)(Pi) + I(σ)(P j) , 0 andI(σ′)(Pi) + I(σ′)(P j) , 0
then

I(σ)(Pi)
I(σ)(Pi) + I(σ)(P j)

=
I(σ′)(Pi)

I(σ′)(Pi) + I(σ′)(P j)
. (2.1)

Definition 11. A schedulerη is strongly distributed if it is distributed and the
restriction in Equation(2.1) holds for the interleaving schedulerI of η.

We denote the set of all distributed schedulers bySDS.
The intuition behind strongly distributed scheduler is that the choices the in-

terleaving scheduler makes between two componentsPi, P j should be consistent
with respect to the local paths ofPi, P j. If for two global paths, the local paths of
Pi, P j are identical, then the probability of choosingPi under the condition that
we choose eitherPi orP j should be identical for both global paths.

Example 6. Let ηCF , ηCG be local schedulers,I an interleaving scheduler, and
η a strongly distributed scheduler for the game depicted by Figures1.2 and1.3.
Further consider inCF ‖CG the paths

σ = 〈s0, s3〉 µCF ‖CG(〈s0, s3〉) 〈s1, s4〉 th 〈s0, s4〉 gt 〈s0, s3〉 µCF ‖CG(〈s0, s3〉) 〈s2, s4〉
σ′ = 〈s0, s3〉 µCF ‖CG(〈s0, s3〉) 〈s1, s4〉 gt 〈s1, s3〉 th 〈s0, s3〉 µCF ‖CG(〈s0, s3〉) 〈s2, s4〉,

whereµCF ‖CG : SCF ‖CG ⇀ Dist(SCF ‖CG) represents the next-state probability dis-
tribution inCF ‖CG.

Notice that the given pathsσ, σ′ ∈ Paths(CF ‖CG) have identical path pro-
jections ontoCF andCG: σ[CF ] = σ′[CF ] andσ[CG] = σ′[CG].

SinceI(σ)(CF ) + I(σ)(CG) = 1 = I(σ′)(CF ) + I(σ′)(CG), Definition11
implies that the interleaving schedulerI of η will be additionally restricted for all
pathsσ, σ′ such thatσ[CF ],= σ′[CF ] andσ[CG] = σ′[CG] by Equation(2.1):

Iη(σ)(CF ) = Iη(σ′)(CF ) andIη(σ)(CG) = Iη(σ′)(CG).

For a more specific case study, consider the modified “repeating coin flip &
guess” game described in Figure2.1where two additional components are added.

Suppose that the distributed I/O-IPCCF ‖CG‖X‖Y is subject to a distributed
schedulerη built of interleaving schedulerI and local schedulersηCF , ηCG, ηX and
ηY. Since the local history of the coin-flipCF is not available to the coin-guess
CG, it is expected that the probability of having a matching flip/guess within one
step is 1/2.

However, there are interleaving schedulers which guarantee that the system
always arrives at a matching flip/guess within one time step. A possible example
of such a scheduler is described below.



16 Chapter 2. I/O-IPC Nondeterminism Resolution

s0s1 s2

1
2

1
2

th! tt!
s3 s4

1

gh!

gt! x?

y?

CF : CG :

s5 s6

1

x!
s7 s8

1

y!

X : Y :

The coin-guess has additional transitionss4
x?→ s4 ands4

y?
→ s4 matching the output

transitions ofX andY. Otherwise,CF andCG remain the same as in Figure1.2.

Figure 2.1: I/O-IPC Models of the modifiedRepeated Coin-Flip Experiment

Assume that after the probabilitic step of the system, depending whetherCF
has progressed tos1 or s2, the schedulerI interleaves “X and thenY” or, respec-
tively, “Y and thenX”. Afterwards, the schedulerηGC for the coin-guessCG can
enforce the match of coin-flip since the order in whichx? andy? happened is part
of CG’s local history.

Formally, schedulersI and ηCG that enforce a matching flip/guess are de-
scribed by the following restrictions: for any pathσ ∈ Paths(CF ‖CG‖X‖Y),

• if σ[CG] = . . .
x?−→ s4

y?
−→ s4 thenη(σ[CG])(gh!) = 1

• if σ[CG] = . . .
y?
−→ s4

x?−→ s4 thenη(σ[CG])(gt!) = 1
• if last(σ[CF ]) = s1 then

– if last(σ[X]) = s5 thenI(σ)(X) = 1

– otherwise, iflast(σ[Y]) = s7 thenI(σ)(Y) = 1

• if last(σ[CF ]) = s2 then

– if last(σ[Y]) = s7 thenI(σ)(Y) = 1

– otherwise, iflast(σ[X]) = s5 thenI(σ)(X) = 1

As the definitions and the restrictions already imposed on the used schedulers
are not violated, the example above shows why distributed schedulers are not good
enough for ruling out unrealistic behaviour.

On the other hand, ifηwould be a strongly distributed scheduler, Equation (2.1)
should hold forI. For example, for the pathsσ1, σ2 of CF ‖CG‖X‖Y given by

σ1 = 〈s0, s3, s5, s7〉
1/2
=⇒ 〈s1, s4, s6, s8〉 andσ2 = 〈s0, s3, s5, s7〉

1/2
=⇒ 〈s2, s4, s6, s8〉

it holds thatσ1[X] = σ2[X] andσ1[Y] = σ2[Y] which by Equation (2.1) means
that:

I(σ1)(X)
I(σ1)(X) + I(σ1)(Y)

=
I(σ2)(X)

I(σ2)(X) + I(σ2)(Y)
.

The latter however – unless 1/(1+ 0) is equal to 0/(0+ 1) – is contradicting with
the restrictions onI as imposed previously for the distributed case.



2.4. Induced Probability Measure 17

Strongly distributed schedulers are useful depending on which system is con-
sidered for study [2]. For example, when analyzing an auctioning protocol where
each component models one of the bidders, then the order in which the bidders
interact with the auctioneer should not leak information that can be used to the
advantage of the other bidders. In such a situation, strongly distributed schedulers
would provide more adequate worst-case/best-case probabilities.

However, if the interleaving scheduler should have access to the history of the
components (as it might be the case for a kernel scheduler on acomputer) then
distributed schedulers should be considered, as the strongly distributed version
might rule out valid possibilities.

2.4 Induced Probability Measure

When all the nondeterministic choices in a distributed I/O-IPC are resolved by a
scheduler, we end up with a probability measure on sets of paths of the I/O-IPC.
We define this probability measure in a similar way as is done for IPCs [14].

LetC = P1‖ . . . ‖Pn be an arbitrarily fixed, closed and distributed I/O-IPC with
state spaceSC, action setAC, and initial state ˆs. Thecylinderinduced by the finite
pathσ is the set of infinite pathsσ↑ = {σ′ | σ′ is infinite andσ is a prefix ofσ′}.
Let the set of cylinders generate theσ-algebra on infinite paths ofC.

Definition 12. Letη be a (possibly strongly) distributed scheduler onC. Theprob-
ability measure induced byη on the set of infinite paths is the unique probability
measure Pη such that, for any s∈ SC, a ∈ AC andµ ∈ Dist(SC):

Pη(s
↑) =

{
1 if s = ŝ
0 otherwise

Pη(σas↑) =

{
Pη(σ↑) · η(σ)(a) if last(σ) is vanishing and last(σ)

a−→ s
0 otherwise

Pη(σµs
↑) =

{
Pη(σ↑) · µ(s) if last(σ) is tangible and last(σ)⇒ µ
0 otherwise

We are now ready to define time-bounded reachability for I/O-IPCs.

Definition 13. Given an I/O-IPC P together with an initial distribution over its
states, a set of goal statesG and a time-bound t∈ N, the probability to reachG
within t time-steps – notation Pη(^≤tG) – is given by:

Pη(^
≤tG) = Pη(

⋃{σ↑ | t(σ) ≤ t and last(σ) ∈ G})



18 Chapter 2. I/O-IPC Nondeterminism Resolution

Example 7. Consider again the coin flip& guess game depicted in Figures1.2
and1.3and letη be a distributed scheduler ofCF ‖CG whereηCF , ηCG andI are
its local and interleaving schedulers.

Further consider (e.g.) the pathσ◭ as given by

σ◭ =

σ′
◭︷                               ︸︸                               ︷

〈s0, s3〉
1/2
⇒ 〈s1, s4〉︸                ︷︷                ︸
σ′′
◭

gh→ 〈s1, s3〉
th→ 〈s0, s3〉

with its prefixesσ′
◭

andσ′′
◭

as described by the over- and under-braces. This
path describes the possibility of having a matching “heads”flip and guess by first
performing the guess and then the flip.

Using the definition of the probability measure Pη and the appropriate sche-
duler restrictions as described by the previous examples, we have:

Pη(σ
↑
◭
) = Pη(σ

′
◭

↑) ·
=1︷    ︸︸    ︷

η(σ′
◭
)(th) = Pη(σ

′′
◭

↑) · η(σ′′
◭
)(gh)

= Pη(σ
′′
◭

↑) · I(σ′′
◭
)(CG) · ηCG(σ′′◭[CG])(gh)

= Pη(〈s0, s3〉↑) · 1/2 · I(σ′′
◭
)(CG) · ηCG(σ′′◭[CG])(gh)

= 1/2 · I(σ′′
◭
)(CG) · ηCG(σ′′◭[CG])(gh)

By the same reasoning, for the path

σ◮ =

σ′
◮︷                               ︸︸                               ︷

〈s0, s3〉
1/2
⇒ 〈s1, s4〉︸                ︷︷                ︸
σ′′
◮

th→ 〈s0, s4〉
gh→ 〈s0, s3〉

which describes the possibility of having a matching “heads” by first performing
the flip and then the guess, we get that Pη(σ

↑
◮
) = 1/2·I(σ′′

◮
)(CF )·ηCG(σ′

◮
[CG])(gh).

