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Chapter

Introduction

This thesis considers the computation of extremal reatthaprobabilities for
compositional models that present both probabilistic amttleterministic behav-
ior. Such models arise, for instance, in the field of distelualgorithms, where
probabilistic behavior is used to break symmetries in tis¢éesy. Nondeterminism
may appear due to the uncertain order of events occurringparate processes or
due to unspecified and some times unknown behavior.

Various examples of safety-critical and verifiable systeleysloyed nowadays
can be abstracted through systems which present both revndetstic and prob-
abilistic behavior. Especially in automotive and aircradntrol related settings
(but not only) they are of high importance. Attempting to noye on the verifi-
cation of such distributed systems will continue to be onthefcornerstones yet
to be overcome in model checking.

Traditional analysis techniques for probabilistic modeith nondeterminism
compute the maximal and minimal probability to reach a setaffigurations
by considering all possible resolutions of the nondetersmin[l]. It has been
shown that this approach may lead to unrealistic resultsnfadels of distributed
systems or algorithms?]. Briefly, the issue is that the traditional approach al-
lows processes to use non-local information to influencie tieeisions. To avoid
this problem, and guarantee an extended separation ofitdoaination between
components, using a new type of schedulers has been prof#)sed

Distributed schedulersestrict the resolution of nondeterminism by assuring
that local decisions of the processes are based solely andoowledge Strongly
distributed schedulersadditionally, ensure that the relative probability of oke
ing between two dferent components does not change with time, provided these
components remain idle and uninformed of the progress afeteof the system.

When considering distributed (or strongly distributed)estulers, bounds for
reachability probabilities are both undecidable and ur@pmable in generald].
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Howevertime-boundedeachability probabilities, i.e., the probability to rbaa
set of configurations within a specified time-period, candmputed.

For distributed schedulers, this is due to the fact thanegitsolutions in this
setting can be computed by only taking into account the gudfsgeterministic
distributed schedulers, which is finite if the system und®rsideration is finite
and acyclic. The theoretical complexity of the method pnésegis exponential in
the number of states and the given time bound.

The case of strongly distributed schedulers turns out to teerdificult. In
this setting, optimal solutions may lie on pure probahkdisthedulersd]. There-
fore, exploring all possible solutions is not an option.

In this thesis, it is proposed to reduce the problem of comguime-bounded
reachability probabilities for distributed, probabiicstand nondeterministic mo-
dels, under distributed (or strongly distributed) schedulto a nonlinear opti-
mization problem. As modeling vehicle, the formalismmgduyoutput interactive
probabilistic chaing1/O-1PCs) is used.

The computation of time-bounded reachability probalesitis achieved by
reformulating the models as parametric Markov chains, @/liee parameters are
the decisions of the schedulers and the distributed modahiislled up to the
specified time-point. The time-bounded reachability pholit can therefore be
expressed as a polynomial function and numerical boundbe@omputed for it
by optimizing the function under certain constraints — asaated by the involved
scheduler.

For distributed schedulers, the only restriction on theakdes of the poly-
nomials is that, appropriately grouped, they form a distrdn (i.e. all variables
take values between 0 and 1 and each group of variables suml)p The case
of strongly distributed schedulers, however, requiresesawhditional and more
complex restrictions, the optimal value of the propertynigetalculated through
more involved nonlinear programming techniques.

0.1 Structure of the Thesis

This thesis describes the means for computing extremaibioumded reachability
probabilities for distributedO-1PCs, a new formalism in the spirit of probabilistic
input/output timed automata (PIOTA}][5]. The thesis is structured as follows:

e Chapter 1provides an introduction to interactive probabilistic ictsaand
describes their restriction to ingattput interactive probabilistic chains.
Subsequently, howO-IPCs are parallelized, what are vanishiaggible
states and/O-IPC paths is specified.
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e Chapter 2presents the adaptation of distributed and strongly Oisteid
schedulers — initially introduced for PIOTA — to th®©HPC settings. The
schedulers are introduced in a bottom-up manner, startittgsehedulers
for the components of a distributet®-IPC and continuing with distributed
and strongly distributed schedulers. Last, the inducebtaiity measure
for scheduled distributed®-IPCs is presented.

e Chapter Introduces parametric Markov chains (PMCs) and describes h
distributed JO-IPCs, arbitrarily scheduled, can be interpreted as PMCs b
unfolding up to a given time-bound. It is then proved thateibounded
reachability in a distributed©-IPC corresponds to time-unbounded reach-
ability in the associated unfolded PMC.

e Chapter 4describes the implementation workflow for checking timexto
ded reachability of scheduler-quantified distributgd-IPCs. The imple-
mentation description focuses on the unfolder which predubke unfolded
PMC out of a given distributed®-I1PC.

e Chapter Sllustrates several case studies that have been perforniedw
prototype implementation.

e Chapter &concludes by presenting remaining open questions as weatlsas
sible directions for future research on the topic.

0.2 Contribution

Although various model checkers for verifying reachapitit distributed, nonde-
terministic and probabilistic systems exist, none of thes lbuilt-in the means of
ruling out unrealistic behaviour due to inadequate schiegul

The aim of this thesis is to describe an automated methoddtarihining
extremal time-bounded reachability probabilities. Thehod involves a new type
of distributed formalism — derived from interactive probestic chains — which is
subject to (timed) probabilistic and (non-timed) nondeii@istic behaviours.

The computation is performed by quantifying over the classedistributed
and strongly distributed schedulers, thus casting out fiteerstart unrealistic re-
sults produced by inadequate scheduling freedom.

An early version of this thesis has been accepted for puiicat the “17
International SPIN Workshop on Model Checking of Softwaas’joint work with
Pepijn Crouzen, Pedro D’Argenio, Moritz Hahn and Lijun Zb48, 7].






Chapter 1

|/O Interactive Probabilistic Chains

Inputoutput interactive probabilistic chains represent a i&stl compositional
modeling formalism based on interactive probabilisticiobdIPCs) B, 9].

The following brief description of interactive probabilschains is an adapta-
tion of the information which can be found i8][ Note that the process algebraic
way of defining IPCs will not be used for presenting tf@-IPC restricted for-
malism.

1.1 Interactive Probabilistic Chains

Interactive probabilistic chains (IPCs) are state-basedets that combine dis-
crete time Markov chains and labelled transition syste3hdIPCs can be used to
compositionally model probabilistic systems. An impottiature of IPCs is that
probabilistic transitions and action-labeled transisiane handled orthogonally.
For a probabilistic process calculus over a set of actiirf{gicluding internal
actiont), assuming that actions are instantaneous and that pfisalchoices
take precisely one time stepbahaviouris described by the following grammar:

B:=s|aB| ) p:B|B[]B|BAIB|B/A|B,

whereA C A\ {r}. The used operators are: terminatiéh §equentialization (;),
probabilistic choice X)), nondeterministic choice ([]), parallel composition kvit
synchronization seA ([A]), hiding of actions () and process calls]”

A (possibly recursive) process is defined by a rule of the fBrmB andB is
used to denote the set of all behavioBrsThe semantics of the formalism can be
seen as a probabilistic extension of labeled transitiotesys (see Figur#.1).

Let —C XX Y represent a partial function relation fraxto Y and letDist(X)
be the set of all probability distributions ov&rfor any finite setX and any seY.
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B,— B, B,=— B,
1 1 pi pip2 ,
5§ =06 aB= aB YipiBi = B B:[]1B> = B}[]B,

p p — —
B—B, B,—B, B=B B=B B=B B-5HB

B[A]B, = B/[A]B, B=B B-5B
B, — B} B, — B, B,—>B, B,—>B, acA
Bi[]1B, — By[1B,  Buy[]B, — By[]B; B.[AlB, — B;[A]B,
B,—B, agA B,— B, a¢A
Bi[A]B, —> B[A]B,  Bj[A|B, — By[AlB, a;B—B
B— B B-LB a¢A B--B acA
B/A = B//A B/A -5 B//A B/A - B//A

Figure 1.1: Operational Semantics of the IPC Modeling Laggu

Definition 1. An IPC is a quintuple® = (S, A, —, =, §), where: S is afinite set of
states withs € S the initial state,A is a finite set of actions including the internal
actiont, -C S x A x S is the set of interactive transitions aast S — Dist(S)

is the set of probabilistic transitions.

Definition 2. The operational semantics of a behavidBiover A is defined as
the IPCP = (8, A, —, =, B) with —» and= as given by the rules of Figute L

The operators’ binding order — from the strongest-binding to the lowest-
binding one —is the following:¢™ > "/” >"[]” =~ "[e]" > ;" >"Y".

The second rule of Figurk 1enriches the language with thebitrary waiting
property by assuring that time may advance even while path®fprocess is
blocked, waiting for a synchronization to happen. As arguef®], these rules
inspired by Hanssorip] ensure that time may always advance synchronously.

Example 1. Synchronization of nondeterministic and probabilistib@eours.

Y1[0] Y1 < P11

Xal{a) %, Xal{a X, T PR Py gy,
a Y2[0] Y2 “ P20

"(a[1o; Xq)[{a}](@[Ic; X2)” "(P1Y 1+ P2YR)[01(1Y 1 + 02 2)”
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The formalism is also subject to theaximal progresassumption I1]: a
process cannot delay an internal transition — if a choicsteXetween a pro-
babilistic and an internal transition, the internal tréinsi will have precedence.
Although not integrated into the semantics, the maximagjprss assumption can
be taken care of through bisimulation equivalen&s [

For |/O-IPCs, the specific variant of the maximal progress assomf# han-
dled through the induced path measure (see DefinitR)n

1.2 Input/Output Interactive Probabilistic Chains

I/O-IPCs, a restricted variant of IPCs with a strict separadidocal and non-local
behavior, are used as modeling formalism in the presenysiilte restriction of
IPCs to JO-IPCs follows the one of interactive Markov chains (IMCs)ItO-
IMCs in the continuous-time settind 2.

The separation between local and non-local behavior isaediby partition-
ing the JO-IPC actions innput, output andinternal actions. Lety denote the
“disjoint set” union. As we will not make use of the procesgeddra approach in
the JO-IPC setting, /O-IPCs can be described in a more intuitive way as follows.

Definition 3. A basic I/O-IPC# is a quintuple(S, A, —¢, =, 5), Where: S is a
finite set of states wite S the initial stateA = A' w A° w A is a finite set of
actions,—» C Sx A x S is the set of interactive transitions agg: S — Dist(S)
represents the set of probabilistic transitions.

Input actions are dtixed by “?”, output actions by “!” and we require that an
I/O-IPC# is both input-enabled, i.e. for each statend each input actioathere
is at least one stat& such that § a, ') e—». We also require that th¢®-IPC
is action-deterministicthat is, for each stateand each actioa there is at most
one states’ such that §, a,s) €—». The nondeterminism then stems from the
choice between tlierent actions. Finally we require that every state has at lea
one outgoing, internal, output, or probabilistic trarsiti

We say that an/O-IPC isclosedif it has no input actions, i.eA' = 0. Note
that the requirement of action-determinism is introducely & simplify the the-
oretical framework around schedulers. Nondeterminidtmices between input
transitions can be handled in a similar way as nondetertrgrdboices between
output or internal transitionZ].

