
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Selected Topics of Information Security and Cryptography

Seminar WS 08/09

Automated Checking of Observational Equivalence
for an Extended Spi Calculus
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∗calin@cs.uni-kl.de
†markus.norman.rabe@gmx.de
‡reischuk@cs.uni-saarland.de



CONTENTS Călin, Rabe, Reischuk (revxported, 0 tds)

Contents

1 Introduction 3

2 Verification of Cryptographic Protocols 5

2.1 Message Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Subterm Convergent Rewriting Rules . . . . . . . . . . . . . . . . . 6

2.1.2 Constructor-Destructor Languages . . . . . . . . . . . . . . . . . . . 6

2.1.3 Common Cryptographic Primitives . . . . . . . . . . . . . . . . . . 8

2.2 Extended Spi Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Environment-Sensitive Bisimulations . . . . . . . . . . . . . . . . . . . . . . 11

3 Extensions to SBC 14

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Parser Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Code Excerpts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Concrete Expression Evaluation . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Concrete Hedge Consistency . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 Analysis for Hedges . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Tool Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Limitations of the Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusions 27

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2
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Abstract

Borgström et al. proposed a notion of symbolic bisimilarity for the Extended Spi
Calculus [12]. They developed a prototype tool, called SBC (Symbolic Bisimula-
tion Checker) [10] implementing observational equivalence checking for arbitrary
processes using shared-key cryptography. However, it is based on hard-coded
equational theories.

We have partially extended SBC towards checking processes using a large class
of equational theories for the message algebra. With our extension, the user can
freely specify such an equational theory.

1 Introduction

Aiming to automatically analyze properties of cryptographic protocols, like secrecy
or anonymity, one usually models such protocols as processes in process calculi and
formulates the properties in terms of equivalence of different processes. The typical
equivalence relation for this use is observational equivalence, one of the most significant
representatives of contextual equivalences.

For example, a protocol P(m) transferring a message m from some participant A to
another participant B keeps the message m secret, if no adversary can observe a difference
between P(m) and P(m′) for two arbitrary messages m , m′.

Checking such equivalences is a hard task, since (as in the above example) quantifi-
cation is usually done over all contexts (adversaries) and all messages m. Furthermore,
if the message algebra is too expressive, even equivalence of expressions becomes un-
decidable. Even the very restricted process algebra of so called bi-processes [9] yields
undecidability (a sound but incomplete method is implemented in the tool ProVerif [8]).

In the last years there has been substantial research on different proof techniques
for checking observational equivalence of cryptographic protocols [14, 15, 7, 6, 9, 1].
Our work builds upon Johannes Borgström’s thesis [11] which focuses on analyzing
arbitrary processes (opposed to bi-processes in ProVerif [8, 6]), using a limited equational
theory (see 2.1) and very late evaluation (symbolic semantics), as first proposed in [12].
Johannes Borgström and Sébastien Briais developed a tool named SBC that is able to
check symbolic bisimulation for the subset of the Spi Calculus using only symmetric key
encryption. However, the theory is also valid for the Extended Spi Calculus which was
introduced by Borgström [11] and provides more flexibility in the expression algebra.
We provide the definition of the Extended Spi Calculus in Section 2.2.
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Outline

In the beginning of our report (Section 2) we provide the theory necessary to understand
the method SBC uses for checking observational equivalence. We discuss different
message algebras, the Extended Spi Calculus with concrete and symbolic semantics, their
corresponding bisimulations, and the hedged bisimulation which is the foundation for
SBC. Section 3 covers our contribution, the extension of SBC. First, we give an overview
of how the tool works. We proceed with a description of the rule definition language
we introduced and a discussion about the modifications we have made to the original
code. We close the section with a number of examples describing the current capabilities
of the tool. In the last section (Section 4) we draw conclusions, present possible future
extensions and discuss relevant related work.

Contributions

Our contribution is the partial extension of the SBC tool towards checking observational
equivalence for processes specified in an extended Spi Calculus, allowing for arbitrary
constructors and destructors. It provides a combination of specification freedom in
equational theories and processes that is unmatched so far. Although not finished, the
extended tool is already capable of checking a larger set of examples.

Related work

There are many approaches available for automated checking of bisimulations in the Spi
Calculus and the Applied π-Calculus [15, 14, 9, 6, 16, 10, 12, 17]. In Figure 1 we depict
two degrees of freedom that theories and tools can provide for the user. One axis states
which processes can be specified while the other indicates the freedom in equational
theories.

The theories of Baudet et al. and Blanchet both allow for a large set of equational
theories (as they build upon the Applied π-Calculus) but restrict to bi-processes [6, 9].
Bi-processes enable the comparison of processes that differ in their data terms only —
structural differences between the processes are not allowed. Blanchet et al. implemented
this approach as an extension to the well-known tool ProVerif. Baudet’s method is based
on symbolic semantics and is implemented in the tool YAPA [7].