We now takeG√
h
= {s ∈ SCF ‖CG |

√
h is the label of s} to be the the singleton set

describing that the guess matches the “heads” flip. By Definition 13, we have that

Pη(^≤1G√
h
) = Pη(σ◭) + Pη(σ◮). In addition, sinceσ′′

◭
≡ 〈s0, s3〉

1/2
⇒ 〈s1, s4〉 ≡ σ′′◮,

and respectivelyσ′′
◭
[CG] ≡ s3

1⇒ s4 ≡ σ′◮[CG], it follows that

Pη(^
≤1G√

h
) =

1
2
ηCG(s3

1⇒ s4)(gh)
(I(σ′′

◭
)(CF ) + I(σ′′

◭
)(CG)

)

=
1
2
ηCG(s3

1⇒ s4)(gh).

For G√
t
= {s ∈ SCF ‖CG |

√
t is the label of s} describing the guess to match the

“tails” flip we similary get that

Pη(^
≤1G√

t
) =

1
2
ηCG(s3

1⇒ s4)(gt).

Combining the two results above it will result that the probability for the flip to
match the guess within one time step is1/2.



Chapter 3
I/O-IPC Time-Bounded Reachability

From a theoretical point of view, the goal of this thesis is toprove that time-
bounded reachability for any scheduler-quantified distributed I/O-IPC can be re-
duced to computing time-unbounded reachability for an equivalent PMC byun-
folding the given model. This chapter provides the remaining background infor-
mation and reasoning for seeing through the forementioned proofs.

3.1 Parametric Markov Chains

To compute time-bounded reachability probabilities we transform scheduler-quan-
tified, distributed I/O-IPCs into parametric Markov models (seeChapter 3.2). In
this section we give a brief overview of parametric Markov chains [15, 16, 17].

Let S be a finite set of states andV = {x1, . . . , xn} denote a set of variables
with domainR. An assignmentζ is a functionζ : V → R. A polynomial goverV
is a sum of monomials

g(x1, . . . , xn) =
∑

i1,...,in

ai1,...,inx
i1
1 · · · x

in
n ,

where eachi j ∈ N and eachai1,...,in ∈ R. A rational function foverV is a fraction
f (x1, . . . , xn) = f1(x1, . . . , xn)/ f2(x1, . . . , xn) of two polynomialsf1, f2 overV.

Let FV denote the set of rational functions fromV to R. Given f ∈ FV and
an assignmentζ, we letζ( f ) denote the rational function obtained by substituting
each occurrence ofx ∈ V with ζ(x).

Definition 14. A parametric Markov chain (PMC) is a tupleD = (S, ŝ,P,V)
where S is a finite set of states,ŝ is the initial state, V= {v1, . . . , vn} is a finite set
of parameters andP is the probability matrixP : S × S→ FV.



20 Chapter 3. I/O-IPC Time-Bounded Reachability

The matrixP denotes the probabilities of going from one state to anotherin
one step. Its straightforward generalization fork steps is given below.

Definition 15. Given a PMCD = (S, ŝ,P,V), the k-step probability matrixPk,
k ∈ N, is defined recursively for any k′ > 1 and states s, s′ ∈ S :

P0(s, s
′) =

{
1 if s = s′

0 if s , s′

Pk′(s, s
′) =
∑

s′′∈S
Pk′−1(s, s

′′) · P(s′′, s′)

3.2 Scheduler-Quantified I/O-IPCs are PMCs

By having the schedulerη fixed, the probabilistic measurePη together with the
scheduled I/O-IPCC would become deterministic. To be more specific, by trea-
ting as unknowns the interleaving and local scheduler decisions we end up with
analyzing parametric Markov chains. The parameters of thisPMC correspond
precisely the decisions that the interleaving and local schedulers perform.

We have seen inChapter 2.4that fixing the scheduler of a distributed I/O-
IPC induces a probability measure on its paths. Thus, by fixing the scheduler
parametrically, i.e. by treating the probabilities chosen by the interleaving and
local schedulers as parameters, we show that theunfoldingof the I/O-IPC induces
a PMC (seeChapter 3.1) whose states are paths of the distributed I/O-IPC.

To make sure the induced PMC is finite we generate it only for paths up to a
specific time-boundt. We then prove that computing the probability to reach a set
of states withint time-units is equivalent for the I/O-IPC and the induced PMC.

3.2.1 Repeated Coin Flip & Guess Revisited

To give an idea of how the unfolding works, consider again therepeated coin-flip
experiment (Figures1.2, 1.3). It should intuitively hold thatPr(^≤2{√h,

√
t}) =

3/4 if we assume the guessing player has no information about the outcome of
each coin-flip. Figure3.1describes the unfolding of the distributed I/O-IPC from
Figure1.3 up to time-point 2. On the right-hand side we see the structure of the
PMC for one time-step. The unfolding up to 2 time steps is shown schematically
on the left-hand side, where each square represents a copy ofthe right-hand side
structure.

The local scheduler decisions in this case for each repeating structurePk are
xh

k, xt
k such thatxh

k+ xt
k = 1 and the interleaving scheduler decisions areigk, i

f
k , j

g
k, j

f
k

such thatigk + i f
k = jgk + j f

k = 1. Herexh
k, for example, denotes the probability

assigned by the local scheduler for the guesser to pick “heads” for a local path



3.2. Scheduler-Quantified I/O-IPCs are PMCs 21
Pk :

√
h

×h

√
t

×t

1
2

1
21 · i f

k 1 · j f
k

xh
ki

g
k xt

k jgk

xt
ki

g
k xh

k jgk

1 · 1

1 · 1

1 · 1

1 · 1

xh
k · 1

xt
k · 1

xt
k · 1

xh
k · 1

P0P1

P4

P3

P2

All transitions are parametric. Interleaving is used for compacting the model.

Figure 3.1: PMC Scheme up to time 2 for the Repeated Coin-FlipExperiment

ending in a “heads” vs. “tails” choice. The parametersigk, i f
k (as well asjgk, j f

k)
denote the probabilities the interleaving scheduler assigns to the “guessing” vs.
the “flipping” model respectively, for a global path which enables them both.

Now, Pr(^≤2{√h,
√

t}) can be computed as the sum of the cumulated prob-
abilities on the paths leading to{√h,

√
t} states by using the given unfolding in

Figure3.1and the above parameter restrictions:

1
2

(
xh

0 · i
g
0 + i f

0 · x
h
0 + (xt

0 · i
g
0 + i f

0 · x
t
0) ·
[1
2

(xh
1 · i

g
1 + i f

1 · x
h
1) +

1
2

(xt
1 · jg1 + j f

1 · x
t
1)
])
+

1
2

(
xt

0 · jg0 + j f
0 · x

t
0 + (xh

0 · jg0 + j f
0 · x

h
0) ·
[1
2

(xh
2 · i

g
2 + i f

2 · x
h
2) +

1
2

(xt
2 · jg2 + j f

2 · x
t
2)
])
=

1
2

(xh
0 + xt

0 · (
1
2

xh
1 +

1
2

xt
1)) +

1
2

(xt
0 + xh

0 · (
1
2

xh
2 +

1
2

xt
2)) =

3
4

3.2.2 I/O-IPC and PMC Reachability

We are now ready to define formally the above interpretation of scheduler deci-
sions over distributed I/O-IPCs as parameters.

Definition 16. Let St
C ⊆ Paths(C) be the set of all paths with time-length≤ t

in a closed, distributed I/O-IPC C = P1‖. . . ‖Pn which does not exhibit Zeno-
behaviour. Define the parameters set V by

V = { yi
σ | σ ∈ St

C, 1 ≤ i ≤ #C,Aen
last(σ[Pi ]),Pi

, ∅}
∪ { xa

σ[Pi ]
| σ ∈ St

C, 1 ≤ i ≤ #C, a ∈ Aen
last(σ[Pi ]),Pi

}



22 Chapter 3. I/O-IPC Time-Bounded Reachability

and letP match the induced probability measure, namely for any pathσ ∈ St
C,

any state s ofC, any action a ofC and any distributionµ over the states ofC:

P(σ, σas) = yi
σ · xa

σ[Pi ] if last(σ) is vanishing, last(σ)
a→ s, a ∈ Aen

last(σ[Pi ]),Pi

P(σ, σµs) = µ(s) if last(σ) is tangible,t(σ) < t, last(σ)⇒ µ
P(σ, σ) = 1 if last(σ) is tangible,t(σ) = t.

All other transition probabilities are zero. The unfoldingof the I/O-IPC C up to
time bound t is then the PMCD = (St

C, ŝC,P,V).
Given a set of statesG of C, we writeG for the paths in StC that end in a state

in G, but never visit a state inG on the way.

The finiteness ofSt
C andV is guaranteed by the exclusion of infinite chains

consisting of only immediate actions. This exclusion really implies that, for each
state inC, a tangible state is reachable within a finite number of non-probabilistic
steps.

The variables in Definition16 can be restricted to ensure that they represent
valid scheduler decisions in the following way:

0 ≤ v ≤ 1 if v ∈ V
∑

a∈A xa
σ[Pi ]
= 1 if σ ∈ St

C and 1≤ i ≤ #C with A = Aen
last(σ[Pi ]),Pi

(3.1)
∑

i∈I yi
σ = 1 if σ ∈ St

C with I = {i | 1 ≤ i ≤ #C, last(σ[Pi]) vanishing}

We writeζ ⊢ (3.1) if ζ : V → [0, 1] satisfies (3.1). I/O-IPC path probabilities
are related tok-step transition probabilities of the induced PMC by the following.

Lemma 1. For a closed, distributed I/O-IPCC, letD be as in Definition16. Then

(i) For every distributed schedulerη there is an assignmentζ ⊢ (3.1) such that
for all σ ∈ St

C : Pη(σ↑) = ζ(Pk(ŝ, σ)) where k is the length ofσ.

(ii) Reciprocally, for every assignmentζ : V → [0, 1] with ζ ⊢ (3.1) there is a
distributed schedulerη such that for allσ ∈ St

C : Pη(σ↑) = ζ(Pk(ŝ, σ)).

Proof. For both (i) and (ii) set the assignmentζ, respectively the distributed sched-
ulerη such that for 1≤ i ≤ #C:

ζ(yi
σ) = I(σ)(Pi) if Aen

last(σ[Pi ]),Pi
, ∅

ζ(xa
σ[Pi ]) = ηPi (σ[Pi])(a) if a ∈ Aen

last(σ[Pi ]),Pi

This gives indentical mappings from assignments to distributed schedulers and
back for (i) and (ii), which means both cases can be proved simultaneously.