Given an actiora, we use the shorthand notatisnip s for an interactive
transition § a, s) e—» of £. Given a distributioru over the states o we use
the shorthand notatios =4 u for (s, 1) e=>». We often leave out the subscript
when it is clear from the context.
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As a running example a simple repeating “coin flip & guess”’ekpent is
used: one player repeatedly flips a coin, while a second playpadeterministi-
cally) guesses the outcome (see Figli®. We are interested in the probability
that the second player guesses correctly at least oncenwitbiinds.

Although this probability is - (%)t it has been shown that standard analysis
methods produce a probability of 1 for ahy- 0 [2]. The issue is that, from a
globalpoint of view, the optimal resolution of the nondetermiiugfuess uses the
outcome of the flip as a guide and therefore knows which is ¢heect guess.

CG !
Oh!

The coin-flip is depicted on the left-hand side and the caiasg on the right-hand
side. Initial states are indicated by arrows; interactigesitions are labelled with
their actions and probabilistic transitioas> u are depicted by arrows fromito
the support oft, where each arrow is labeled with the associated probabilit

Figure 1.2: Basic/D-IPC Models of the Repeated Coin-Flip Experiment

1.2.1 Parallel Composition

Distributed JO-IPCs are obtained through parallelizing) (simpler JO-IPCs.

Definition 4. Two JO-IPCs# andQ are composable iﬂg N &’(8 = A, N y{iam =
ﬂi,[“ NA, = 0. If P andQ are composable thed := P||Q will be

(Sp X S, AL WAL W AN, —c, =¢, (3, %))
where AQ = AU AY, AL = (ﬂ; U ﬂ'Q) \ AQ, AN = At U AL and the
transition relations are
e =[S Sc (S, |sDp S, ae Ap\ Ag)
UKS D) Sc(st) 1Dl ae Ag\ Ap)
US ) e (S, 1) [Sop &, t St ae Ap N Ag)
=c =St =c UsX ) | S=p us At =g ut}

with us x u; denoting the product distribution onsS< Sq. Parallel composition
can be extended to any finite set of parallelizagleIPCs in the usual way. Let
#C denote the number of components of a distriby@dPC C.

The result of synchronizing an input action with an outpuicacthrough JO-
IPC parallelization will be an output action in the resujtimmodel. As an example,
the composition of the basi¢gQ-IPCs of Figurel.2is depicted in Figurd..3.
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In the labelled states, the twt-IPCs in Figurel.2 distribute over the next states
according to their possible combined choices. Otherwisar eictions are inter-
leaved. The shorthand notatignis used to describe the distributed st¢éges;).
The flip matching the guess is represented byytHabeled “goal” states.

Figure 1.3: Distributed/O-IPC Model of the Repeated Coin-Flip Experiment

1.2.2 Vanishing and Tangible States

The use of distinct probabilistic and instantaneous tteoms separates the con-
cerns of time and interaction. In essence, it allows us taigpmteractions be-
tween components which are instantaneous and do not hawertmteled with
explicit time steps.

Internal and output transitions are considered tonbemediatewhile proba-
bilistic transitions ardimed The maximal progress property for IPCs translates
in the following way to JO-IPCs: a process cannot delay an immediate transition
—e.g. if given the choice between an immediate and a timexbgilistic) tran-
sition, the immediate transition has precedence. The cistson present between
immediate and timed transitions is also reflected in thecsystates.

Definition 5 (VanishingTangible States)A state is called vanishing if at least one
outgoing immediate transition is enabled in it. Conversdlpnly probabilistic
transitions are enabled in a state then it is called tangible

In Figuresl.2 and 1.3 the black-colored nodes are vanishing states and the
remaining ones are tangible states. For simplicity, in thesis only non-Zeno
models are considered: cycles consisting of only immediat®ns are not rea-
chablégpresent in the analyzed distributed models.

1.2.3 Pathsin JO-IPCs

An |/O-IPCpathdescribes one possillen of the YO-IPC. In such a run, we start
in a particular state, follow a transition to another statej so forth.
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Definition 6. A finite path of length re N of an JO-IPC® = (S, A, —,=,9
IS a sequencer = Sa...a,.1S, Of alternating states;jse S and actions or
dlstrlbutlonsae ﬂuDlst(S) For consecutive;ss, in o it must hold that: either

aeAand s Ll S.1, Or & € Dist(S), s is tangible, s= g and a(s,1) > 0.
The last state of a finite path is denoted by lagt). An infinite path ofP is
an infinite sequenced@s;a; . . . of alternating states and actiofkstributions.

For studying time-bounded reachability, we need a notiaineé We follow
the definition of time in IPCs and say that omsobabilistictransitions take time,
while interactive transitions are considered to take placeediately [L3].

Definition 7. Theelapsed timalong a finite patho- — notationt(c’) — is defined
recursively, for states s, actions a and distributipnaver states:

0 ifo=s
t(o) = {t(o”) if o =o’as
tlo)+1 ifo=o0'us

Example 2. Let Sor = {0, S1, 2}, Scg = {Ss, 4} be the state spaces of th©1
IPCs in Figurel.2anducs : Scg — Dist(Scy), ticg © Scg — Dist(S¢g) describe
the next-state probability distributions fa¥¥ andCgG.
Abstracting away the indexingy(s) is the probability distribution for states
reachable through= from s andu(s)(s) is the probability of reaching’drom s.
Then (e.g.) for the pathr = Syucr(So)SithSotcr (So) St So of CF and for the
patho’ = Syucg(Ss) uGSatics(Ss)uGiSs of CG we have:

t(0) = t(Sopcr (So) SithSouter (S0)S2) = t(Soper (So)SithSo) + 1
= t(Soucr(S0)s1) + 1 =1t(s) +2=2

t(0”) = t(Saptcg(Ss)Su0tSaptcg (S8)Su) = t(Saticg(Ss)S40Ss) + 1
= t(Ssucg(Se)u) + L=t(s3) +2=2

The(o, o)- pair of local paths induces all of the following pathanjFIICQ'

* (S0, S3) => (81, 8) > > (So. S4> > (S0, ) => (S2 S4> > (So, S4> > (S0, )
* (S0, S3) => (S1, S4> 5 (So. S4> > (S0, So) => (S, S4> > (51, Ss) > (So, Sa)
* (S, >=> (S1, S4> > (s, 53> 5 (S, >=> (S, S4> > (S0, S4> > (o, S3)
o (S0.5) 5 (51,8 S (51 %0) (S0, %0) B (S, ) <Sl S3) > (S0, S9)

where the valug(s)(S) is used to decorate the transmon:s:~ S instead ofu(s).
The highlighting of the switched labels in the above traosg underline that
multiple “distributed” paths correspond to the sarte, o”)-pair.
The latter is due to gferent interleaving possibilities i6@F||CG.
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|/O-1PC Nondeterminism Resolution

The probability of reaching a set of goal states in a distadyyO-1PC depends on
how the nondeterminism of chosing an action is handled. Bigasg probabili-
ties to the available actions, a scheduler can be seen #3-4RC refinement such
that the induced model becomes deterministic. It can thissalakethat a scheduler
enables us to determine reachability probabilities in ameinistic fashion.

However, the class of all schedulers for the model of a thisted system con-
tains schedulers that are unrealistic in that they allowmaments of the system to
use non-local information to guide their local decisions.oVercome this prob-
lem, distributedschedulers have been introduced, that restrict the pessiblices
of a scheduler in a distributed settirg].[ Distributed schedulers, originally intro-
duced for (switched) probabilistic ingoutput timed automatal], are adapted
here for the inpybutput interactive Markov chains formalism.

To illustrate the necessity of distributed schedulers wester the game de-
scribed in Figurel.3where an unbiased coin is repeatedly tossed and guessed by
two independent entities at the same time. We are inter@stbeé probability to
reach the set of states labellg/dvithin a specified numberof timed (probabilis-
tic) steps. This is exactly the probability that the gueggilayer guesses correctly
within at mostt tries. Intuitively, for each matching tgggiess, since the tossing
player makes its choice probabilistically and the guesplager does not observe
the outcome, the guessing player should have a probabiliope half to make
the right guess and win the game.

However, it is clear that in the composed model there is ackdbethat arrives
with probability one at a/ state within at most one timed step. This scheduler
simply chooses the actidp if heads is tossed ardif tails is tossed, thereby al-
ways winning. The purpose of distributed schedulers is smenthat the decision
between;, andt; is made only based docal information.
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2.1 Local Schedulers

We have to associate paths of d@IPC with probabilities. The usual way of
doing it is by defining the probability of a path as the multption of the prob-
abilities of its transitions. To define such a probability fiaths in an /O-1PC
we need some way of resolving the nondeterministic choitedsn interactive
transitions in vanishing states of g@HPC.

For all states € S, let A}, = (a € A°3s.s 2 gYulae AMAS.s S §) be
the set of enabled immediate actions $or

Definition 8. A functionn, : Pathg®) — Dist(Ap) is a scheduler for aryO-IPC
P if positive probabilities are assigned only to immediatéi@ts enabled in the
last state of a path¥o € PathgP), np(o)(a) > 0 implies ae Ag”st((rw.

If ¥ is closed, then a scheduler determines the probability $eme a certain
path, which also allows us to define time-bounded reaclialpitobabilities. We
give the details, in the context of distributed scheduler&hapter 3

Example 3. Let Sor = {So, S1, S}, ter © Ser — Dist(Sey) and &g = {S3, ul,
teg - Scg — Dist(Scg) as in Figurel.2 i.e. the non-zero entries of the proba-

bilistic transitions inC# andCgG are given by:

per (9)(5) = por ($)(s2) = 5 andiucg()(3) = 1

Further consider the paths = Soucsr(So)SithSoucr(S)S: of CF, respectively
0’ = Sattcg(Ss) a0 Sateg(Ss) e Of CG-

Knowing thatAg, = {t!, 1!}, respectivelyAg; = {gn!,a!} and given a pair
of schedulerger : PathgCF) — Dist(A,), ncg : Path{CG) — Dist(A,) of
C¥ and(Cg, for o ando” above it must hold that:

ner () (th) + ner () (t) = ner (o) (t) = 1 andneg(o7)(gh) + ncg(0”) () = 1.

2.2 Distributed Schedulers

The main principle of distributed schedulers is to use a rsgpascheduler for
each of the components of the system such that each has actgss their own
scheduling history.

To be able to reason abolatcal information we have to first introduce path
projections. For any distributedd-IPCC = #,4||...||#, and patho € PathgC),
the projectioro[P;] of o onC’s it" basic component is given by:

o ()[Pi] = mi(%)
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O'[Pi] if a¢ Ap,

o (cag[Pri] = {(G'[Pi])a(ﬂi(s)) if ae Ap,

o (o(u1x - X un)9[Pi] = (o[Pi]ui(mi(s)).

wherern; ((Sg,...,S)) = s forall (s;,...,s,) € Sc.

A local scheduler foP is simply any scheduler f&® as given by Definitior8.

A local scheduler resolves the nondeterminism arising fobwices between en-
abled output and internal actions in one of the components.