The approach of Borgström et al. imposes only few restrictions on the processes to
check. However, there are strictly fewer equational theories allowed in the Extended
Spi Calculus than in the Applied π-Calculus [12]. Still, the implementation available,
SBC [10], works only for symmetric key encryption.

Very recently, Véronique Cortier and Stéphanie Delaune developed a method for check-
ing observational equivalence in the Applied π-Calculus for a large set of processes —
the class of simple processes [15].
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Figure 1: Our Contribution in Relation to Existing Work.

2 Verification of Cryptographic Protocols

In this section we provide a gentle introduction to automated verification of crypto-
graphic protocols. We begin by discussing various notions of message algebras which
are the differentiating factor of the calculi we introduce later in the section. Finally, we
present certain bisimulations with the aim of automated checking.

2.1 Message Algebras

Message algebras determine which expressions can be build and analyzed in the process
calculus and play a fundamental role in reseach on security protocols. Their proper-
ties determine the expressiveness of the calculus and therefore the range of possible
applications. On the other hand, a message algebra that is too expressive might lead to
undecidable equivalence problems on expressions, making the process calculus unsuit-
able for automated checking.

For example, the original Spi Calculus proposed by Abadi and Gordon in 1997 [3] starts
with a minimal message language containing only symmetric encryption and pairing
for constructing composite messages (hashing and asymmetric encryption are added
later in the paper). The (implicit) equational theory is fairly simple and consists of the
following three equations:

Fst(Pair(x, y)) = x,
Snd(Pair(x, y)) = y,
Dec(Enc(x, y), y) = x.

An equation Dec(Enc(x, y), y) = x means that a message Dec(Enc(M, k), k′) can be replaced
by M whenever k = k′. The original version of the Spi Calculus [3] additionally imposes
that the keys have to be names.

Recent research aims at finding a sufficiently large class of message algebras with
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2 VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS Călin, Rabe, Reischuk (revxported, 0 tds)

uniform decision procedures for security properties [1, 6]. In the following we will
discuss the properties of several classes of equational theories.

Messages and Expressions

Before we discuss different message algebras, we need to introduce their foundations.

For definitions of names N , variables V, messagesM and expressions E we refer to
Section 2.2. In the following we will use M,N to range over messages and F,G to range
over expressions. Further, we assume a set of constructorsF + and a set of destructorsF −

whose elements are denoted with f resp. g and have arities ar( f ) ∈ N resp. ar(g) ∈ N+.
It is necessary to introduce this differentiation in order to disallow sending meaningless
terms such as Snd(Enc(m, k)).

2.1.1 Subterm Convergent Rewriting Rules

An algebra-defining equation that is oriented from left to right is called rewrite rule. A
rewrite system (i.e. a set of rewrite rules) is subterm convergent, if rewriting of any term
converges to one of its subterms under repeated application of the rewrite rules.

Note that convergent rewrite systems in which deduction is decidable, can yield unde-
cidable static equivalence (cf. [11, sect. 3.2]). However, Abadi and Cortier have shown
decidability of static equivalence for the class of subterm convergent rewrite systems [1].
Borgström proposes the use of a subclass of subterm convergent rewrite systems which
is suited for automated checking [11]. This subclass is called constructor-destructor lan-
guages.

2.1.2 Constructor-Destructor Languages

A constructor-destructor language Σ is a rewriting system consisting of the following
components:

• a finite set of constructors F +and a finite set of destructors F −

There is exactly one rewrite rule for each destructor g ∈ Σ but there can be several
destructors for one constructor. Thus, each destructor is associated to a single
constructor.

• a set of destructor rewrite rules
These rules are of the form g( f (M̃), Ñ) → M′ with n(g( f (M̃), Ñ)) = ∅, ar( f ) = |M̃|,
ar(g) = |Ñ| + 1 and M′ ∈ {M̃} ∪ {Ñ}.

where n(F) are the names occurring in expression F.
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Given such a language Σ, we define top-level rewriting on terms, written F →Σ G, as
∃ (F′ → G′) ∈ Σ with an instantiation σ such that F′σ = F and G′σ = G.

The uniqueness of destructor rules is chosen in order to ensure deterministic evalua-
tion, although it would be preferable to allow multiple rules per destructor. We refer to
Section 4.1 for further discussion.

In the original Spi Calculus [3] keys are restricted to be names. As Borgström stated
in his thesis [11], the constructor-destructor languages do not allow for specifying such
restrictions. However, we believe that it does not lead to problems if permit to specify
such constraints, as there is already a similar restriction for channel names.

Example 2.1. In this example we provide a list of rules in order to depict the limitations
of expressiveness of constructor-destructor languages.