For a distributed schedulerη and its associated assignmentζ, we now show
thatPη(σ↑) = ζ(Pk(ŝ, σ)) by induction on the lengthk of σ:



3.2. Scheduler-Quantified I/O-IPCs are PMCs 23

• for paths of length 0 we have that

Pη(ŝ
↑) = 1 = ζ(P0(ŝ, ŝ)) and, fors, ŝ, Pη(s

↑) = 0 = ζ(P0(ŝ, s)).

• for the inductive step, let the induction hypothesis (IH) beas follows:Given
a pathσ ∈ St

C of length k> 0, for any pathσ′ of length k− 1:

Pη(σ
′) = ζ(Pk−1(ŝ, σ

′)).

By case distinction:

1. Forlast(σ) vanishing we have:

Pη(σ
↑)

Def 12
=
∑

σ=σ′as

Pη(σ
′↑) · η(σ′)(a)

IH
=
∑

σ=σ′as

ζ(Pk−1(ŝ, σ
′)) · η(σ′)(a)

Def 10
=
∑

σ=σ′as

ζ(Pk−1(ŝ, σ
′)) ·

n∑

i=1,e(i,a,σ)

I(σ)(Pi) · ηPi (σ[Pi])(a)

Def 15
=
∑

σ=σ′as

ζ(Pk−1(ŝ, σ
′)) · ζ(P(σ′, σ)) = ζ(Pk(ŝ, σ)).

2. Forlast(σ) tangible we have:

Pη(σ
↑)

Def 12
=
∑

σ=σ′µs

Pη(σ
′↑) · µ(s)

Def 15
=
IH

∑

σ=σ′µs

ζ(Pk−1(ŝ, σ
′)) · ζ(P(σ′, σ)) = ζ(Pk(ŝ, σ)).

�

The bounded reachability problem for I/O-IPCs subject to distributed schedu-
ling can now be reformulated as an unbounded reachability problem for the asso-
ciated induced PMC.

Theorem 1. Time-bounded reachability for an I/O-IPC C subject to distributed
scheduling is equivalent to checking time-unbounded reachability on the PMC
D = (St

C, ŝC,P,V) as in Definition16for assignments that satisfy(3.1). In partic-
ular:

sup
η∈DS

Pη(^
≤tG) = sup

ζ⊢(3.1)
ζ(PD(^G)) & inf

η∈DS
Pη(^

≤tG) = inf
ζ⊢(3.1)

ζ(PD(^G)).



24 Chapter 3. I/O-IPC Time-Bounded Reachability

Proof. For a distributed schedulerη with associated assignmentζ, as defined in
Lemma1, we havePη(^≤tG) = Pη(

⋃{σ↑ | t(σ) ≤ t andlast(σ) ∈ G}).
Recall that the set of goal statesG ⊂ St

C of the PMC corresponds to the set of
paths that end in a state inG, but do not pass throughG under way in the analyzed
I/O-IPC.

It is obvious that the cylinders induced by these paths do notoverlap and their
union is the set of all paths reachingG within t time-units.

We then have:

Pη(^
≤tG) = Pη

(⋃
{σ↑ | σ ∈ G}

)
=
∑

σ∈G

Pη(σ
↑) =

∑

σ∈G,|σ|=k

ζ(Pk(ŝ, σ))

= ζ
( ∑

σ∈G,|σ|=k

Pk(ŝ, σ)
)
= ζ(P(^G)).

The last equality stems from the fact that a pathσ of lengthk can only be reached
for the first time after exactlyk steps inD.

We now have a one-to-one correspondence between distributed schedulers of
C and assignments ofD which satisfy (3.1) that preserves the probability to reach
G, respectivelyḠ.

It immediately follows that the infimum and supremum probabilities over
these schedulers and, respectively, assignments must be equal. �

To extend this result to strongly distributed schedulers wemust further restrict
the variables of the induced PMC such that the allowed assignments match the
strongly distributed schedulers. First we introduce new variables which represent
the conditional probabilities in (2.1).

For everyi, j, 1 ≤ i, j ≤ #C, i , j, andσ ∈ St
C, we define a new variable

zi, j
σ[Pi ],σ[P j ]

< V. Notice that two differentσ, σ′ ∈ St
C may induce the same variable

if σ[Pi] = σ′[Pi] andσ[P j] = σ′[P j].
We writeVz for the set of all such variableszi, j

σ[Pi ],σ[P j ]
.

Using these new variables we pose new restrictions on the variables of the
induced PMC of a distributed I/O-IPC.

zi, j
σ[Pi ],σ[P j ]

(yi
σ + yj

σ) = yi
σ if 1 ≤ i, j ≤ #C, i , j, andσ ∈ St

C (3.2)

Theorem 2. Time-bounded reachability for an I/O-IPCC subject to strongly dis-
tributed scheduling is equivalent to checking time-unbounded reachability on the
PMCD = (St

C, ŝC,P,V∪Vz) resulted through unfolding as in Definition16under
the assumptions(3.1) and (3.2). In particular:

sup
η∈SDS

Pη(^
≤tG) = sup

ζ⊢(3.1)∧(3.2)
ζ(PD(^G)) & inf

η∈SDS
Pη(^

≤tG) = inf
ζ⊢(3.1)∧(3.2)

ζ(PD(^G)).



3.2. Scheduler-Quantified I/O-IPCs are PMCs 25

Proof. We associate strongly distributed schedulersη to assignmentsζ following
Lemma1. For the extra variables inVz we choose

ζ(zi, j
σ[Pi ],σ[P j ]

) :=


ζ

(
yi
σ

yi
σ+yj

σ

)
if ζ(yi

σ + yj
σ) > 0

1 otherwise.

Note that the value 1 is chosen arbitrarily here.
We now show that any assignment that satisfies (3.2) is associated to a strongly

distributed scheduler and that any strongly distributed scheduler is associated to
an assigment that satisfies (3.2).

First, notice that for a pathσ ending in a vanishing state and distinct I/O-IPCs
Pi andP j that have immediate actions enabled afterσ, we have that ifζ(yi

σ) =
0 = ζ(yj

σ) thenzi, j
σ[Pi ],σ[P j ]

(yi
σ+yj

σ) = yi
σ holds, regardless the value ofζ(zi, j

σ[Pi ],σ[P j ]
).

Now, consider an assignmentζ with associated distributed schedulerη, and
suppose we find two pathsσ, σ′ as above withζ(yi

σ + yj
σ) , 0 , ζ(yi

σ′ + yj
σ′),

σ[Pi] = σ′[Pi] andσ[P j] = σ′[P j]. Then (3.2) gives us that:

ζ


yi
σ

yi
σ + yj

σ

 = ζ(zi, j
σ[Pi ],σ[P j ]

) = ζ(zi, j
σ′[Pi ],σ′[P j ]

) = ζ


yi
σ′

yi
σ′ + yj

σ′



As ζ(yi
σ) corresponds toI(σ)(Pi) in η – and similar correspondences can be found

for yj
σ, yi

σ′ , yj
σ′ – we have that now Equation (2.1) holds forη, which means thatη

is indeed strongly distributed.
Since we have a one-to-one correspondence between distributed schedulers

and assigments, this also proves the reverse, that the assigment associated to a
strongly distributed scheduler satisfies (3.2).

Following the proof of Theorem1, for a strongly distributed schedulerη with
associated assignmentζ, we again have

Pη(^
≤tG) = Pη(

⋃{σ↑ | t(σ) ≤ t andlast(σ) ∈ G}).

Recall that the set of pathsG ⊂ St
C is the set of paths that end in a state inG,

but do not pass throughG under way.
It is obvious that the cylinders induced by these paths do notoverlap and their

union is the set of all paths reachingG within t time-units.
It again holds that:

Pη(^
≤tG) = Pη

(⋃
{σ↑ | σ ∈ G}

)
=
∑

σ∈G

Pη(σ
↑) =

∑

σ∈G,|σ|=k

ζ(Pk(ŝ, σ))

= ζ
( ∑

σ∈G,|σ|=k

Pk(ŝ, σ)
)
= ζ(P(^G)).



26 Chapter 3. I/O-IPC Time-Bounded Reachability

We now have a one-to-one correspondence between strongly distributed sche-
dulers ofC and assignments ofD which satisfy (3.1) and (3.2) that preserves the
probability to reachG, respectivelyḠ.

Again, it immediately follows that the infimum and supremum probabilities
over these schedulers and, respectively, assignments mustbe equal. �



Chapter 4
Implementation Workflow

Time-unbounded reachability probabilities for PMCs can becomputed using the
tool PARAM [17], which results in analyzing a set of polynomial functions over
the variables. These functions can be optimized under the imposed constraints on
variables using standard numerical solvers.

The prototype implementation of the algorithm requires as inputs: a closed,
distributed I/O-IPCC subject only to output nondeterminism which exhibits no
Zeno-behavior (no infinite immediate loops allowed) and a time-boundt.

The following steps are sequentially executed:
1. the I/O-IPC is unfolded up to time-boundt, yielding a PMC with goal states
G. At the same time, constraints over the introduced parameters are gener-
ated depending on the type of scheduler used;

2. the probability of reachingG in the generated PMC is computed parametri-
cally using thePARAM tool. The result is a polynomial function.

3. the computed polynomial function is optimized under the generated con-
straints using non-linear programming. In principle, any non-linear pro-
gramming tool can be used.

The novel addition to the toolchain depicted in Figure4.1is the “unfolder” which
is implemented in Java on top of straightforward classes forboth main data struc-
tures used: basic I/O-IPCs and PMCs.

I/O-IPC

t

Unfolder

PARAMPMC

constraints

polynomial

Matlab result

Figure 4.1: Implementation Toolchain (ellipses{ tools, boxes{ data)



28 Chapter 4. Implementation Workflow

The unfolder is basically an algorithm which performs the expansion of a
scheduled distributed I/O-IPC into a PMC up to the given time bound. While
performing the expansion, local and global parameters corresponding to local and
interleaving scheduler decisions, are produced.

Paths of the basic I/O-IPCs describing the distributed I/O-IPC model are rep-
resented and created on-the-fly through a dynamic tree structure. Since such local
paths can be easily tested for equality against other such paths (e.g. when gener-
ating additional constraints of strongly distributed schedulers) this simplifies the
implementation while also accounting for a bit of memory saving.