However, nondeterminism may also arise from the interlegof the diterent
components. In other words, if for some state in a distrithut®-1PC, two or
more components have enabled immediate actions, then itbautecided which
component acts first. This decision is made byitherleaving scheduler

Definition 9. A functionZ : PathgC) — Dist({P1,...,%P,}) is an interleaving
scheduler for the distributedQ-IPC C = P4|...||P, if it is defined for paths
o such that lagr) is vanishing and if it chooses probabilistically an enabled
component of the distributed system:

I(o)(P) > 0implies Ay ipp p, # 2-

Example 4. Letncr, neg be local schedulers for the coin-fl@F and the coin-
guesC@G of the game described in Figurés2and 1.3

Then every functiod : Path§C¥1|CG) — Dist({CF,CG}) such that for all
pathso € Path§CF||ICG):

last(c[CF]) # S Alast(o[CG]) = s = I(0)(CF) + I(0)(CG) =1
last(c[CF]) # So Alast(o[CG]) = s = I(0)(CF) =1
last(c[CF]) = so A last(o[CG]) = s = I(0)(CG) =1

belongs to the class of interleaving scheduler€61|CG.
Local schedulers and an interleaving scheduler fodistatibuted scheduler

Definition 10. A functiony. : PathgC) — Dist(A.) is a distributed scheduler for
the JO-IPCC = P4||... ||Pn if, given local schedulergy,, . . ., 7p, and interleaving
schedulet, for all o € PathgC) with last(c-) vanishing and for all & Ac:

ne(@)@ = ). I(@)P) - 1, (1P
i=1

We denote the set of all distributed scheduler®isy
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Example 5. Letnes, ncg be local schedulers for the coin-fly— and coin-guess
CG, and I be an interleaving scheduler for the distributg@dIPC CF||CG.

Then every function : Path§C¥ ||CG) — Dist(Acrcg) belongs to the class
of distributed schedulers afF ||CG if Yo € Path4C# ||CG) it holds that:

e iflast(c[CF]) = s A last(c[CG]) = s4 then

n(o)(t!) = I(0)(CF)
n(o)(@n!) = Z(0)(CG) - neg(aCG(an!)
n(0)(@)) = 1(0)(CG) - neg(oCGI(at)

if last(c[CF]) = s A last(o[CG]) = s4 then

n(o)t!) = Z(0)(CF)
n(0)(Gn!) = L(0)(CG) - neg(o[CGD(an)
n(0)(@)) = 1(0)(CG) - neg(oCGI(at)

if last(c[CF]) = s1 A last(o[CG]) = s3 then

no)t!) = I(o)(CF) =1
if last(c[CF]) = s A last(o[CG]) = ss then

n(o)(!) = 1(@)CF) =1
if last(o[CF]) = s A last(c[CG]) = s, then

n(@)(On!) = Z(0)(CG) - neg(a[CGI(n!)
= e (o [CG1)(OnY)

n(@)(@!) = 7(0)(CG) - neg(a[CGN(S!)
= neg(a[CG])(Q)-

2.3 Strongly Distributed Schedulers

Although the class of distributed schedulers already sgedilly restricts the lo-
cal decisions of processes in a distributed setting, inagertases there exist
distributed schedulers, where the interleaving schedwdes too powerful. In
essence, the problem is that a distributed scheduler maynigenation from a
componentP; to decide how to pick between componeftsand®s. In certain
settings this is unrealistic. To counter this problem,rsgig distributed schedulers
have been introducea]
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Given any two component8;, ; of a distributed JO-IPCC = P4]|...||Pn,
consider the following property: for abr, o’ such thato[P;] = o'[Pi] and
o[P;] = '[P, if T(o)(Pi) + I(0)(P;) # 0 andI(co’)(Pi) + Z(o')(P;) # O

h
en G N (1)
TP) + HOP) ~ T@)P) + TP

Definition 11. A schedulen; is strongly distributed if it is distributed and the
restriction in Equation(2.1) holds for the interleaving schedulérof .

(2.1)

We denote the set of all distributed schedulerSDs

The intuition behind strongly distributed scheduler istttee choices the in-
terleaving scheduler makes between two compor®ént®; should be consistent
with respect to the local paths #%, ;. If for two global paths, the local paths of
P;, P; are identical, then the probability of choosifigunder the condition that
we choose eithef; or ; should be identical for both global paths.

Example 6. Letncr, ncg be local schedulers] an interleaving scheduler, and
n a strongly distributed scheduler for the game depicted lgyufasl.2and 1.3,
Further consider irC¥ ||CG the paths

o = (S0, S8) Herice((So, S3)) (S, Sa) th (S0, Sa) Ot (S0, Ss) Herice((So, S3)) (S2, Sa)
0’ = (S0, S3) Mericg((Sos S3)) (S, Su) T (S1, Sa) th (S0, S3) Herice((So, S3)) (S, Sa),

whereucrcg © Scrice — Dist(Scrcg) represents the next-state probability dis-
tribution in CF|CG.
Notice that the given paths, o’ € PathgC¥||CG) have identical path pro-
jections ontaC¥ andC@G: o[CF] = o’[CF] ando[CG] = o’[CG].
SinceZ(o)(CF) + I(0)(CG) = 1 = I(o")(CF) + I(0")(CG), Definition11
implies that the interleaving schedulérof  will be additionally restricted for all
pathso, o’ such thatr[CF ], = o’[CF] ando[CG] = ¢’[CG] by Equation(2.1):

I, (o)CF) =T1,(c")CF)and 1, (0)(CG) = 1,(c')(CG).

For a more specific case study, consider the modified “repgeabin flip &
guess” game described in Figu?el where two additional components are added.

Suppose that the distributeDHPC CF||CGI|X||Y is subject to a distributed
scheduler built of interleaving schedulef and local schedulerg, ncg, nx and
ny. Since the local history of the coin-flig# is not available to the coin-guess
CG, itis expected that the probability of having a matching/@ipess within one
stepis J2.

However, there are interleaving schedulers which guaeathtat the system
always arrives at a matching flguess within one time step. A possible example
of such a scheduler is described below.



16 Chapter 2. /O-IPC Nondeterminism Resolution

€6 @ K Xq Yig

The coin-guess has additional transiti(smsﬁ s andsy ﬁ s, matching the output
transitions ofX andY. OtherwiseC¥ andCG remain the same as in Figute2

Figure 2.1: JO-IPC Models of the modifieRepeated Coin-Flip Experiment

Assume that after the probabilitic step of the system, deijpgrwhetheiCF
has progressed 1§ or s,, the schedulef interleaves X and thenY” or, respec-
tively, “Y and thenX”. Afterwards, the scheduleyg: for the coin-gues€g can
enforce the match of coin-flip since the order in whi¢handy? happened is part
of CG’s local history.

Formally, schedulerd” andncg that enforce a matching fliguess are de-
scribed by the following restrictions: for any pathe Path§C# ||CGIIX||Y),

it [CG] =... 25> 5L s thenn(o[CGI)(gn)) = 1

it o[CG] = ... D> 51 = s thenn(o[CG])(a) = 1
if last(o[CF]) = s, then

—if last(o[X]) = ssthenZ(0)(X) =1
— otherwise, iflast(c[Y]) = s;thenZ(oc)(Y) =1

if last(o[CF]) = s, then

—if last(o[Y]) = s;thenZ(0)(Y) =1
— otherwise, iflast(o[X]) = ssthenZ(o)(X) = 1

As the definitions and the restrictions already imposed eruied schedulers
are not violated, the example above shows why distributeeldiders are not good
enough for ruling out unrealistic behaviour.

On the other hand, if would be a strongly distributed scheduler, Equat@ai)(
should hold for7. For example, for the paths,, o, of CF||CGIIX||Y given by

01 = (S0, S5 55, 87) = (51, S, S5, S) ANAT2 = (S0, 50,5, §7) = (2, S, S, o)
it holds thato1[X] = o5[X] ando1[Y] = o,[Y] which by Equation 2.1) means
fhat Ie)®) T

I(e)X) + I(e)Y)  L(o2)(X) + L(o2)(Y)
The latter however — unlesg(l + 0) is equal to @(0 + 1) — is contradicting with
the restrictions od” as imposed previously for the distributed case.
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Strongly distributed schedulers are useful depending anolwdystem is con-
sidered for studyd]. For example, when analyzing an auctioning protocol where
each component models one of the bidders, then the orderiohwie bidders
interact with the auctioneer should not leak informatioattban be used to the
advantage of the other bidders. In such a situation, styafigtributed schedulers
would provide more adequate worst-gésst-case probabilities.

However, if the interleaving scheduler should have acae#iset history of the
components (as it might be the case for a kernel schedulercomauter) then
distributed schedulers should be considered, as the $grdmjributed version
might rule out valid possibilities.

2.4 Induced Probability Measure

When all the nondeterministic choices in a distribut&HIPC are resolved by a
scheduler, we end up with a probability measure on sets bspatthe JO-IPC.
We define this probability measure in a similar way as is doné¢HCs [L4].

LetC = P4]|...||P, be an arbitrarily fixed, closed and distributg@{IPC with
state spac8., action setA., and initial states.” Thecylinderinduced by the finite
patho is the set of infinite paths' = {0~ | ¢ is infinite ando is a prefix ofo”}.
Let the set of cylinders generate thealgebra on infinite paths @f.

Definition 12. Letn be a (possibly strongly) distributed scheduler@nTheprob-
ability measure induced byon the set of infinite paths is the unique probability
measure Psuch that, for any & S¢, a € Az andu € Dist(S¢):

1 ifs=8§
N
Pi(s) = { 0 otherwise
P, (cas) P,(c") - n(c)(@) if last(c) is vanishing and lagt-) s
" 0 otherwise
P, (o) - u(s) iflast(o) is tangible and lagy) = u
T n
Py(ous’) { 0 otherwise

We are now ready to define time-bounded reachabilityforIPCs.
Definition 13. Given an JO-IPC # together with an initial distribution over its
states, a set of goal statésand a time-bound & N, the probability to reachg
within t time-steps — notation,R='G) — is given by:

P,(0<G) = P,(U{c" | t(o) < tand lasto) € G})
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Example 7. Consider again the coin fligr guess game depicted in Figurg&2
and1.3and letn be a distributed scheduler 67 ||CG wherencs, ncg and I are
its local and interleaving schedulers.

Further consider (e.g.) the path, as given by

T«

1/2 9n th
T« = (S0, S3) = (S1, 4) = (S, Sg) = (S0, )
with its prefixeso”, and o, as described by the over- and under-braces. This
path describes the possibility of having a matching “heafli§'and guess by first
performing the guess and then the flip.
Using the definition of the probability measurg &nd the appropriate sche-
duler restrictions as described b)i the previous examplediave:

P,(0)) = Py(a1) - (0" )(tn) = Py(o") - (02} (gh)
= Py(cd) - I(07)(CG) - neg(02[CGN)(gn)
= P,((s0, 83)7) - 1/2- I(07)(CG) - 11cg (o [CGI)(Tn)
=1/2- I(07)(CG) - ncg(o[CG1) ()

By the same reasoning, for the path

1/2 th On

which describes the possibility of having a matching “hédulsfirst performing

the flip and then the guess, we get th;;(bFi) =1/2-7(0))(CF ) ncg(on [CG(On)-
We now tak&,, = {S € Scrcg | V,, is the label of $to be the the singleton set

describing that the guess matches the “heads” flip. By Dédinit3, we have that

P,(0<1Gy.) = P,(c2) + P,(0»). In addition, sincer’; = (So, S5 2 (S1. S) = o7,
and respectively”,[CG] = S3 = s4 = 0, [CG], it follows that

(096 y,) = 2c6(Ss = S(@) (L(CF) + 1(2)(CG))
= Jnco(s: > )@

For Gy, = {s € Scricg | V, is the label of § describing the guess to match the
“tails” flip we similary get that
< 1 1
P,(0='Gy,) = Eﬂcg(ss = S4)(Q)-

Combining the two results above it will result that the prbbigy for the flip to
match the guess within one time stef /2.



Chapter 3

|/O-IPC Time-Bounded Reachability

From a theoretical point of view, the goal of this thesis isptove that time-
bounded reachability for any scheduler-quantified digted JO-IPC can be re-
duced to computing time-unbounded reachability for an\edent PMC byun-
folding the given model. This chapter provides the remaining baskast infor-
mation and reasoning for seeing through the forementioneafg,

3.1 Parametric Markov Chains

To compute time-bounded reachability probabilities wasfarm scheduler-quan-
tified, distributed IO-IPCs into parametric Markov models (s8bhapter 3.2 In
this section we give a brief overview of parametric Markowicis [L5, 16, 17].

Let S be a finite set of states and = {xy, ..., X,} denote a set of variables
with domainR. An assignment is a functionZ : V — R. A polynomial goverV
Is a sum of monomials

.....

f(Xe, ... %) = fi(Xe, ..., %)/ To(Xe, . . ., Xn) Of two polynomialsf,, f, overV.

Let ¥y denote the set of rational functions frovhto R. Givenf € ¥, and
an assignment, we letZ(f) denote the rational function obtained by substituting
each occurrence of € V with £(X).

Definition 14. A parametric Markov chain (PMC) is a tupl® = (S,5P,V)
where S is a finite set of statesis the initial state, \= {v4, ..., 4} is a finite set
of parameters an® is the probability matriXP : Sx S — Fv.
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The matrixP denotes the probabilities of going from one state to andther
one step. Its straightforward generalization Kateps is given below.

Definition 15. Given a PMCD = (S, § P, V), the k-step probability matrify,
k € N, is defined recursively for any k 1 and states, s € S:

1 ifs=¢
PO(S’g):{ 0 ifs#s

Pe(s8) = Y Pea(ss)-P(s,5)

s’eS

3.2 Scheduler-Quantified JO-1PCs are PMCs

By having the schedulef fixed, the probabilistic measuf®, together with the
scheduled/O-IPC C would become deterministic. To be more specific, by trea-
ting as unknowns the interleaving and local scheduler aswsve end up with
analyzing parametric Markov chains. The parameters of RIMKC correspond
precisely the decisions that the interleaving and locaédaters perform.

We have seen iiChapter 2.4that fixing the scheduler of a distributetDF
IPC induces a probability measure on its paths. Thus, bydie scheduler
parametrically i.e. by treating the probabilities chosen by the interlegnand
local schedulers as parameters, we show thattii@dingof the VO-IPC induces
a PMC (seeChapter 3.1whose states are paths of the distribuyé€tIPC.

To make sure the induced PMC is finite we generate it only ftingap to a
specific time-bound. We then prove that computing the probability to reach a set
of states withirt time-units is equivalent for th¢®-IPC and the induced PMC.

3.2.1 Repeated Coin Flip & Guess Revisited

To give an idea of how the unfolding works, consider againrépeated coin-flip
experiment (Figure4.2, 1.3). It should intuitively hold thaPr(o=?{+/,v,}) =
3/4 if we assume the guessing player has no information abeubtltcome of
each coin-flip. Figur&.1describes the unfolding of the distribut¢®}PC from
Figure1.3 up to time-point 2. On the right-hand side we see the straadfithe
PMC for one time-step. The unfolding up to 2 time steps is sheghematically
on the left-hand side, where each square represents a coipy nght-hand side
structure.

The local scheduler decisions in this case for each regpatimcturePy are
X, %t such thatd + ¢ = 1 and the interleaving scheduler decisionsifrig, 9, j/
such thati? + i} = jo+ jl = 1. Herex), for example, denotes the probability
assigned by the local scheduler for the guesser to pick 4iefad a local path



3.2. Scheduler-Quantified JO-IPCs are PMCs 21

Py :

xpt 1-1 L 1.1 i
P>

N
Py Po . P3
Xer 1 X Xde| %1

Py

\/hw 1-1 vy 1-1 i\/t

All transitions are parametric. Interleaving is used fomgacting the model.

Figure 3.1: PMC Scheme up to time 2 for the Repeated CoinEXfgeriment

ending in a “heads” vs. “tails” choice. The parametdrs; (as well asj?, j!)
denote the probabilities the interleaving scheduler assig the “guessing” vs.
the “flipping” model respectively, for a global path whichadates them both.

Now, Pr(¢={+/, v,}) can be computed as the sum of the cumulated prob-
abilities on the paths leading ta/,, v,} states by using the given unfolding in
Figure3.1and the above parameter restrictions:

1 g g 1 g 1 g

5 (%618 + i 36 + (%18 +ig - 30) - [50d 19+ 17 ) + 506 - 3§ + 13 - )T+
1 g g 1 g 1 g
50610+ X6+ (6 5+ 1o %) [506 13 +1330) + 506 5+ ;- %)) =
1 3

L o Loy s Lo o s 2oy = 3
S0G+ - GH+ SR + 506+ 8- (84 5%) = 3

3.2.2 JO-IPC and PMC Reachability

We are now ready to define formally the above interpretatioscheduler deci-
sions over distributedO-IPCs as parameters.

Definition 16. Let S, C PathgC) be the set of all paths with time-lengtht
in a closed, distributed/®-IPC C = 4]|... ||, which does not exhibit Zeno-
behaviour. Define the parameters set V by

. . .
V= {yla' loeSe,1<i< #C’Aleanst(a[?i])ﬁoi * 2}
t .
U{Xp |0 €S, 1< i <H#HC,a€ Agyppp o)
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and letP match the induced probability measure, namely for any path St
any state s of’, any action a of” and any distribution: over the states af:

P(o,0as) =Y, - Xyp;  iflast(o) is vanishing, lagir) %5 aec Asiop) 2,
P(o, ous) = u(s) if last(o) is tangiblet(o) < t, last(o) = u
P(o,0) =1 if last(o) is tangible t(o) = t.

All other transition probabilities are zero. The unfoldin§the JO-IPC C up to
time bound t is then the PMO = (S.,, &, P, V).

Given a set of states of C, we writeG for the paths in i‘g. that end in a state
in G, but never visit a state ig on the way.

The finiteness o8}, andV is guaranteed by the exclusion of infinite chains
consisting of only immediate actions. This exclusion reatiplies that, for each
state inC, a tangible state is reachable within a finite number of nababilistic
steps.

The variables in Definitiord6 can be restricted to ensure that they represent
valid scheduler decisions in the following way:

O<v<l ifveV
YaenXp; =1 ifoeSgand 1<i <#Cwith A= ARy 1o 5 (3.1)
Say, =1 if o € SEwith | = {i | 1 <i < #C, last(c[P;]) vanishing

We write/ + (3.2) if £ : V — [0, 1] satisfies 8.1). 1/O-IPC path probabilities
are related ti-step transition probabilities of the induced PMC by thédi@ing.

Lemma 1. For a closed, distributed®-IPCC, let D be as in Definitiorl6. Then

(i) For every distributed schedulerthere is an assignmegtr (3.1) such that
forall o € SL, : P,(o") = {(P«(8 o)) where k is the length af.

(i) Reciprocally, for every assignmetit: V — [0, 1] with ¢ + (3.1) there is a
distributed scheduley such that for allo- € S., : P,(c") = {(P«(§ 0)).

Proof. For both (i) and (ii) set the assignmentespectively the distributed sched-
ulern such that for I< i < #C:

g(ylg) = I(O-)(PI) if A|eanst(o-[pi])’pi e
g(xﬁr[Pi]) = Ny, (0’[7),])(&) ifae Alznst((r[?’i]),?i

This gives indentical mappings from assignments to disteid schedulers and
back for (i) and (ii), which means both cases can be provedIsameously.

For a distributed schedulerand its associated assignmeéntve now show
thatP,(c") = ¢(P«(5 o)) by induction on the lengtk of o~
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e for paths of length O we have that

P,(8) = 1 = £(Po(5 §) and, fors # § P,(s') = 0 = ¢(Po(5 9).

¢ for the inductive step, let the induction hypothesis (IHglsdollows:Given
a patho € S}, of length k> 0, for any patho” of length k- 1:

P, (") = {(P-1(S 7).
By case distinction:

1. Forlast(o) vanishing we have:

P PEE DT P )@ 2 D Pea(d o) - n(o”)(@)

N WP Y, TP mm(elPD@
o=0'as i=1e(i.a.0)
Def15 Z ((P_1(8 ) - £(P(o”, o)) = £(P(5, 0)).

2. Forlast(c) tangible we have:

P ( T) Def12 Z PU(O"T) ~,u(S)

o=0"uS

Def 15 Z L(P1(8 0) - £(P(0”, o)) = £(P(8 o).

o=0'us

O

The bounded reachability problem fgOHPCs subject to distributed schedu-
ling can now be reformulated as an unbounded reachabilitylem for the asso-
ciated induced PMC.

Theorem 1. Time-bounded reachability for apQ-IPC C subject to distributed
scheduling is equivalent to checking time-unbounded raaitity on the PMC

= (S, &. P, V) as in Definition16 for assignments that satisf$.1). In partic-
ular:

supP,(0<'G) = SUIOé“(P@(OQ))& lnf P,(0%'G) = lnf {(P@(OQ))

nebDS ZF3
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Proof. For a distributed schedulerwith associated assignmefitas defined in
Lemmal, we haveP,(¢<'G) = P,(U{c" | t(o) < t andlast(c) € G}).

Recall that the set of goal statgsc S;, of the PMC corresponds to the set of
paths that end in a stated but do not pass through under way in the analyzed
|/O-IPC.

It is obvious that the cylinders induced by these paths dowetap and their
union is the set of all paths reachiggwithin t time-units.

We then have:

P,(05G) =P, JloTlre@)=> P = > ((PUs0))

(reé o€G,|ol=k

= D) PdB)=P©G).

oeGlol=k

The last equality stems from the fact that a patbf lengthk can only be reached
for the first time after exactlit steps inD.

We now have a one-to-one correspondence between disttibabedulers of
C and assignments @ which satisfy 8.1) that preserves the probability to reach
G, respectivehg.

It immediately follows that the infimum and supremum proliabs over
these schedulers and, respectively, assignments mustiae eq O

To extend this result to strongly distributed schedulersmnwst further restrict
the variables of the induced PMC such that the allowed assgits match the
strongly distributed schedulers. First we introduce nenetdes which represent
the conditional probabilities ir2(1).

For everyi,j, 1 <i,j < #C,i # j, ando € S., we define a new variable
i(r‘m Lot E V- Notice that two dierento, o € S, may induce the same variable
if o[Pi] = o’[Pi] ando[P] = o'[P)].

We write V, for the set of all such varlabla‘s'[m AP

Using these new variables we pose new restrictions on thables of the
induced PMC of a distributed®-IPC.