The remainder of this chapter gives more information on the “unfolder” which
is the central developed part of the toolchain.

4.1 Unfolder Overview

To begin with, the inputted representation of the basic I/O-IPCs is tokenized and
the objects representing the components of the distributedI/O-IPC are created. At
the same time, depending on the input given, the created I/O-IPC goal states are
represented by either of
• NonSticky configurations: specified by a set of distributed I/O-IPC states
• Sticky configurations: specified by a subset of all components’ states

In theSticky case, if a state of the given subset is part of a state of the distributed
I/O-IPC, the distributed state in question will be a goal state.

The input is structured as follows. The first line names how many basic com-
ponents are parallelized (#IOIPCs) and – if the goal states should be specified
asNonSticky configurations – the number of configurations describing thegoal
states (#G) is also provided.

If the goal states are known to beNonSticky from the first line, each of the
following #G lines of input contain one goal configuration. Otherwise, the goal
states are specified by listing on each of the following #IOIPCs lines the basic
I/O-IPCSticky states.

The remaining lines contain triples describing basic I/O-IPC transitions by:
• the transition starting state: added only if it has not been named by any of

the goal states/configurations or previously processed states
• the transition label: if ending in “?” or “!” it is seen as an input, respectively

output label; otherwise it is parsed as thedouble value of the probability to go
from the starting state to the target state
• the transition target state: added only if it has not been named by any of the

goal states/configurations or previously processed states
Note that the current implementation does not perform checks whether transition
labels are allowed for the specific I/O-IPC transitions for which they are used.



4.2. Object-Oriented Basic I/O-IPCs 29

Also, at the moment only input labels and output labels are taken into considera-
tion.

The PMC model expansion follows the initialization of the I/O-IPC compo-
nents and goal states. Creating the PMC corresponding to thedistributed I/O-IPC
up to the given time bound requires:
• handling synchronization of input and output transitions enabled in dis-

tributed vanishing states
• producing all possible combinations of concurrent local probabilistic tran-

sitions enabled in distributed tangible states
• parameter and (strongly) distributed scheduling constraint generation

The generation of additional constraints for strongly distributed schedulers is, for
now, treated separately after the PMC expansion.

In the end, the created PMC is handed over to PARAM for computing the
polynomial describing the parametric probability of reaching the goal states. The
polynomial returned by PARAM is combined with the generatedconstraints and
passed on to a nonlinear programming tool.

In the tests and case studies performed, theactive-setalgorithm [18, 19] pro-
vided by thefminconfunction of Matlab1 was used.

4.2 Object-Oriented Basic I/O-IPCs

The data structures through describing the implementationof basic I/O-IPCs with
goal states are given in Figure4.2. The design was aimed at being minimalistic
and complete while also providing for an efficient implementation of the PMC
generation.

Each basic I/O-IPC is described by itsstates, of which theinitial state,
needed for creating the initial PMC state, is singled out.

The centerpiece information in the connected structure is the one represen-
ting local I/O-IPC states. For simplicity, the enabled transitions (notationedge)
are split through corresponding state attributes into input (notationin), output
(notationout) and probabilistic (notationpr) transitions.

The states are identifyed through their uniquename/id. Each transition (no-
tationEdge) is part of one of thein, out or prob attributes of a state. For this
reason, each transition could be compressed to holding information only on its
target state andlabel.

The different types of labels are implementing classes of the commonLabel

interface. Labels of input (notationIn) and output (notationOut) transitions have
as attribute aname/id which determines them uniquely. Labels of probabilistic

1seehttp://www.mathworks.com/.../fmincon

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/fmincon.html


30 Chapter 4. Implementation Workflow

(notationPr) transitions have as attribute the probability (notationprob) corre-
sponding to reaching the targetState via the given labeledEdge.

As argued beforeGoals may beSticky or NonSticky. In either case, they
are described by their sole attribute consisting of one or moreState objects.

initial states

target label

IOIPC

State

Edge

Label

OutPr In

name/id

name/idprob name/id

in

out

pr

Goals

Sticky NonSticky

states configs

"depends on"
"attribute of"

Legend:

"implements"

Figure 4.2: Dependency Diagram: Basic IOIPC

4.3 Tree Representation of Local I/O-IPC Paths

Each PMC state will be described mainly by a path of the distributed I/O-IPC.
Paths of the distributed I/O-IPC have associated a set of local I/O-IPC paths (their
projections onto the different components).

An argument of why different local I/O-IPC paths correspond to various dis-
tributed paths has been briefly explained in Example2.

Since paths of the distributed I/O-IPC and the PMC are so closely related, dis-
tributed I/O-IPC paths need not be specifically used by the “unfolder”. However,
a representation for local paths of the given model components is needed.

Paths of basic I/O-IPCs could have been represented straightforwardly as or-
dered lists of states and transitions ending in a state. However, such a represen-
tation would have imposed a high memory usage for the multiple different paths
that have to be stored with each PMC state.



4.3. Tree Representation of Local I/O-IPC Paths 31

For example, local path comparison, needed for constraint generation in the
strongly distributed scheduler case, would have been pretty expensive.

Also, creating new lists describing such paths whenever a new PMC state is
created and iterating through such lists would have been undesirable (both gene-
rally and complexity-wise).

Local paths are dynamically constructed when new PMC statesare created
during model expansion. The data structures describing theused representation
of local paths is depicted in Figure4.3.

LocalPathlastEdge

prKids

outKids

inKids

Edge

Parameter

"depends on"
"attribute of"

Legend:

Figure 4.3: Dependency Diagram: IOIPC Local Path

For each local path, itsinKids, outKids andprKids attributes will point,
for each possible path expanding input, output or probabilistic transition (i.e. for
eachEdge), to anotherLocalPath object.

The nice thing about theLocalPath objects to which the*Kids attributes
point to, is that at first they are not initialized. However, when needed to create
new PMC states they get initialized and, if reached subsequently within the model
expansion algorithm, they will be detected.

In addition, theoutKids attribute will associate, upon initialization, each
expandingLocalPath with the parameter corresponding to itslastEdge, thus
being equipped for use when creating parametric PMC transitions.

Constraints on local parameters are created within eachLocalPath upon ini-
tialization and added to the separately stored constraint set.

In general, thelastEdge will represent the transition seen last on the de-
scribed path. However, for the local path consisting only oftheinitial basic
I/O-IPC state, thelastEdge is initialized to an edge with theinitial state as
target and a non-initializedlabel.

Such a special-case handling is needed by the expansion algorithm which
makes use of thetarget state of thelastEdge of local paths when determin-
ing PMC goal states.



32 Chapter 4. Implementation Workflow

Every parameter associated with a path-expandingEdge and, respectively, an
expansionLocalPath is iteratively created by using the same static local param-
eter generator for all paths of a given IOIPC.

Example 8. Consider again the repeated coin flip and guess experiment depicted
by the I/O-IPCs in Figures1.2and1.3.

Each PMC state for the distributed I/O-IPC CF ‖CG expanded up to time
bound1 corresponds to one of the paths starting from the root of the tree on
the bottom side in Figure8 and ending in one of its leaves.

The trees on the top-left and top-right sides in Figure8 represent the way
local paths are expanded in a similar manner for the projections of the depicted
tree paths ofCF ‖CG.

〈s0, s3〉 〈s0, s3〉 〈s0, s3〉 〈s0, s3〉 〈s0, s3〉〈s0, s3〉〈s0, s3〉〈s0, s3〉

〈s1, s3〉 〈s1, s3〉〈s0, s4〉 〈s2, s3〉〈s2, s3〉 〈s0, s4〉

〈s1, s4〉 〈s2, s4〉

〈s0, s3〉
1
2

1
2

gh! th! gt!
gh!

gt!
tt!

th! gh! gt! th! tt!gt!gh!tt!

s0 s0

s1 s2

s0

1
2

1
2

th! tt!

s3 s3

s4

s3

1

gh! gt!

Figure 4.4: Tree Path Representations forCF , CF ‖CG andCG

With this view in sight, local paths are represented throughthe states of the
fringe in the trees forCF andCG – i.e. the leaf states connected to the root of the
tree through undotted lines.

The dotted lines would represent the possible continuations of the paths which
have not yet been entirely expanded by the unfolder.

From an implementation point of view, the states not connected by straight
lines to the root of the tree are the ones which have not yet been initialized/created.

As it can be seen in the depicted example, the two red-coloreddistributed I/O-
IPC paths have identical path projections inCF andCG.



4.4. Object-Oriented PMCs 33

4.4 Object-Oriented PMCs

The data structures by which PMCs are implemented are described in Figure4.5.
Each PMC is described by its states (notationnodes), of which, the initial state is
singled out and used to begin the recursion of the PMC expansion.

PMC

initial

nodes

Node

name/id

paths

shifts

Shift

LocalPath

Parameter

target prob

"depends on"
"attribute of"

Legend:

Figure 4.5: Dependency Diagram: Parametric Markov Chain

Each PMC state (notationNode) will have as attributes the associated set of
local I/O-IPC paths. These paths pertain to the components of the scheduled
distributed I/O-IPC analyzed. The other attribute of eachNode is the set of enabled
parametric transitions (notationshifts).

The PMC transitions (notationShift) are always being addressed from a
PMC state attribute. Thus, they are fully described by the additional informa-
tion of their target PMC state and the corresponding parametric probabilistic
value (notationprob). The probabilistic value of a PMC transition is the result of
combining local and global/inteleaving parameters.

Global parameters, PMC state names (notationname/id) as well as global
constraints are produced using an additional generator associated with the created
PMC. Goal states of the PMC are flagged upon their initialization.

4.5 Model Expansion

The PMC resulted from the given basic I/O-IPCs is constructed by a depth-first
recursion on its states. The PMC start state from which the recursion is initiated
is created from the local paths generated by the start statesof the input I/O-IPCs.

The algorithm proceeds by a tangible vs. vanishing case distinction on the
node (i.e. on its associated distributed I/O-IPC state) as in Algorithm4.1.

TangiblePMC states (seen as their corresponding distributed I/O-IPC state) are
expanded like described in Algorithm4.2. If the check on the timebound fails
then thenode is made absorbing and the recursion is halted.