2l Vo +Y0) =Y, IfL<ij<#C i#] andresS;  (3.2)

Theorem 2. Time-bounded reachability for afQ-IPC C subject to strongly dis-
tributed scheduling is equivalent to checking time-unlamehreachability on the
PMCD = (S, &, P, VU V,) resulted through unfolding as in Definitid® under
the assumption&.1) and(3.2). In particular:

SUpP,(05G) = sup {(Pp(¢G)) & lnf Pi(079) = {(Pp(© G)).

neSDS 2-3.DA(3.2 o3 1) (3 2
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Proof. We associate strongly distributed schedulgts assignments following
Lemmal. For the extra variables M, we choose
yir 1 i J
£(r) i 26 +v) >0
1 otherwise

4 a[m(r[m) = {

Note that the value 1 is chosen arbitrarily here.

We now show that any assignment that satise® (s associated to a strongly
distributed scheduler and that any strongly distributdtedaler is associated to
an assigment that satisfi€x 2).

First, notice that for a pattr ending in a vanishing state and disting4IPCs
#i andP; that have immediate actions enabled aftemwe have that nZ(y' ) =
0= /(y)) thenz: G[P U[,P](y' +y(,) =y _holds, regardless the valueif U[,P]G[PJ_])

Now, consider an assignmefitwith associated distributed scheduigrand
suppose we find two paths o’ as above with(y, +y)) # 0 # (Y. +Y.),
o[Pi] = o’[P] ando[P;] = o’[P]]. Then @.2) gives us that:

Yo .
g(%ﬁya) « f’[”’]"[?’])_gd '[P]cr'[sv,]) (m)

As g(y' ) corresponds td (o)(#;) in n—and similar correspondences can be found
foryl,y.,y., —we have that now Equatiog.() holds forn, which means thaj
is indeed strongly distributed.

Since we have a one-to-one correspondence between disttibohedulers
and assigments, this also proves the reverse, that theressigissociated to a
strongly distributed scheduler satisfi&s3).

Following the proof of Theorer, for a strongly distributed schedulemith
associated assignmefjtwe again have

P,(0='G) = P,(U{c" | t(o) < tandlast(c) € G).

Recall that the set of path& c S;. is the set of paths that end in a stategin
but do not pass througi under way.

It is obvious that the cylinders induced by these paths dowetlap and their
union is the set of all paths reachigbwithin t time-units.

It again holds that:

P,(0%6) =P,(( JicT1oeg)= > Pl = ) ¢P(s0))

oG a'eé,lfrlzk

= D PBa)=P©G).

o€G.|ol=k
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We now have a one-to-one correspondence between strosgljpdied sche-
dulers ofC and assignments @ which satisfy 8.1) and @.2) that preserves the
probability to reachg, respectivehg.

Again, it immediately follows that the infimum and supremumlgabilities
over these schedulers and, respectively, assignmentdmesjual. |
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Implementation Workflow

Time-unbounded reachability probabilities for PMCs carcbmputed using the
tool PARAM [17], which results in analyzing a set of polynomial function&o
the variables. These functions can be optimized under thesed constraints on
variables using standard numerical solvers.

The prototype implementation of the algorithm requiresrgmiis: a closed,
distributed JO-IPC C subject only to output nondeterminism which exhibits no
Zeno-behavior (no infinite immediate loops allowed) andvaetibound.

The following steps are sequentially executed:

1. the JO-IPC is unfolded up to time-boungdyielding a PMC with goal states

G. At the same time, constraints over the introduced parasiate gener-
ated depending on the type of scheduler used;

2. the probability of reaching in the generated PMC is computed parametri-
cally using thePARAM tool. The result is a polynomial function.

3. the computed polynomial function is optimized under teeeyated con-
straints using non-linear programming. In principle, amnitinear pro-
gramming tool can be used.

The novel addition to the toolchain depicted in Figdrgis the “unfolder” which
is implemented in Java on top of straightforward classebdtin main data struc-
tures used: basi¢®-IPCs and PMCs.

[/O-IPC PMC PARAM
™~ e

r Unfolder; polynomial

s

Figure 4.1: Implementation Toolchain (ellipsestools, boxesw data)
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The unfolder is basically an algorithm which performs th@ansion of a
scheduled distributed®-IPC into a PMC up to the given time bound. While
performing the expansion, local and global parameterg&spaonding to local and
interleaving scheduler decisions, are produced.

Paths of the basi¢g®-IPCs describing the distributet-IPC model are rep-
resented and created on-the-fly through a dynamic treeisteucSince such local
paths can be easily tested for equality against other sutis p@.g. when gener-
ating additional constraints of strongly distributed stiiers) this simplifies the
implementation while also accounting for a bit of memoryisgy

The remainder of this chapter gives more information on thrédlder” which
is the central developed part of the toolchain.

4.1 Unfolder Overview

To begin with, the inputted representation of the ba&:IPCs is tokenized and
the objects representing the components of the distridy@tPC are created. At
the same time, depending on the input given, the creg@dRAC goal states are
represented by either of

e NonSticky configurations: specified by a set of distributgd-IPC states

e Sticky configurations: specified by a subset of all componentsstat
In theSticky case, if a state of the given subset is part of a stathenilistributed
I/O-IPC, the distributed state in question will be a goal state

The input is structured as follows. The first line names howyrtzasic com-
ponents are parallelized J#IPCs) and — if the goal states should be specified
asNonSticky configurations — the number of configurations describingyited
states (&) is also provided.

If the goal states are known to lenSticky from the first line, each of the
following #G lines of input contain one goal configuration. Otherwise, goal
states are specified by listing on each of the followil@®PCs lines the basic
I/O-IPCSticky states.

The remaining lines contain triples describing bagiz-IPC transitions by:

¢ the transition starting state: added only if it has not besmed by any of
the goal statgsonfigurations or previously processed states

¢ the transition label: if ending in “?” or “I” itis seen as arput, respectively
output label; otherwise it is parsed as dmble value of the probability to go
from the starting state to the target state

¢ the transition target state: added only if it has not beenathbiny any of the
goal stategonfigurations or previously processed states
Note that the current implementation does not perform chadkether transition
labels are allowed for the specifigQ-IPC transitions for which they are used.
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Also, at the moment only input labels and output labels atertanto considera-
tion.

The PMC model expansion follows the initialization of th®{IPC compo-
nents and goal states. Creating the PMC corresponding ttigtréouted JO-IPC
up to the given time bound requires:

e handling synchronization of input and output transitionsided in dis-
tributed vanishing states

e producing all possible combinations of concurrent localgabilistic tran-
sitions enabled in distributed tangible states

e parameter and (strongly) distributed scheduling congtgeneration
The generation of additional constraints for stronglyrastted schedulers is, for
now, treated separately after the PMC expansion.

In the end, the created PMC is handed over to PARAM for compgutine
polynomial describing the parametric probability of reiagithe goal states. The
polynomial returned by PARAM is combined with the generatedstraints and
passed on to a nonlinear programming tool.

In the tests and case studies performed aittese-setalgorithm [L8, 19 pro-
vided by thefminconfunction of Matlal was used.

4.2 Object-Oriented Basic JO-IPCs

The data structures through describing the implementafibasic JO-IPCs with
goal states are given in Figud#e2 The design was aimed at being minimalistic
and complete while also providing for affieient implementation of the PMC
generation.

Each basic/D-IPC is described by itstates, of which theinitial state,
needed for creating the initial PMC state, is singled out.

The centerpiece information in the connected structuréesone represen-
ting local VO-IPC states. For simplicity, the enabled transitionsdtioh edge)
are split through corresponding state attributes into tir{fpatationin), output
(notationout) and probabilistic (notatiopr) transitions.

The states are identifyed through their uniquame/id. Each transition (no-
tationEdge) is part of one of thein, out or prob attributes of a state. For this
reason, each transition could be compressed to holdingniaiion only on its
target state and abel.

The diferent types of labels are implementing classes of the coniraloel
interface. Labels of input (notatidim) and output (notatiodut) transitions have
as attribute amame/id which determines them uniquely. Labels of probabilistic

seehttpy/www.mathworks.corh. /fmincon


http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/fmincon.html
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(notationPr) transitions have as attribute the probability (notatpaob) corre-
sponding to reaching the targetate via the given labele@ddge.

As argued befor€oals may beSticky or NonSticky. In either case, they
are described by their sole attribute consisting of one aerfoate objects.

10IPC pr Edge

@ states out

name/id State in

Legend:

— ‘"depends on"

&— 'attribute of"
"implements"

Goals

Pr Out In
Sticky NonSticky

Figure 4.2: Dependency Diagram: Basic IOIPC

4.3 Tree Representation of Local /O-IPC Paths

Each PMC state will be described mainly by a path of the distad JO-IPC.
Paths of the distributed®-IPC have associated a set of log&@-IPC paths (their
projections onto the éierent components).

An argument of why dferent local JO-IPC paths correspond to various dis-
tributed paths has been briefly explained in Exan®ple

Since paths of the distributefd-IPC and the PMC are so closely related, dis-
tributed JO-IPC paths need not be specifically used by the “unfoldedweler,

a representation for local paths of the given model compisriemeeded.

Paths of basic/O-IPCs could have been represented straightforwardly-as or
dered lists of states and transitions ending in a state. Menveuch a represen-
tation would have imposed a high memory usage for the maltigferent paths
that have to be stored with each PMC state.
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For example, local path comparison, needed for constranéigtion in the
strongly distributed scheduler case, would have beenypegfiensive.

Also, creating new lists describing such paths whenevemaRMC state is
created and iterating through such lists would have beersirable (both gene-
rally and complexity-wise).

Local paths are dynamically constructed when new PMC satesreated
during model expansion. The data structures describingisked representation
of local paths is depicted in Figu#e3,

> Edge [

E outKids Parameter
lastEdge LocalPath
Legend:

—» "depends on"
&— '"attribute of"

inKids

Figure 4.3: Dependency Diagram: IOIPC Local Path

For each local path, it$nKids, outKids andprKids attributes will point,
for each possible path expanding input, output or proksthdliransition (i.e. for
eachEdge), to anothel.ocalPath object.

The nice thing about theocalPath objects to which the'Kids attributes
point to, is that at first they are not initialized. Howevehen needed to create
new PMC states they get initialized and, if reached subsetyusithin the model
expansion algorithm, they will be detected.

In addition, theoutKids attribute will associate, upon initialization, each
expandingLocalPath with the parameter corresponding to lisstEdge, thus
being equipped for use when creating parametric PMC tiansit

Constraints on local parameters are created within eachlPath upon ini-
tialization and added to the separately stored constraint s

In general, thelastEdge will represent the transition seen last on the de-
scribed path. However, for the local path consisting onlyhefinitial basic
I/O-IPC state, thdastEdge is initialized to an edge with thénitial state as
target and a non-initializethbel.

Such a special-case handling is needed by the expansiontlatgovhich
makes use of thearget state of thelastEdge of local paths when determin-
ing PMC goal states.
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Every parameter associated with a path-expangiyg and, respectively, an
expansiorLocalPath is iteratively created by using the same static local param-
eter generator for all paths of a given I0IPC.

Example 8. Consider again the repeated coin flip and guess experimegnicicdel
by the JO-IPCs in Figuresl.2and1.3

Each PMC state for the distributedd-IPC C¥||CG expanded up to time
bound1 corresponds to one of the paths starting from the root of the bn
the bottom side in Figur8 and ending in one of its leaves.

The trees on the top-left and top-right sides in Fig@reepresent the way
local paths are expanded in a similar manner for the projusi of the depicted
tree paths oC¥||CG.