34 Chapter 4. Implementation Workflow

Algorithm 4.1 PMC Construction – Main Recursion:expand
Require: node andbound

if node is tangiblethen
expandt(node, bound)

else
expandv(node, bound)

end if

On the other hand, if the timebound limit is not reached, the algorithm pro-
ceeds by creatingvec. Each item of the vectorvec contains all the local paths
corresponding to expanding the local path associated with the PMCnode.

The possible path expansions are according to the enabled probabilistic tran-
sitions for each of the basic I/O-IPC components analyzed.

Algorithm 4.2 Expansion of Tangible PMC States:expandt
Require: node andbound

if bound , 0 then
vec := ∅
for all i ∈ {1, . . . , #IOIPCs} do
vec.add(node.paths[i].prKids)

end for
prVec := oneOfEach(vec)
for all proj ∈ prVec do
pmc.nodes := pmc.nodes ∪ {nodeproj}
(∗ α is the parameters’ product needed to expandnode into nodeproj ∗)
node. →:= node. → ∪{ α→ nodeproj}
expand(nodeproj, bound − 1)

end for
else
→:=→ ∪{node 1→ node}

end if

The vectorprVec is computed according to the self-contained Algorithm4.3.
Its items are ordered sets of local paths. These sets fully describe the projections
of the PMC states reachable with aShift from the analyzedPMC node.

For each projectionproj describing the newPMC statenodeproj the following
are subsequently performed:
• the set ofPMC nodes is enriched with the newly createdPMC statenodeproj
• the parametric probability to reachnodeproj from node (denotedα) is com-

puted using the information within the local paths describingnodeproj



4.5. Model Expansion 35

Algorithm 4.3 All ways to pick an Item of every Box out ofN given:oneOfEach
Require: boxes: a size-N vector containing vectors
result := ∅
if boxes.size = 1 then
result.add(boxes[1])

else
head := boxes.pop()
tmp := oneOfEach(boxes)
for all item ∈ head do

for all vec ∈ tmp do
result.add(vec.add(item))

end for
end for

end if
(∗ items of theresult vector have sizeN ∗)
return result

• the set of enabled transitions (shifts) for node is enriched with the newly
createdShift:

α→ nodeproj
• the recursion proceeds withnodeproj and a decreased-by-1 time bound.
VanishingPMC states (seen as their corresponding distributed I/O-IPC state)

are expanded like described by Algorithms4.4and4.5.
Algorithm 4.4 is solely a helper subroutine which breaks down the case ana-

lysis. It makes possible dealing separately – for each of thebasic I/O-IPC compo-
nents – with expanding local paths of the analyzed PMC state (node) correspond-
ing to enabled output transitions.

Algorithm 4.4 Expansion of Vanishing PMC States:expandv
Require: node andbound

for all i ∈ {1, . . . , #IOIPCs} do
matchOutputs(node, bound, i, node.paths[i].outKids)

end for

The worker subroutine for performing the expansion of “vanishing” PMC
states is described by Algorithm4.5and argumented below.

For eachLocalPath in the i th basic I/O-IPC, all enabled output transitions
(and thus possible path expansions) are considered. For each of them a vector of
projectionsproj is created which will determine a newPMC state.

The local paths relative to the other componentsj ∈ {1, . . . ,N}, j , i have to
be constructed, being part of the projections vector.



36 Chapter 4. Implementation Workflow

It will be tested whether there is any “input transition”-expansion of theLocalPath
for componentj matching the output transition of componenti’s path expansion.

If this is the case then theLocalPath for j, expanded by the input transition,
will be added to the projections vector. Otherwise, theLocalPath for j will be
added to the projections vector as it is.

This is also where input determinism comes into play. In general, it might
be the case that, for a given output transition in componenti, there are multiple
matching input transitions enabled for theLocalPath of componentj.

Handling input nondeterminism would require that all thesepossible choices
are considered and projection vectors are created for each matching input. The
rest of the algorithm would require no additional changes.

Upon the successful creation of the projections vectorproj, the new associ-
atedPMC state will be created and added to the state set of thePMC.

The parametric probability to reachnodeproj from node (denotedα) needs
also to be computed. Its computation uses the local parameter information within
the local paths describingnodeproj as well as the interleaving parameter informa-
tion within node.

Thereafter, the set of enabled transitions (shifts) of the objectnode is en-
riched with the newly createdShift (namely,

α→ nodeproj). The recursion then
proceeds withnodeproj and the same time bound.

Algorithm 4.5 Match Outputs to corresponding Inputs:matchOutputs
Require: node, bound, i: IOIPC number,
outputs: path expansions fromnode for output transitions of thei th I/O-IPC
for all out ∈ outputs do
proj := ∅
for all j ∈ {1, . . . , #IOIPCs} do

if j = i then
proj.add(out)

else if∃in ∈ node.paths[j].inKids to matchout then
proj.add(in)

else
proj.add(node.paths[j])

end if
end for
pmc.nodes := pmc.nodes ∪ {nodeproj}
(∗ α is the parameters’ product needed to expandnode into nodeproj ∗)
node. →:= node. → ∪{ α→ nodeproj}
expand(nodeproj, bound)

end for



Chapter 5
Case Studies

This chapter is used to present five case studies for which thealgorithm has been
used and their results.

For the first 3 case studies the PARAM tool has been run on a computer with a
3 Ghz processor and 1 GB of memory, while Matlab was run on a computer with
two 1.2 Ghz processors and 2 GB of memory. The last 2 case studies were tested
by running the unfolder on a computer with two 2.13 Ghz processors and 4 GB of
memory.

5.1 Mastermind

In the game of Mastermind [20] one player, theguesser, tries to find out acode,
generated by the other player, theencoder. The code consists of a number of
tokens of fixed positions, where for each token one color (or other labelling) is
chosen out of a pre-specified set. Colors can appear multipletimes.

At each round, the guesser guesses a code. This code is then compared to the
correct one by the encoder. The encoder answers by telling the guesser:

a) how many tokens were of the correct color and at the correctplace
b) how many tokens werenot at the correct place, but have a corresponding

token of the same color in the code.
Assume, for instance, the correct code is•◦⋆⋆ and the guesser guesses•⋆◦◦.

In this case, the encoder answers 1 for a), because of the• at the very left. For b),
the encoder answers 2, because for one of the◦ tokens and for the⋆ token there
is a correspondence in the• ◦ ⋆⋆ correct code.

Notice that the decisions of the encoder during the game are fully determin-
istic, while the guesser has the choice between all valid codes. We assume that

0The Mastermind case study was initially suggested and adapted by Moritz Hahn



38 Chapter 5. Case Studies

the encoder chooses the code probabilistically with a uniform distribution over all
options. The goal of the guesser is to find out the code as fast as possible. Our
aim is to compute the maximal probability that the guesser correctly guesses the
code withint rounds.

However, the latter target is not as clear as it may seem. It could mean to
minimize the expected number of rounds [21], to bound the maximal number of
rounds [22], or to maximize the probability that the code is broken within a given
limit of rounds. All of the previous, except for bounding themaximal number of
rounds, depend on the probability with which codes are chosen.

We formalize the game as follows: letn denote the number of tokens andm
denote the number of colors of the code. This means there aremn possible codes.

The symbolse andg are used as markers to distinguish between tuples which
may not be distinguishable otherwise. DefineIm = {1, . . . ,m} and letCn,m =

{e} × (Im)n denote the set of possible codes. WithGn = {g} × In × In we denote the
set of all tuples (a, b) of fully (a) and partially (b) correct tokens.

We useµcode ∈ Dist(Cn,m) as the distribution according to which the encoder
chooses the code which the guesser is supposed to break.

The guesser is the basic I/O-IPCG = 〈{sG, s′G, s′′G, s̄G},AG,→G,⇒G, sG〉 where
AI
G = Gn, AO

G = Cn,m andAint
G = ∅. Interactive transitions of the guesser are given

by→G= {(s′G, a, s′′G) | a ∈ AO
G}∪{(s′′G, a, s′′G) | a ∈ AI

G\{〈g, n, 0〉}}∪{(s′′G, 〈g, n, 0〉, s̄G}.
Thus,G can nondeterministically propose codes and can receive feedback on

their correctness. Probabilistic transitions are⇒G= {(sG, µs′G
), (s′′G, µs′G

)} where
µs(s) = 1 andµs(s′) = 0 for s , s′. The first pair in the probabilistic transition
is used to follow a step the encoder needs in order to choose aninitial code. The
second pair encodes a delay after each guess, to allow to reason about the number
of steps needed to guess the code.

The encoder is seen asE = 〈{sE}∪Cn,m∪ (Cn,m×Cn,m),AE,→E,⇒E, sE〉, where
AI
E = Cn,m, AO

E = Gn andAint
E = ∅. We have⇒E= {(sE, µcode)} ∪ {(s, µs) | s ∈ Cn,m}.

Here, (sE, µcode) is used for the probabilistic choice of the code. The function
µcode is a distribution over the states inCn,m. The rest of⇒E is used to follow the
delay transition of the guesser.

Interactive transitions of the encoder are separated→E=→I
E ∪ →O

E into two
parts. Using→I

E= {(a, b, (a, b)) | a, b ∈ Cn,m} the encoder receives the choice of
the guesser and using→O

E= {((a, b), f (a, b), a) | a, b ∈ Cn,m} the encoder provides
answers to the guesser.

The function f : Cn,m × Cn,m → Gn compares two codes and is defined as
f (a, b) = (g, f1(a, b), f2(a, b)) with f1 and f2 defined as it follows.

Let a = 〈a1, . . . , an〉 andb = 〈b1, . . . , bn〉. The functionf1 answers how many
tokens were of the correct color and at the correct position:

f1((e, a), (e, b)) = |A(a, b)|,



5.1. Mastermind 39

whereA(a, b) = {i ∈ In | ai = bi} contains the position numbers in which the actual
and the guessed code completely agree.

The function f2 answers how many tokens were not at the correct place, but
have a corresponding token of the same color in the code:

f2((e, a), (e, b)) =
m∑

j=1

min{|B(a, b, j)|, |B(b, a, j)|},

whereB(a, b, j) = {i ∈ In | i < A(a, b) ∧ ai = j}.
To find out about the partially correct guesses, we consider each possible color

separately. The total sum of partial guesses is then the sum of partial guesses of
the individual colors. We count the number of tokens of a given color at positions
which have not been guessed absolutely correctly. On the onehand we count them
in the actual code and on the other hand in the code proposed bythe guesser.

We have to take the minimum of these two numbers: if they are equal, there
is a corresponding token for each token the guesser took (though not at the same
position). If the guesser guessed less tokens than exist, only the ones guessed can
be considered correct. If he/she guessed more than exist, there remain tokens of
which there is no correspondence in the actual code.

sG s′G

s′′Gs̄G

1

1 (e, b)!

(g, x, y)?

(g, n, 0)?

sE

(e, a)

. . .

〈(e, a), (e, b)〉

1
mn

1

(e, b)?f ((e, a), (e, b))!

The (g, x, y)? and (e, b)! transitions on the left denote sets of transitions quantified
over (x, y) ∈ I2

n, (x, y) , (n, 0) andb ∈ (Im)n.
The state (e, a) is arbitrary (i.e. a is arbitrarily fixed) and the (e, b)? transition
together with the〈(e, a), (e, b)〉 state are quantified overb ∈ (Im)n again.

Figure 5.1: Mastermind Schematic Models ofG (left) andE (right)

The Mastermind game is the compositionC := G‖E of the two basic I/O-IPCs.
A schematic graphical representation of the game is depicted in Figure5.1.

Using the tool described inChapter 4we can reason about the maximal prob-
ability supη Pr(^≤t s̄G) to break the code within a given numbert of guesses.

We consider the set of all distributed schedulers as we obviously want that the
guesser uses only local information to make its guesses.



40 Chapter 5. Case Studies

If we were to consider the set of all schedulers, the maximum probability for
the guesser to find the code would be 1 for any time-boundt, as for some scheduler
the guesser would immediately choose the correct code with probability 1.

Note that it does not make sense to consider strongly distributed schedulers for
this case study as it never occurs that the I/O-IPCsG andE both have immediate
actions enabled. In other words, the players act in turn.

Settings PMC PARAM NLP
n m t #S #T #V Time Mem #V Time Pr
2 2 2 197 248 36 0.0492 1.43 17 0.0973 0.750
2 2 3 629 788 148 0.130 2.68 73 0.653 1.00
3 2 2 1545 2000 248 0.276 5.29 93 1.51 0.625
3 2 3 10953 14152 2536 39.8 235 879 1433 1.00
2 3 2 2197 2853 279 0.509 6.14 100 2.15 0.556

Table 5.1: Results of Mastermind Case Study

Results are given in Table5.1. In addition to the model parameters (n, m),
the time bound (t) and the result (Pr) are given. We provide statistics for the
various phases of the algorithm. For the unfolded PMC the number of states (#S),
transitions (#T), and variables (#V) are given.

For thePARAM tool the time (in seconds) needed to compute the polynomial,
the memory (in MB) required, and the number of variables thatremain in the
resulting polynomial are also given.

Finally we give the time (in seconds) needed forMatlab to optimize the poly-
nomial provided byPARAM under the linear constraints that all scheduler deci-
sions lie between 0 and 1. For this case study the PMC models and linear con-
straints were generated semi-automically given the parametersn, m, andt.

5.2 Dining Cryptographers

The dining cryptographers problem is a classical anonymityproblem [23]. The
cryptographers must work together to deduce a particular piece of information us-
ing their local knowledge, but at the same time each cryptographers’ local knowl-
edge may not be discovered by the others.

The problem can be summarized as follows: three cryptograpers have just fin-
ished dining in a restaurant when their waiter arrives to tell them their bill has been
paid anonymously. The cryptographers decide they wish to respect the anonimity
of the payer, but they wonder if one of the cryptographers haspaid or someone

0The Dining Cryptographers case study was initially suggested and adapted by Pepijn Crouzen



5.2. Dining Cryptographers 41

else. They resolve to use the following protocol to discoverwhether one of the
cryptographers paid, without revealing which one.

Each cryptographer flips a fair coin such that the others cannot see the out-
come. Thereafter each of them sees the outcome of his own coinand shows the
flipped coin to his right-hand neighbour (actionshi for heads andti for tails). This
happens in a fixed order. They all now know the outcome of two coins (for in-
stance, cryptographer one knows the outcome of his own flip and the outcome of
that of cryptographer two).

Again in a fixed order, they proclaim whether the two coins were the same or
different (actionssi for same anddi for different). However, if a cryptographer has
paid he/she will lie when proclaiming whether the two coins were identical or not.

Now we have that if there is an even number of “different” proclamations, then
all of the cryptographers told the truth and it is revealed that someone else paid.
If, on the other hand, there is an odd number of “different” proclamations, one of
the cryptographers must have paid the bill, but it has been shown that there is be
no way for the other two cryptographers to know which one has paid.

In the described model each cryptographer first attempts to guess whether a
cryptographer has paid (actionsci to guess that a cryptographer has paid,ni if not).
In case the cryptographer decides a cryptographer has paid,he guesses which one
(actiongi, j denotes that cryptographeri guesses cryptographerj has paid).

We depict part of the I/O-IPC models in Figure5.2. On the right-hand side of
the figure we have the I/O-IPCF that simply decides who paid (actionspi) and
then starts the protocol. Each cryptographer has a probability of 1

6 to have paid
and there is a probability of12 that none of them has paid.

On the left-hand side of Figure5.2we see part of the I/O-IPCG1 for the first
cryptographer (the case when the cryptographer flips heads and has not paid and
therefore proclaims the truth).

N1

G11 G12 G13

start?

1
2

1
2

h1!

h2? t2?

s1! d1!

d2?
s2? s3?

d3?
c1! n1!

g1,1!
g1,2! g1,3!

1
1

1

1
NP1 P2 P3

1
6 1

6

1
6

1
2

p1! p2! p3!

start!

start! start! start!

11 1 1

p1?

Figure 5.2: Part of the I/O-IPC modelG1 (left) of the first dining cryptographer
and the I/O-IPCF (right) that probabilistically decides who has actually paid.



42 Chapter 5. Case Studies

We can see that a “run” of the distributed I/O-IPCC = F ‖G1‖G2‖G3 takes
two time-units, since there is one probabilistic step to determine who paid and
one probabilistic step where all coins are tossed simultaneously. We are interested
in two properties of this algorithm: first, all cryptographers should be able to
determine whether someone else has paid or not. We can express this property,
for example for the first cryptographer, as a reachability probability property:

P(^≤2{P1,P2,P3} × {G11,G12,G13} ×S2 × S3 ∪ {N} × {N1} × S2 ×S3) = 1. (5.1)

HereS2 andS3 denote the complete state spaces of the second and third cryp-
tographer I/O-IPCs. For the other cryptographers we find similar reachability
probability properties.

Secondly, we must check that the payer remains anonymous. This means that,
in the case that a cryptographer pays, the other two cryptographers cannot guess
this fact. This can be formulated as a conditional reachability probability:

P(^≤2{P2} × {G12} × S2 × S3 ∪ {P3} × {G13} × S2 × S3)
P(^≤2{P2,P3} × S1 × S2 × S3)

=
1
2
, (5.2)

i.e., the probability that the first cryptographer guesses correctly which other cryp-
tographer has paid, under the condition that one of the othercryptographers has
paid is one half.

PMC PARAM NLP
Property #S #T #V Time Mem #V Time Pr

(5.1) 294 411 97 9.05 4.11 24 0.269 1.00
(5.2), top 382 571 97 9.03 4.73 16 0.171 0.167

(5.2), bottom 200 294 97 8.98 4.14 0 N/A 1/3

Table 5.2: Results of Dining Cryptographers Case Study.

Table5.2shows the results for the dining cryptographers case study.We cal-
culate the conditional probability in (5.2) by computing the top and bottom of the
fraction separately. We observe that both properties (5.1) and (5.2) are fulfilled.
Table5.2also lists statistics on the tool performances and model sizes as described
for Table5.1. Note especially that the third reachability probability was computed
directly byPARAM. I.e., this probability is independent of the scheduler decisions
andPARAM was able to eliminate all variables.

5.3 Randomized Scheduler Example

For the class of strongly distributed schedulers it may be the case that the maximal
or minimal reachability probability can not be attained by adeterministic sched-
uler, i.e. a scheduler always choosing one action/component with probability 1.



5.3. Randomized Scheduler Example 43

To exemplify this situation we use a small example of an I/O-IPC as depicted
by Figure 4 in [2] through a PIOTA model. For convenience, the example adapted
to the I/O-IPC settings is depicted in Figure5.3.

1
2

1
2

l!

ea!

eb!

ec!

r!

eb!

ec!

w?

ea!

1

ea?

a!

1

eb?

b!

1

ec?

c!

× ×

×

×

1
l?

ea?

eb?

ec?

a?

b?

c?

b?

a?

c?

r?

eb?

ec?

c?
b?

w!

ea?

c?

a?

a?

a?, b?

c?

c? c?

b?

c?

c?

a?

E A B C R

Figure 5.3: The Randomized Scheduler Example

In this example, the maximal probability of reaching a state⊗ for determinis-
tic strongly distributed schedulers is 1/2. However the scheduler that prioritizes
doing an action fromE, then fromR and then chooses among the rest (i.e.A, B,
or C) with uniform probability, yields a probability result of 13/14.

PMC PARAM NLP
#S #T #V Time Mem #V Time Pr
13 23 12 0.00396 1.39 11 0.241 0.545‡

Table 5.3: Results of Randomized Scheduler Case Study.
(‡ For certain settings, Matlab reports a maximal probabilityof 0.500)

Table5.3shows the result of applying our tool chain to this example. We see
that we can find a scheduler with maximal reachability probability 0 .545, which
is even greater than 13/24. Note that we can express the maximal reachability
probability as a time-bounded property because the exampleis acyclic.

However, for this case, the Matlab numerical result dependson the initial as-
signment given to the solver. For certain initial assignments the solver returns
a maximal probability of only 0.500. This indicates that further investigation is
required in the appropriate nonlinear programming tool forour algorithm.



44 Chapter 5. Case Studies

5.4 Distributed Random Bit Generator

Random bit generators (notation RBGs) are abstract algorithms that produce ran-
dom sequences of bits. For a very good analysis of existing (pseudo)random num-
ber generators and statistical tests for them to [24].