2\ (So. S5) 1

s S . . S
; 2 2 .
|t gn! / o
S

S0 (S1, S) (S2, S S

(S1, S3) (S0, ) (S1, S8 (S2, S3) (S0, S (S2, S3)
th!\ Oh! / ol I ! ol ! 1
(S0, %3) (S0, %) (S0, S3) (S0, S3) (S0, S3) (S0, SB) (S0, S3) (S0, S3)

Figure 4.4: Tree Path Representationsd@t, CF||CG andCG

With this view in sight, local paths are represented throtigg states of the
fringe in the trees foC¥ andCG — i.e. the leaf states connected to the root of the
tree through undotted lines.

The dotted lines would represent the possible continuatodthe paths which
have not yet been entirely expanded by the unfolder.

From an implementation point of view, the states not coretebly straight
lines to the root of the tree are the ones which have not yet egalizedcreated.

As it can be seen in the depicted example, the two red-cothstabuted JO-
IPC paths have identical path projections@¥ andCgG.
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4.4 Object-Oriented PMCs

The data structures by which PMCs are implemented are thescim Figured.5.
Each PMC is described by its states (notatiodes), of which, the initial state is
singled out and used to begin the recursion of the PMC expansi

initial @ target Shift o
PMC Node @ Parameter

Legend:
—>» "depends on"
nodes @ LocalPath e— 'attribute of"

Figure 4.5: Dependency Diagram: Parametric Markov Chain

Each PMC state (notatiafode) will have as attributes the associated set of
local I/O-IPC paths. These paths pertain to the components of the scheduled
distributed IO-IPC analyzed. The other attribute of edickle is the set of enabled
parametric transitions (notatiahifts).

The PMC transitions (notatioBhift) are always being addressed from a
PMC state attribute. Thus, they are fully described by thditemhal informa-
tion of their target PMC state and the corresponding parametric probabilistic
value (notatiorprob). The probabilistic value of a PMC transition is the restilt o
combining local and globahteleaving parameters.

Global parameters, PMC state names (notatiamne/id) as well as global
constraints are produced using an additional generatociated with the created
PMC. Goal states of the PMC are flagged upon their initiabrat

4.5 Model Expansion

The PMC resulted from the given basjOHPCs is constructed by a depth-first
recursion on its states. The PMC start state from which tberséon is initiated
is created from the local paths generated by the start sifithe input JO-IPCs.

The algorithm proceeds by a tangible vs. vanishing caséndigin on the
node (i.e. on its associated distribute®HPC state) as in Algorithm. L

TangiblePMC states (seen as their corresponding distriby@dPC state) are
expanded like described in Algorithth2 If the check on the tim&ound fails
then thenode is made absorbing and the recursion is halted.
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Algorithm 4.1 PMC Construction — Main Recursionxpand
Require: node andbound
if node is tangiblethen
expand, (node, bound)
else
expand, (node, bound)
end if

On the other hand, if the timigound limit is not reached, the algorithm pro-
ceeds by creatingec. Each item of the vectovec contains all the local paths
corresponding to expanding the local path associated héfPMCnode.

The possible path expansions are according to the enalbbalpfistic tran-
sitions for each of the basigd-IPC components analyzed.

Algorithm 4.2 Expansion of Tangible PMC Statesxpand,
Require: node andbound
if bound # 0 then
vec =10
forall i € {1,...,#I0IPCs}do
vec.add(node.paths[i].prKids)
end for
prVec := oneOfEach(vec)
for all proj € prvVec do
pmc.nodes := pmc.nodes U {nodep,;}
(* a is the parameters’ product needed to expande into nodep,; *)
node. —:= node. -» U {ﬁ> nodepro;}
expand(node,,,;, bound — 1)
end for
else
—:=— U{node 5 node}
end if

The vectomprVec is computed according to the self-contained Algorith®
Its items are ordered sets of local paths. These sets fullgrithe the projections
of the PMC states reachable witlshi £t from the analyze®MC node.

For each projectioproj describing the newMC statenode,,,; the following
are subsequently performed:

o the set ofPMC nodes is enriched with the newly creat@®C statenodepy,;

¢ the parametric probability to rea@lode,,,; fromnode (denotedy) is com-
puted using the information within the local paths desaghiode,;
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Algorithm 4.3 All ways to pick an Item of every Box out df given: oneOfEach
Require: boxes: a sizeN vector containing vectors
result =0
if boxes.size =1then
result.add(boxes|[1])
else
head := boxes.pop()
tmp := oneOfEach(boxes)
for all item € head do
for all vec € tmp do
result.add(vec.add(item))
end for
end for
end if
(x items of theresult vector have sizé&\ )
return result

¢ the set of enabled transitionshi fts) for node is enriched with the newly
createdShi ft: — nodepyo;

e the recursion proceeds wittode,,,; and a decreased-by-1 time bound.

VanishingPMC states (seen as their corresponding distribut@diPC state)
are expanded like described by Algorithrhg and4.5.

Algorithm 4.4 is solely a helper subroutine which breaks down the case ana-
lysis. It makes possible dealing separately — for each dbésec JO-IPC compo-
nents — with expanding local paths of the analyzed PMC stat#e] correspond-
ing to enabled output transitions.

Algorithm 4.4 Expansion of Vanishing PMC Statesxpand,
Require: node andbound
forall i € {1,...,#I0IPCs} do
matchOutputs(node, bound, i, node.paths[i].outKids)
end for

The worker subroutine for performing the expansion of “gsamg” PMC
states is described by Algorithih5and argumented below.

For eachLocalPath in the i™ basic JO-IPC, all enabled output transitions
(and thus possible path expansions) are considered. Horoé#ltem a vector of
projectionsproj is created which will determine a ne®MC state.

The local paths relative to the other compongnés{1,...,N}, j # i have to
be constructed, being part of the projections vector.
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It will be tested whether there is any “input transition”paxsion of th@.ocalPath
for component matching the output transition of componé&atpath expansion.

If this is the case then tHeocalPath for j, expanded by the input transition,
will be added to the projections vector. Otherwise, thealPath for j will be
added to the projections vector as it is.

This is also where input determinism comes into play. In ganhé might
be the case that, for a given output transition in componeiere are multiple
matching input transitions enabled for thecalPath of component.

Handling input nondeterminism would require that all thpessible choices
are considered and projection vectors are created for eatthing input. The
rest of the algorithm would require no additional changes.

Upon the successful creation of the projections veptarj, the new associ-
atedPMC state will be created and added to the state set dfNiie

The parametric probability to reaatvde,,; from node (denotede) needs
also to be computed. Its computation uses the local paraméemation within
the local paths describingpde,,,; as well as the interleaving parameter informa-
tion within node.

Thereatfter, the set of enabled transitioski(fts) of the objectnode is en-
riched with the newly createshift (namely,— node,r,;). The recursion then
proceeds witmode,,; and the same time bound.

Algorithm 4.5 Match Outputs to corresponding InpuisitchOutputs
Require: node, bound, i: IOIPC number,
outputs: path expansions fromode for output transitions of thé" I/O-IPC
for all out € outputs do

proj =0
forall j €{1,...,#I0IPCs}do
if j =1then

proj.add(out)
else ifdin € node.paths[j].inKids to matchout then
proj.add(in)
else
proj.add(node.paths|j])
end if
end for
pmc.nodes := pmc.nodes U {nodep,;}
(x a is the parameters’ product needed to expamde into nodep,q; *)
node. —:=node. - U {i nodepro;}
expand(node,,,;, bound)
end for




Chapter

Case Studies

This chapter is used to present five case studies for whichlgfogithm has been
used and their results.

For the first 3 case studies the PARAM tool has been run on ag@nwith a
3 Ghz processor and 1 GB of memory, while Matlab was run on gpoben with
two 1.2 Ghz processors and 2 GB of memory. The last 2 case studiesested
by running the unfolder on a computer with twd.2 Ghz processors and 4 GB of
memory.

5.1 Mastermind

In the game of Mastermind®()] one player, theyuessertries to find out acode
generated by the other player, thecoder The code consists of a number of
tokens of fixed positions, where for each token one color {bewlabelling) is
chosen out of a pre-specified set. Colors can appear mutitipées.

At each round, the guesser guesses a code. This code is tm@awe to the
correct one by the encoder. The encoder answers by tellengubsser:

a) how many tokens were of the correct color and at the coptace

b) how many tokens weneot at the correct place, but have a corresponding
token of the same color in the code.

Assume, for instance, the correct code iskx and the guesser guessesoo.
In this case, the encoder answers 1 for a), because efdhthe very left. For b),
the encoder answers 2, because for one obttakens and for thex token there
is a correspondence in the x* correct code.

Notice that the decisions of the encoder during the gameudlsedetermin-
istic, while the guesser has the choice between all valigsodVe assume that

9The Mastermind case study was initially suggested and addpt Moritz Hahn
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the encoder chooses the code probabilistically with a amifdistribution over all
options. The goal of the guesser is to find out the code as $qsbssible. Our
aim is to compute the maximal probability that the guessetectly guesses the
code withint rounds.

However, the latter target is not as clear as it may seem. uidomean to
minimize the expected number of roun@q], to bound the maximal number of
rounds P2], or to maximize the probability that the code is broken with given
limit of rounds. All of the previous, except for bounding timaximal number of
rounds, depend on the probability with which codes are ahose

We formalize the game as follows: Ietdenote the number of tokens anmd
denote the number of colors of the code. This means thema'gpoessible codes.

The symbols andg are used as markers to distinguish between tuples which
may not be distinguishable otherwise. DefiRe= {1,...,m} and letC,,, =
{e} x (Im)" denote the set of possible codes. Wah= {g} X I,, X |, we denote the
set of all tuples4, b) of fully (a) and partially b) correct tokens.

We useucoqe € Dist(Cy ) as the distribution according to which the encoder
chooses the code which the guesser is supposed to break.

The guesser is the basyOHPCG = ({sg, s’g, s’g’, St Ag, =g, =g, Sg) Where
A'g = Gy, Ag = Cim andAigt = (. Interactive transitions of the guesser are given
by —g=((s;.a. 53) | a€ AJU{(sf. 2. S5) | a e AL\ (3. n, Op (S} (. n, 0), g

Thus,G can nondeterministically propose codes and can receidbéei on
their correctness. Probabilistic transitions asg= {(sg,,ugg),(s”,ugg)} where
us(s) = 1 andus(S) = 0 for s # s. The first pair in the probabilistic transition
is used to follow a step the encoder needs in order to choosgt@ahcode. The
second pair encodes a delay after each guess, to allow rahsut the number
of steps needed to guess the code.

The encoder is seen &= ({Ss} UCHnU (ChmXChm), As, =&, =s, Se), Where
A(Ig = Chm, Ag =Gy andAigt = 0. We have=g= {(Sg, codd)} U {(S,1s) | S€ Chm}-

Here, &, tcode) 1S Used for the probabilistic choice of the code. The fuorcti
Ucode IS @ distribution over the states @),,. The rest o= is used to follow the
delay transition of the guesser.

Interactive transitions of the encoder are s.epara&gel:—>j,3 U —>g into two
parts. Using—;= {(a b,(a, b)) | a,b € C,n} the encoder receives the choice of
the guesser and usirg9= {((a, b), f(a,b),a) | a,b € C,} the encoder provides
answers to the guesser.

The functionf : C,,n, x Com — G, compares two codes and is defined as
f(a, b) = (g, f1(a, b), fo(a, b)) with f; and f, defined as it follows.

Leta = (ay,...,a,) andb = (b, ..., b,). The functionf; answers how many
tokens were of the correct color and at the correct position:

f1((e, 3), (e, b)) = IA@, b)I,
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whereA(@ b) = {i € I, | & = b} contains the position numbers in which the actual
and the guessed code completely agree.

The functionf, answers how many tokens were not at the correct place, but
have a corresponding token of the same color in the code:

(e, @), (e, b)) = > min{IB@ b, j), 1B, j)I}

=1

whereB(@ b, j) ={iel,|i ¢ A@b)Aa = j}.

To find out about the partially correct guesses, we consalgr possible color
separately. The total sum of partial guesses is then the $yartal guesses of
the individual colors. We count the number of tokens of agieelor at positions
which have not been guessed absolutely correctly. On theamegwe count them
in the actual code and on the other hand in the code propostut lguesser.

We have to take the minimum of these two numbers: if they amalethere
is a corresponding token for each token the guesser tooldthoot at the same
position). If the guesser guessed less tokens than exlgtit@ones guessed can
be considered correct. If fahe guessed more than exist, there remain tokens of
which there is no correspondence in the actual code.

—>Sg :1>s’g Sg<—
? <7 &
A "
e a1

<\
p 00?7 & f((e,a),(e,B))!/ \(e,b)?

(3, %.Y)? ((e,3), (e, b))

The @, X, y)? and & b)! transitions on the left denote sets of transitions quiati
over (x,y) € 12, (x.y) # (n,0) andb € (I;)".

The state  3) is arbitrary (i.e. @ is arbitrarily fixed) and thee(b)? transition
together with the(e, @), (¢, b)) state are quantified overe (I,,)" again.

Figure 5.1: Mastermind Schematic Modelgp({left) and& (right)

The Mastermind game is the composit@n= G||& of the two basic/O-IPCs.
A schematic graphical representation of the game is depintBigure5.1

Using the tool described i@hapter 4ve can reason about the maximal prob-
ability sup, Pr(¢v='sz) to break the code within a given numbesf guesses.

We consider the set of all distributed schedulers as we olBlyavant that the
guesser uses only local information to make its guesses.



40 Chapter 5. Case Studies

If we were to consider the set of all schedulers, the maximtobability for
the guesser to find the code would be 1 for any time-bauaslifor some scheduler
the guesser would immediately choose the correct code wothgbility 1.

Note that it does not make sense to consider strongly digéribschedulers for
this case study as it never occurs that tla@ IPCsG and& both have immediate
actions enabled. In other words, the players act in turn.

Settings | PMC PARAM NLP

nimjt #S H#T #V Time | Mem | #V | Time Pr
21212 197 248 36 | 0.0492| 143 | 17 | 0.0973]| 0.750
21 2|3| 629 788 | 148 | 0.130 | 268 | 73 | 0.653 | 1.00
3| 2|2| 1545 | 2000 | 248 | 0.276 | 529 | 93 | 151 | 0.625
3| 2| 3]|10953| 14152| 2536| 398 235 | 879 | 1433 | 1.00
21 3|2]| 2197 | 2853 | 279 | 0509 | 6.14 | 100| 215 | 0.556

Table 5.1: Results of Mastermind Case Study

Results are given in Tablg.l In addition to the model parameterg (),
the time boundt] and the resultK®r) are given. We provide statistics for the
various phases of the algorithm. For the unfolded PMC thelbeaurof states (8),
transitions (), and variables (¥#) are given.

For thePARAM tool the time (in seconds) needed to compute the polynomial,
the memory (in MB) required, and the number of variables tkatain in the
resulting polynomial are also given.

Finally we give the time (in seconds) needed Ntatlab to optimize the poly-
nomial provided byPARAM under the linear constraints that all scheduler deci-
sions lie between 0 and 1. For this case study the PMC model$regar con-
straints were generated semi-automically given the paese m, andt.

5.2 Dining Cryptographers

The dining cryptographers problem is a classical anonymioplem R3]. The
cryptographers must work together to deduce a particuésrepof information us-
ing their local knowledge, but at the same time each crypialggers’ local knowl-
edge may not be discovered by the others.

The problem can be summarized as follows: three cryptogsdysve just fin-
ished dining in a restaurant when their waiter arrives tgteim their bill has been
paid anonymously. The cryptographers decide they wishgjpae the anonimity
of the payer, but they wonder if one of the cryptographersgzad or someone

9The Dining Cryptographers case study was initially sugegtanhd adapted by Pepijn Crouzen
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else. They resolve to use the following protocol to discavbether one of the
cryptographers paid, without revealing which one.

Each cryptographer flips a fair coin such that the others @lasee the out-
come. Thereafter each of them sees the outcome of his owraodishows the
flipped coin to his right-hand neighbour (actidm$or heads andj for tails). This
happens in a fixed order. They all now know the outcome of twosc(for in-
stance, cryptographer one knows the outcome of his own ftiptlae outcome of
that of cryptographer two).

Again in a fixed order, they proclaim whether the two coinsenttie same or
different (actions; for same andl; for different). However, if a cryptographer has
paid hgshe willlie when proclaiming whether the two coins were identical ot not

Now we have that if there is an even number offelient” proclamations, then
all of the cryptographers told the truth and it is revealeat gsomeone else paid.
If, on the other hand, there is an odd number off&tient” proclamations, one of
the cryptographers must have paid the bill, but it has beewstihat there is be
no way for the other two cryptographers to know which one fzag.p

In the described model each cryptographer first attemptsiégsggwhether a
cryptographer has paid (actioggo guess that a cryptographer has paidf,not).

In case the cryptographer decides a cryptographer hastgagliesses which one
(actiong; ; denotes that cryptographieguesses cryptographghas paid).

We depict part of the/O-IPC models in Figur&.2. On the right-hand side of
the figure we have thg®-IPC ¥ that simply decides who paid (actiopg and
then starts the protocol. Each cryptographer has a prcbtyabﬁl% to have paid
and there is a probability cgthat none of them has paid.

On the left-hand side of Figure 2 we see part of the®-IPC G, for the first
cryptographer (the case when the cryptographer flips heatlbas not paid and
therefore proclaims the truth).

O O O start!
startl |startl |start

Py P Py

1 1 1 1

Figure 5.2: Part of the/O-IPC modelg; (left) of the first dining cryptographer
and the JO-IPC ¥ (right) that probabilistically decides who has actuallydpa



42 Chapter 5. Case Studies

We can see that a “run” of the distribute®HPC C = F|G1l|G-l|Gs takes
two time-units, since there is one probabilistic step tedatne who paid and
one probabilistic step where all coins are tossed simutiasig. \We are interested
in two properties of this algorithm: first, all cryptograpieshould be able to
determine whether someone else has paid or not. We can sxpisproperty,
for example for the first cryptographer, as a reachabilipbpbility property:

P(O=?(P1, P2, P3} X {G11, G12, G13} X So x Sz U {N} x {N1} x Sy x S3) = 1. (5.1)

Here S, and S; denote the complete state spaces of the second and third cryp
tographer JO-IPCs. For the other cryptographers we find similar reaitihab
probability properties.

Secondly, we must check that the payer remains anonymoismians that,
in the case that a cryptographer pays, the other two cryapbgrs cannot guess
this fact. This can be formulated as a conditional reachgipiiobability:

P(O=*{P2} X {G12} X Sz X S3U {P3} X {G13} X Sy x S3) _ 1 (5.2)
P(0=2{P,, P3} X S; X Sy X Sg) -2 '
i.e., the probability that the first cryptographer guessegectly which other cryp-
tographer has paid, under the condition that one of the attyptographers has
paid is one half.

PMC PARAM NLP
Property | #S | #T | #V | Time | Mem | #V | Time | Pr
(5. 294 | 411| 97| 9.05 | 411 | 24| 0.269| 1.00
(5.2,top |382|571| 97| 903 | 473 | 16| 0.171| 0.167
(5.2, bottom| 200| 294 | 97 | 898 | 414 | O | N/A | 1/3

Table 5.2: Results of Dining Cryptographers Case Study.

Table5.2 shows the results for the dining cryptographers case stivdycal-
culate the conditional probability irb(2) by computing the top and bottom of the
fraction separately. We observe that both propertied @nd 6£.2) are fulfilled.
Table5.2also lists statistics on the tool performances and mode$sig described
for Table5.1 Note especially that the third reachability probabilitgssxcomputed
directly byPARAM. |.e., this probability is independent of the scheduleiislens
andPARAM was able to eliminate all variables.

5.3 Randomized Scheduler Example

For the class of strongly distributed schedulers it may be#se that the maximal
or minimal reachability probability can not be attained bgteierministic sched-
uler, i.e. a scheduler always choosing one agtiomponent with probability 1.
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To exemplify this situation we use a small example of /&@IPC as depicted
by Figure 4 in ] through a PIOTA model. For convenience, the example adapte
to the JO-IPC settings is depicted in Figubes.

2 DB’

I rl ed? |eb? |e®?

ed eb al b! c!
eb ed
ed w?

ed

Figure 5.3: The Randomized Scheduler Example

In this example, the maximal probability of reaching a stafer determinis-
tic strongly distributed schedulers ig2L. However the scheduler that prioritizes
doing an action fronk, then fromR and then chooses among the rest (AeB,
or C) with uniform probability, yields a probability result o3114.

PMC PARAM NLP
#S | #T | #V Time | Mem | #V | Time Pr
13| 23] 12 000396| 1.39 | 11 | 0.241 | 0.545

Table 5.3: Results of Randomized Scheduler Case Study.
(* For certain settings, Matlab reports a maximal probabiift9.500)

Table5.3 shows the result of applying our tool chain to this example. &k
that we can find a scheduler with maximal reachability prdigi® .545, which
is even greater than 124. Note that we can express the maximal reachability
probability as a time-bounded property because the examplgyclic.

However, for this case, the Matlab numerical result depemdthe initial as-
signment given to the solver. For certain initial assignteghe solver returns
a maximal probability of only B00. This indicates that further investigation is
required in the appropriate nonlinear programming toobfar algorithm.
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5.4 Distributed Random Bit Generator

Random bit generators (notation RBGs) are abstract atgosithat produce ran-
dom sequences of bits. For a very good analysis of existisgugo)random num-
ber generators and statistical tests for then2#. |

In our current case study RBGs are treated as black boxese $pdzxific, a
RBG is understood as an algorithm which, after performinges@omputation,
outputs either 0 or 1 with probability/2 (see Figuré.4). In a sense, RBGs are
identical to the coin-flip used early in the thesis.

We propose to combine RBGs in a distributed setting by hathegoits pro-
duced by diferent RGBs interleaved. At the same time, we assume thatatigla
with the given RBGs there is an “attacker” (much like the eguess) who tries
to discover the produced bit sequence. We show that by usimggdy distributed
schedulers the “attacker” can only guess what the sequendeged by the dis-
tributed RBG is.

The example proposed is a nice generalization of RBGs taluiséd settings
and a distributed RBG as the one described could be used hiplaparties who
do not trust the randomness of eachother’'s RBG.

This case study also motivates and hints toward the pogsifiihow and
why to use distributed and strongly distributed scheduithe same time in a
distributed system.