In our current case study RBGs are treated as black boxes. To be specific, a
RBG is understood as an algorithm which, after performing some computation,
outputs either 0 or 1 with probability 1/2 (see Figure5.4). In a sense, RBGs are
identical to the coin-flip used early in the thesis.

We propose to combine RBGs in a distributed setting by havingthe bits pro-
duced by different RGBs interleaved. At the same time, we assume that in parallel
with the given RBGs there is an “attacker” (much like the coin-guess) who tries
to discover the produced bit sequence. We show that by using strongly distributed
schedulers the “attacker” can only guess what the sequence produced by the dis-
tributed RBG is.

The example proposed is a nice generalization of RBGs to distributed settings
and a distributed RBG as the one described could be used by multiple parties who
do not trust the randomness of eachother’s RBG.

This case study also motivates and hints toward the possiblity of how and
why to use distributed and strongly distributed schedulersat the same time in a
distributed system.

Namely, we assume that a group of entities trust eachother and thus use a
distributed RBG subject to distributed scheduling. We further assume that a new,
yet untrusted entity, wants to join the others by extending the distributed RBG.

There is no need to use strongly distributed scheduler restrictions between all
entities. Instead, strongly distributed scheduling (and corresponding restrictions)
have to be generated only between the new entity and each of the initial ones.

The distributed RBG can be seen as the composition of RBGsP1, . . . ,Pn and
an attackerXn. The attackerXn tries to guess the bits output by the other RBGs.
We are interesting in finding the probability for the attacker to guess the RBG-
produced bits within one of the firstt time steps.

Each RBG is a “coin-flip” I/O-IPC, i.e.Pi = 〈{si
0, s

i
1, s

i
2},Ai,→i,⇒i, si

0〉where
AO

i = {0i, 1i} andAI
i = Aint

i = ∅. Probabilistic transitions are given as⇒i=

{(si
0, µ) | µ(si

1) = µ(s
i
2) = 1/2} and interactive transitions are described by→i=

{(si
1, 0i!, si

0), (s
i
21i!, si

0)}.
The attacker is a generalized “coin-guess”:Xn = 〈{s0, s1},AX,→X,⇒X, g0〉

whereAO
X = {gx | x ∈ {0, 1}n} andAI

X = Aint
X = ∅. Probabilistic transitions of the

attacker are given by⇒X= {(s0, µ) | µ(s1) = 1} while interactive transitions are
described by→X= {(s1, gx, s0) | x ∈ {0, 1}n}.

Notice that forn = 1 we find ourselves in the case of the repeated coin flip and
guess as depicted in Figure1.2. The basic I/O-IPCs for the system whenn = 2



5.4. Distributed Random Bit Generator 45

are described in Figure5.4.

s1
0

s1
1 s1

2

1
2

1
2

01! 11!
s0

s1

1
g00! g11!

g01! g10!

s2
0

s2
1 s2

2

1
2

1
2

02! 12!

P1 P2X2

Figure 5.4: Random Bit GeneratorsP1, P2 and attackerX2

Table5.4shows the partial results for the distributed random bit generator case
study. Computing the reachability probability that withint time steps the attacker
guesses at least once the bits produced by the parallelized RBGs can be performed
using the PMC generated by the unfolding.

The model for the attacker may be extended by additional components to jus-
tify the use of strongly distributed schedulers but, to begin with, the test above
(which requires only the use of distributed schedulers) hasto be performed.

Unfolder PMC
#RBGs t Time Mem #S #T #V

1 2 0.015 2 81 116 13
1 5 0.548 11.98 5457 7844 713
1 6 2.607 32.2 21841 31396 2793
1 7 28.358 14.35 87377 125604 11049
2 1 0.027 2.66 197 292 35
2 2 1.469 14.16 11605 17840 2223

Table 5.4: Results of the Distributed Random Bit Generator Case Study.

Similar to the previous case studies, statistics on the unfolder’s performance
and model sizes are given. In addition, the number of RBGs taken in parallel
as well as the time (in seconds) and memory needed (in Mb) for the unfolder to
generate the PMC are specified.

Another interesting reachability probability which couldbe investigated, but
for which the current implementation is not enhanced enoughto see through, is
the probability that within at mostt time steps, the attackerX guesses at mostx
n-tuples of bits.

Also, by taking the interleaved guesses for the bits of the given RBGs in the
attacker, instead of the condensed version which tries to guessn-tuples of bits
produced by all the RBGs at one step, one could compute (e.g.)the probability
for the attacker to guess entirely the bits generated by onlyone of the given RBGs.



46 Chapter 5. Case Studies

5.5 Car Platooning

As a last case study we consider a simplified version of the carplatooning de-
sign and verification. The case study was initally introduced by the “Partners
for Advanced Transit and Highways (PATH)” [25] at the University of Califor-
nia, Berkeley. More information on car platooning is available in the literature
[26, 27]. The main idea of the study is that traffic density on highways can be
maximized by merging autonomous cars into platoons.

The adaptation of car platooning to the I/O-IPC settings focuses on finding
maximal reachability probabilities for an abstract platoon to be filled with a spe-
cified, smaller then its capacity, number of cars.

The behavior of a car will be modeled by an I/O-IPC and a car is seen as being
able to have the role of either a free agent, or a platoon member. The platoon
is also represented by an I/O-IPC and its capacity is reflected by the models’s
number of states. The key to platoon verification resides in formal analysis of
merge& split maneouverswhich describe cars joining or leaving the platoon.

The distributed system analyzed is the result of parallelizing a platoon model
and a number of I/O-IPCs car models. Although various tests can be performed,
the initial test scenario we used requires to compute the maximal probability that
a platoon of capacityN consists ofk ≤ N cars within at mostt timed steps.

The formal description of the platoon and car I/O-IPCs are given below. The
I/O-IPC model of a car and of a platoon of sizeN are depicted in Figure5.5.

The behavior of a car is given as the I/O-IPC Ci = 〈Si ,Ai,→i,⇒i , freei〉
where the I/O-IPC states areSi = {freei, busyi, xi, x′i, x′′i , x̄i, yi, y′i, y′′i , ȳi}, the
non-timed transitions are described by

→i = {(freei, mi!, xi), (xi, oki, x′i), (x′i, no!, x′′i ), (xi, no?, x̄i), (freei, no?, x̄i)}
∪ {(busyi, si!, yi), (yi, oki, y′i), (y′i, no!, y′′i ), (yi, no?, ȳi), (busyi, no?, ȳi)}

and the probabilistic transitions are given by

⇒i= {(x̄i, 1, freei), (ȳi, 1, busyi), (x′′i , 1, busyi), (y′′i , 1, freei)}.
The statesfreei andbusyi mean that the car is either a free agent or part

of a platoon. The actionsmi andsi signal that the car wants to merge with the
platoon or split from it. Theno! output signal is produced by the car which is
given permission (ok?) to join or leave the platoon.

The platoon behavior is given by the I/O-IPC P = 〈SP,AP,→P,⇒P, p0〉
whereSP = {pi | i ∈ 0,N} ∪ {+i,i+1,+′i,i+1,−i+1,i,−′i+1,i | i ∈ 0,N − 1}, the
non-timed transitions are described by

→P = {(pi, mi?,+i,i+1), (+i,i+1, oki!,+′i,i+1) | i ∈ 0,N − 1}
∪ {(pi+1, si?,−i+1,i), (−i+1,i, oki!,−′i+1,i) | i ∈ 0,N − 1}



5.5. Car Platooning 47

and⇒P= {(+′i,i+1, 1, pi+1), (−′i+1,i, 1, pi) | i ∈ 0,N − 1} represents the probabilistic
transitions of the model.

Eachpi state of the platoon denotes that there arei ≤ N cars in the platoon.
The platoon listens to merging (mi?) and splitting (si?) signals of the cars and
each time it responds to the signal of one of them.

freei

busyi

x̄i

ȳi

xi

x′
i

x′′
i

yi

y′
i

y′′
i

mi!

no?

no?

1

oki?

no!

1

si!

oki?

no!

1

no?
no?

1Ci

p0 p1 pNpN−1

PlatoonP

pi pi+1

+i,i+1 +′
i,i+1

−′
i+1,i −i+1.i

mi?

oki!

1

si?

oki!

1

Figure 5.5: I/O-IPC models of a Car (Ci) and a Schematic Platoon of capacityN

Table 5.5 shows partial results for the initial test scenario used forthe car
platoon case study. The reachability probability which thesystem may be given
to compute is the maximal probability that withint time steps the car platoon
consists of preciselyk cars. The platoon capacity is taken to be the same as the
number of cars of the distributed model.

Unfolder PMC
k N t Time Mem #S #T #V
2 2 1 0.043 2.33 119 154 35
2 2 2 0.057 3.66 443 568 143
2 2 3 0.366 11.98 2279 2944 683
2 2 4 1.838 12.65 8111 10396 2627
2 2 5 32.585 40.11 41159 53164 12347
2 3 1 0.492 13.99 2788 3876 1088
2 3 2 69.606 44.53 33280 45984 13914

Table 5.5: Results of the Car Platoon Case Study.

Similar to the previous case studies, statistics on the unfolder’s performance
and model sizes are given. In addition, the number of cars taken in parallel and
the capacity of the platoon (bothN), the fill-quota against which the tests are
performed (k), as well as the time (in seconds) and memory needed (in Mb) for
the unfolder to generate the PMC are specified.



48 Chapter 5. Case Studies

For the car platoon study, another interesting test we thought of was to deter-
mine the maximal probability that, starting from a platoon consisting already of a
numberk0 of cars, the platoon would not decrease underk0 − k nor increase over
k0 + k cars.

The differences for the platoon and car models in this scenario are small com-
pared to the previous. The initial state of the platoon has tobe set topk0 andk0

cars must have theirbusy−, instead of theirfree− states marked as initial.
The testing for this study settings however had to be postponed, as further

improvements in the implementation (especially for the deployment of strongly
distributed schedulers) are needed beforehand.



Chapter 6
Conclusions

Although various model checkers for verifying reachability of distributed, nonde-
terministic and probabilistic systems exist, none of them has the built-in means of
ruling out unrealistic behavior due to inadequate scheduling.