Namely, we assume that a group of entities trust eachotlebittars use a
distributed RBG subject to distributed scheduling. Welartassume that a new,
yet untrusted entity, wants to join the others by extendiregdistributed RBG.

There is no need to use strongly distributed schedulerictstrs between all
entities. Instead, strongly distributed scheduling (amdesponding restrictions)
have to be generated only between the new entity and eack ofitial ones.

The distributed RBG can be seen as the composition of RBGs ., #, and
an attackeiX,,. The attackeiX, tries to guess the bits output by the other RBGs.
We are interesting in finding the probability for the attacite guess the RBG-
produced bits within one of the firstime steps.

Each RBG is a “coin-flip” IO-IPC, i.e.P; = ({s), S|, S}, A, —i, =i, S,) Where
ﬂio = {0, 1;} and ﬂi' = ﬂ!”‘ = (. Probabilistic transitions are given asj=
(s 10) | u(s)) = u(s,) = 1/2} and interactive transitions are described-by=
{(s1, O, sp), (S,1i1, sp)-

The attacker is a generalized “coin-gues¥; = ({S, Si}, Ax, = x> = x> Jo)
Whereﬂg = {gx | X € {0, 1}"} andﬂ'x = ﬂi@t = (. Probabilistic transitions of the
attacker are given by y= {(s,u) | u(s1) = 1} while interactive transitions are
described by- x= {(s1, 9x, S0) | X € {0, 1}"}.

Notice that fom = 1 we find ourselves in the case of the repeated coin flip and
guess as depicted in Figute2 The basic fO-IPCs for the system wham= 2
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are described in Figure.4.

Figure 5.4: Random Bit Generatdfs, #, and attackeX’,

Table5.4shows the partial results for the distributed random biegator case
study. Computing the reachability probability that withitime steps the attacker
guesses at least once the bits produced by the parallel2&s Ran be performed
using the PMC generated by the unfolding.

The model for the attacker may be extended by additional compts to jus-
tify the use of strongly distributed schedulers but, to hegith, the test above
(which requires only the use of distributed schedulers)tbé® performed.

Unfolder PMC |
#RBGs | t | Time | Mem | #S H#T #V
1 2| 0.015 2 81 116 13
1 5| 0.548 | 11.98| 5457 | 7844 713
1 6| 2607 | 32.2 | 21841| 31396 | 2793
1 7 | 28.358| 14.35| 87377 | 125604| 11049
2 1| 0.027 | 2.66 | 197 292 35
2 2| 1.469 | 14.16| 11605| 17840 | 2223

Table 5.4: Results of the Distributed Random Bit GeneraaseCStudy.

Similar to the previous case studies, statistics on theldafs performance
and model sizes are given. In addition, the number of RBGsrtak parallel
as well as the time (in seconds) and memory needed (in Mbh&uhfolder to
generate the PMC are specified.

Another interesting reachability probability which coddd investigated, but
for which the current implementation is not enhanced endogdee through, is
the probability that within at modgttime steps, the attackéf guesses at most
n-tuples of bits.

Also, by taking the interleaved guesses for the bits of tvergRBGs in the
attacker, instead of the condensed version which tries ésgutuples of bits
produced by all the RBGs at one step, one could compute (dhg.probability
for the attacker to guess entirely the bits generated byamdyof the given RBGs.
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5.5 Car Platooning

As a last case study we consider a simplified version of thepledooning de-
sign and verification. The case study was initally introdlibg the “Partners
for Advanced Transit and Highways (PATH)2%| at the University of Califor-
nia, Berkeley. More information on car platooning is avaléain the literature
[26, 27]. The main idea of the study is that fii@ density on highways can be
maximized by merging autonomous cars into platoons.

The adaptation of car platooning to th@®4PC settings focuses on finding
maximal reachability probabilities for an abstract platdo be filled with a spe-
cified, smaller then its capacity, number of cars.

The behavior of a car will be modeled by @®+PC and a car is seen as being
able to have the role of either a free agent, or a platoon memk®e platoon
is also represented by afOHIPC and its capacity is reflected by the models’s
number of states. The key to platoon verification resideoimél analysis of
mergeé& split maneouversvhich describe cars joining or leaving the platoon.

The distributed system analyzed is the result of paralfedia platoon model
and a number of/O-IPCs car models. Although various tests can be performed,
the initial test scenario we used requires to compute themabprobability that
a platoon of capaciti consists ok < N cars within at most timed steps.

The formal description of the platoon and cADdIPCs are given below. The
I/0-1PC model of a car and of a platoon of sideare depicted in Figurg.5.

The behavior of a car is given as th©HPC C; = (S;, A;, —i, =i, free;)
where the fJO-IPC states ar§; = {free;, busy;, x;, X}, x{, Xi, yi, V5, ¥{, ¥i}, the
non-timed transitions are described by

—i = {(free;,m;!, x;), (xi, ok;, x}), (x},no!, x}), (xi,n0?, X;), (free;, no? x;)}
U {(busyi, si!, yi), (vi, oki, y}), (v, nol, y¥), (vi, no? ¥;), (busy;, no? y;)}
and the probabilistic transitions are given by
=i= {(Xi, 1, free;), (¥i, 1, busy;), (x}, 1, busy;), (v}, 1, free;)}.

The statesfree; andbusy; mean that the car is either a free agent or part
of a platoon. The actions; ands; signal that the car wants to merge with the
platoon or split from it. Theno! output signal is produced by the car which is
given permissiondk?) to join or leave the platoon.

The platoon behavior is given by thgOHPC P = (Sp, Ap, =9, =p, Do)
whereSpy = {p; | i € O,N} U {1+ +igepo —itnis —iepg | i € O,N-1}, the
non-timed transitions are described by

—=p = {(P1, M2, +1541), (+i441, 0k, +]5.,) [1 € O,N -1}

U{(Pi+1>51?2 —i+14)s (misn,0ks!, =51 5) [1 € O,N =1}
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and=p= {(+} ;,,, 1,pi+1), (-}, ;- 1.pi) |1 € O,N — 1} represents the probabilistic
transitions of the model. ’

Eachp; state of the platoon denotes that thereiageN cars in the platoon.
The platoon listens to mergingy(?) and splitting ¢;?) signals of the cars and
each time it responds to the signal of one of them.

PlatoonP
Figure 5.5: JO-IPC models of a Caxjj) and a Schematic Platoon of capadity

Table 5.5 shows patrtial results for the initial test scenario usedtifier car
platoon case study. The reachability probability which sistem may be given
to compute is the maximal probability that withirtime steps the car platoon
consists of precisely cars. The platoon capacity is taken to be the same as the
number of cars of the distributed model.

Unfolder PMC |
K{N|t] Time | Mem | #S H#T #V
21 2|1| 0.043 | 233 | 119 154 35
2|1 2|2]| 0.057| 3.66 | 443 568 143
2|12 |3]| 0.366 | 11.98| 2279 | 2944 | 683
2| 24| 1.838| 12.65| 8111 | 10396| 2627
2| 2 |5]|32585| 40.11| 41159| 53164 | 12347
2| 3|1] 0492 | 13.99| 2788 | 3876 | 1088
2| 3|2]|69.606| 44.53| 33280| 45984 | 13914

Table 5.5: Results of the Car Platoon Case Study.

Similar to the previous case studies, statistics on theldefs performance
and model sizes are given. In addition, the number of caentak parallel and
the capacity of the platoon (botR), the fill-quota against which the tests are
performed k), as well as the time (in seconds) and memory needed (in Mb) fo
the unfolder to generate the PMC are specified.
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For the car platoon study, another interesting test we thiboigwas to deter-
mine the maximal probability that, starting from a plato@msisting already of a
numberk, of cars, the platoon would not decrease under k nor increase over
ko + k cars.

The diferences for the platoon and car models in this scenario aat com-
pared to the previous. The initial state of the platoon hdsetset top,, andk,
cars must have thebusy_, instead of theifree_ states marked as initial.

The testing for this study settings however had to be postgpoas further
improvements in the implementation (especially for thelopent of strongly
distributed schedulers) are needed beforehand.



Chapter 6

Conclusions

Although various model checkers for verifying reachapitit distributed, nonde-
terministic and probabilistic systems exist, none of thexs the built-in means of
ruling out unrealistic behavior due to inadequate schaduli

The main contribution of the described work consists in aonmated method
for determining extremal time-bounded reachability pioli@es of distributed
I/O-IPCs. The method used is based on reformulating the proatea polyno-
mial optimization problem under linear and — for stronglgtdbuted schedulers
— polynomial constraints.

Both restricting interactive probabilistic chains f@4PCs and adapting the
distributed (and strongly distributed) schedulerg@IPCs had to be formalized.
Providing the “YO-IPC to PMC” model construction and proving the equivaéenc
of the reachability properties analyzed for the two depahdedels has been the
most challenging.

The main drawback of the presented approach is that the afedennfolded
parametric Markov model grows exponentially with the sizthe original model
and the specified time bound.

However, to our knowledge, there is no other algorithm ableampute ex-
tremal reachability probabilities of distributed modetgler (strongly) distributed
schedulers out there.

6.1 Related Work

The problem that global schedulers may be too optimisticesspnistic in the
verification of distributed, probablistic, and nondetarisiic systems has been
noted in several dlierent settingsd, 28, 29, 30.

One approach to resolve the issue is topesgial-informationschedulers31].
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Using partial-information schedulers allows the hidingdbrmation that a global
scheduler should not realistically use.

However, this approach still assumes there is only one gkatiseduler, in-
stead of several local schedulers as presented in thisthesr the class of me-
moryless partial-information schedulers, the extremiagjloun average outcomes
of tasks can be calculated by reformulating the problem asralinear progra-
mming problem B1].

A testing preorder for distributed models with probabitisthd nondetermin-
istic choices has been suggested which is aimed at reallgtiepresenting the
power of schedulers in a distributed settiBg][ In this context, reachability prob-
abilities are defined in a similar way as in this paper, butlgorithm to compute
extremal probabilities or to compute the preorder are given

It would be interesting to study if the preord@&Z] indeed preserves extremal
time-bounded reachability probabilities when lifted te getting of 1O-IPCs.

6.2 Future Work

A prototype implementation of the “unfolder”, the missingk in the toolchain,
has been developed but it is still subject to changes. Samdy slirections could
be followed for both algorithmic and implementation impeavents.

As pointed out by the “Distributed Random Bit Generator’eagidy, the use
of a combination of distributed and strongly distributedesdulers may have prac-
tical applicability. In general, adapting various probiic and nondeterministic
distributed models to th¢®-IPC settings will provide more insight in the area.

It may also be investigated if special purpose algorithnmsleaused for the
specific type of nonlinear programming problems encoudtefarther, extending
the algorithm for handling (D-IPC specific) Zeno behavior could be tackled.

Memory-usage may be optimized by using the fact that onlynqoahial func-
tions (instead of their rational counterpart) are needeglémentation-wise, in-
put nondeterminism, transitions labeled by internal astitand thus action hid-
ing) are not yet integrated in the prototype tool.

Producing the parametric reachability probability carodie shifted to the
unfolder. This would be useful since the expansion of theitiged state space
is already performed by the unfolder.

On a high level, the limits of/O-IPCs versus PIOTAs can also be looked into.
This might lead to proving the equivalence of the formalistins inclusion of one
into another or their incomparability.
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