The main contribution of the described work consists in an automated method
for determining extremal time-bounded reachability probabilities of distributed
I/O-IPCs. The method used is based on reformulating the problem as a polyno-
mial optimization problem under linear and – for strongly distributed schedulers
– polynomial constraints.

Both restricting interactive probabilistic chains to I/O-IPCs and adapting the
distributed (and strongly distributed) schedulers to I/O-IPCs had to be formalized.
Providing the “I/O-IPC to PMC” model construction and proving the equivalence
of the reachability properties analyzed for the two dependent models has been the
most challenging.

The main drawback of the presented approach is that the generated unfolded
parametric Markov model grows exponentially with the size of the original model
and the specified time bound.

However, to our knowledge, there is no other algorithm able to compute ex-
tremal reachability probabilities of distributed models under (strongly) distributed
schedulers out there.

6.1 Related Work

The problem that global schedulers may be too optimistic or pessimistic in the
verification of distributed, probablistic, and nondeterministic systems has been
noted in several different settings [2, 28, 29, 30].

One approach to resolve the issue is to usepartial-informationschedulers [31].



50 Chapter 6. Conclusions

Using partial-information schedulers allows the hiding ofinformation that a global
scheduler should not realistically use.

However, this approach still assumes there is only one global scheduler, in-
stead of several local schedulers as presented in this thesis. For the class of me-
moryless partial-information schedulers, the extremal long-run average outcomes
of tasks can be calculated by reformulating the problem as a non-linear progra-
mming problem [31].

A testing preorder for distributed models with probabilistic and nondetermin-
istic choices has been suggested which is aimed at realistically representing the
power of schedulers in a distributed setting [32]. In this context, reachability prob-
abilities are defined in a similar way as in this paper, but no algorithm to compute
extremal probabilities or to compute the preorder are given.

It would be interesting to study if the preorder [32] indeed preserves extremal
time-bounded reachability probabilities when lifted to the setting of I/O-IPCs.

6.2 Future Work

A prototype implementation of the “unfolder”, the missing link in the toolchain,
has been developed but it is still subject to changes. Some study directions could
be followed for both algorithmic and implementation improvements.

As pointed out by the “Distributed Random Bit Generator” case study, the use
of a combination of distributed and strongly distributed schedulers may have prac-
tical applicability. In general, adapting various probabilistic and nondeterministic
distributed models to the I/O-IPC settings will provide more insight in the area.

It may also be investigated if special purpose algorithms can be used for the
specific type of nonlinear programming problems encountered. Further, extending
the algorithm for handling (I/O-IPC specific) Zeno behavior could be tackled.

Memory-usage may be optimized by using the fact that only polynomial func-
tions (instead of their rational counterpart) are needed. Implementation-wise, in-
put nondeterminism, transitions labeled by internal actions (and thus action hid-
ing) are not yet integrated in the prototype tool.

Producing the parametric reachability probability can also be shifted to the
unfolder. This would be useful since the expansion of the distributed state space
is already performed by the unfolder.

On a high level, the limits of I/O-IPCs versus PIOTAs can also be looked into.
This might lead to proving the equivalence of the formalisms, the inclusion of one
into another or their incomparability.



Bibliography

[1] Andrea Bianco and Luca de Alfaro. Model Checking of Probabalistic and
Nondeterministic Systems. InProceedings of the 15th Conference on Foun-
dations of Software Technology and Theoretical Computer Science, pages
499–513. Springer-Verlag, 1995.

[2] Sergio Giro and P. R. D’Argenio. On the Expressive Power of Schedulers in
Distributed Probabilistic Systems.Electronic Notes in Theoretical Computer
Science, 253(3):45–71, 2009.

[3] Sergio Giro and Pedro R. D’Argenio. Quantitative Model Checking revis-
ited: neither Decidable nor Approximable. In Jean-François Raskin and P. S.
Thiagarajan, editors,FORMATS, volume 4763 ofLecture Notes in Computer
Science, pages 179–194. Springer, 2007.

[4] Ana Sokolova and Erik. P. De Vink. Probabilistic Automata: System Types,
Parallel Composition and Comparison. InValidation of Stochastic Systems:
A Guide to Current Research, pages 1–43. Springer, 2004.

[5] Mariëlle Stoelinga.Alea Jacta Est: Verification of Probabilistic, Real-Time
and Parametric Systems. PhD thesis, University of Nijmegen, Netherlands,
2002. Available viahttp://www.soe.ucsc.edu/˜marielle.

[6] Georgel Calin, Pepijn Crouzen, Ernst Moritz Hahn, PedroD’Argenio, and
Lijun Zhang. Time-Bounded Reachability in Distributed Input/Output Inter-
active Probabilistic Chains. InSPIN, pages 193–211, 2010.

[7] Georgel Calin, Pepijn Crouzen, Ernst Moritz Hahn, PedroD’Argenio, and
Lijun Zhang. Time-Bounded Reachability in Distributed Input/Output Inter-
active Probabilistic Chains. Reports of SFB/TR 14 AVACS 64, SFB/TR 14
AVACS, June 2010.



[8] Holger Hermanns.Interactive Markov Chains: The Quest for Quantified
Quality, volume 2428 ofLecture Notes in Computer Science. Springer-
Verlag, 2002.

[9] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin
Serwe. Towards Performance Prediction of Compositional Models in In-
dustrial GALS Designs. InComputer Aided Verification, pages 204–218,
2009.

[10] Hans A. Hansson.Time and Probability in Formal Design of Distributed
Systems. Elsevier Science Inc., 1994.

[11] Xavier Nicollin and Joseph Sifakis. An Overview and Synthesis on Timed
Process Algebras. InProceedings of the Real-Time: Theory in Practice, REX
Workshop, pages 526–548, London, UK, 1992. Springer-Verlag.

[12] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A Compositional
Semantics for Dynamic Fault Trees in Terms of Interactive Markov Chains.
In ATVA, pages 441–456, 2007.

[13] Nicolas Coste, Hubert Garavel, Holger Hermanns, Richard Hersemeule,
Yvain Thonnart, and Meriem Zidouni. Quantitative Evaluation in Embedded
System Design: Validation of Multiprocessor Multithreaded Architectures.
In DATE, pages 88–89, 2008.

[14] Lijun Zhang and Martin R. Neuhäußer. Model Checking Interactive Markov
Chains. InTACAS, pages 53–68, 2010.

[15] Conrado Daws. Symbolic and Parametric Model Checking of Discrete-Time
Markov Chains. InICTAC, pages 280–294, 2004.

[16] Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic
Reachability for Parametric Markov Models.STTT, page N/A, 2010.

[17] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang.
PARAM: A Model Checker for Parametric Markov Models. InCAV, 2010.

[18] P.E. Gill, W. Murray, and M.H. Wright.Practical Optimization. Academic
Press, London, 1981.

[19] S.P. Han. A Globally Convergent Method for Nonlinear Programming.Jour-
nal of Optimization Theory and Applications, 22, 1977.

[20] Leslie H. Ault. Das Mastermind-Handbuch. Ravensburger Buchverlag,
1982.



[21] Kenji Koyama and Tony W. Lai. An optimal Mastermind strategy. J. Recr.
Math., 25:251–256, 1993.

[22] Donald E. Knuth. The Computer as Master Mind.J. Recr. Math., 9:1–6,
1976.

[23] D. Chaum. The Dining Cryptographers Problem: Unconditional Sender and
Recipient Untraceability.Journal of Cryptology, 1(1):65–75, 1988.

[24] Donald E. Knuth.Seminumerical Algorithms, volume 2 ofThe Art of Com-
puter Programming. Addison-Wesley, Third edition, 1997.

[25] Partners for Advanced Transit and Highways.
http://www.path.berkeley.edu/.

[26] Jorg Bauer, Ina Schaefer, Tobe Toben, and Bernd Westphal. Specification
and Verification of Dynamic Communication Systems. InProceedings of
the Sixth International Conference on Application of Concurrency to Sys-
tem Design, pages 189–200, Washington, DC, USA, 2006. IEEE Computer
Society.

[27] Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog, An-
dreas Podelski, and Reinhard Wilhelm. SFB/TR 14 AVACS – Automatic
Verification and Analysis of Complex Systems.IT – Information Technol-
ogy, 49(2):118–126, 2007.

[28] G. Lowe. Representing Nondeterministic and Probabilistic Behaviour in
Reactive Processes. Technical Report PRG-TR-11-93, Oxford Univ. Comp.
Labs, 1993.

[29] C. Morgan, A. McIver, K. Seidel, and M. Massink. Refinement-oriented
Probability for CSP.Formal Aspects of Computing, 8:617–647, 1996.

[30] Roberto Segala.Modeling and Verification of Randomized Distributed Real-
time Systems. PhD thesis, MIT, 1995.

[31] Luca de Alfaro. The Verification of Probabilistic Systems under Memoryless
partial–information Policies is Hard. InProceedings of the Workshop on
Probabilistic Methods in Verification, 1999.

[32] Sonja Georgievska and Suzana Andova. Retaining the Probabilities in Prob-
abilistic Testing Theory. InFOSSACS, pages 79–93, 2010.


	Introduction
	Structure of the Thesis
	Contribution

	I/O Interactive Probabilistic Chains
	Interactive Probabilistic Chains
	Input/Output Interactive Probabilistic Chains
	Parallel Composition
	Vanishing and Tangible States
	Paths in I/O-IPCs


	I/O-IPC Nondeterminism Resolution
	Local Schedulers
	Distributed Schedulers
	Strongly Distributed Schedulers
	Induced Probability Measure

	I/O-IPC Time-Bounded Reachability
	Parametric Markov Chains
	Scheduler-Quantified I/O-IPCs are PMCs
	Repeated Coin Flip & Guess Revisited
	I/O-IPC and PMC Reachability


	Implementation Workflow
	Unfolder Overview
	Object-Oriented Basic I/O-IPCs
	Tree Representation of Local I/O-IPC Paths
	Object-Oriented PMCs
	Model Expansion

	Case Studies
	Mastermind
	Dining Cryptographers
	Randomized Scheduler Example
	Distributed Random Bit Generator
	Car Platooning

	Conclusions
	Related Work
	Future Work

	Bibliography