• Nondeterministic choice rules like the following:

Either(Pair(x, y))→ x and Either(Pair(x, y))→ y

cannot both be present in a constructor-destructor language. They also do not
yield a convergent rewrite system.

• In contrast, the parameterized choice rules

Pick(Pair(x, y), 1)→ x and Pick(Pair(x, y), 2)→ y

are not permitted in a constructor-destructor language, but yield a (subterm) con-
vergent rewrite system. However, we can resolve this problem by introducing
distinct destructor symbols Pick1 and Pick2 that each implement one of the rules:

Pick1(Pair(x, y))→ x and Pick2(Pair(x, y))→ y

• The limited inverse rule
g( f1( f2(x)))→ f2(x)

is allowed in a constructor-destructor language.

• The idempotent rule
f ( f (x))→ f (x)

as well as the self-inverse rule

f ( f (x))→ x

are not allowed in a constructor-destructor language. However, they can be part
of a subterm convergent rewrite system.
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2.1.3 Common Cryptographic Primitives

In this section we show how to realize some common cryptographic primitives in
constructor-destructor languages.

• Hash functions work without any rule. In this way the attacker cannot analyze
a received message x = Hash(k) and thus does not learn anything about secret k.
However, if the components of the hash are known to the attacker can build the
expression himself and can learn something about the content of x by checking for
equality: x = Hash(k).

• Symmetric encryption
Decs(Encs(x, y), y)→ x

and asymmetric encryption

Deca(Enca(x, Pk(y)), Sk(y))→ x

are defined in a straightforward way.

• Signatures
ExtractMsg(Sign(x, Sk(y))) → x
Verify(Sign(x, Sk(x)), Pk(y)) → True

Actually, the second rewrite rule needs a trick: we have to append a dummy
argument True to the destructor arguments.

Verify(Sign(x, Sk(x)), Pk(y), True)→ True

2.2 Extended Spi Calculus

The original Spi Calculus [3] is rooted in the tradition of the π-Calculus [19] which was
designed for describing parallel processes and their interaction. What distinguishes
the Spi Calculus from its ancestor, is the focus on cryptographic protocols by adding a
simple term algebra to guards (called matches in [19]). However, this language provides
limited flexibility as all its cryptographic primitives are hardcoded in the term algebra.
The Applied Pi Calculus [2] generalizes this approach by allowing arbitrary equational
theories of terms on the cost of possibly undecidable equivalence of terms.

In this report we consider the Extended Spi Calculus [11] which is a similar generalization
of the Spi Calculus. It aims at automated checking, thus restricts equational theories to
constructor-destructor languages.

2.2.1 Syntax

We assume a countably infinite set of names N with a, b, c, k, l,m,n ranging over its
elements. We use x, y, z to range over the infinite set of variablesV and u, v,w to range
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F,G F x | a | f (F̃) | g(F̃) expressions E
M,N F a | f (M̃) messagesM
φ,ψ F true | φ ∧ φ guards G

| [G = F] | [F : N]
P,Q F 0 | F(x).P | F〈F〉.P processes P

| !F(x).P | P + P | P | P
| (νa)P | φP

Table 1: Syntax of the Extended Spi Calculus.

P fn(P) fv(P)
0 ∅ ∅

F(x).Q n(F) ∪ fn(Q) v(F) ∪ (fv(Q) \ {x})
F〈G〉.Q n(F) ∪ n(G) ∪ fn(Q) v(F) ∪ v(G) ∪ fv(Q)
!F(x).Q n(F) ∪ fn(Q) v(F) ∪ (fv(Q) \ {x})
Q1 + Q2 fn(Q1) ∪ fn(Q2) fv(Q1) ∪ fv(Q2)
Q1 | Q2 fn(Q1) ∪ fn(Q2) fv(Q1) ∪ fv(Q2)
(νa)Q fn(Q) \ {a} fv(Q)
φQ n(φ) ∪ fn(Q) v(φ) ∪ fv(Q)

Table 2: Free Names and Variables.

over the union of N and V. The definitions of expressions, messages, guards and
processes are listed in Table 1. As in the Applied Pi calculus there is no let construct —
only an if -like guard.

For the sake of readability, we will use the abbreviation Ã for a sequence A1, . . . ,An for
some n ∈ N+. Further, common notations such as | Ã | for the length of a sequence and
f (Ã) for component-wise application of some function f will be used.

We define the names n(·) and variables v(·) of a term to be the names resp. variables
occurring in it. The free names fn(·) and free variables fv(·) are defined in Table 2. The
bound names bn(·) resp. bound variables bv(·) are the complement of the free names resp.
free variables in the set of used names n(·) resp. used variables v(·).

Substitutions σ can be instantiations (idempotent functions {F/x} of type V → E) or
renamings (injective functions of typeN → N). They apply the usual way to processes,
expressions and guards.

2.2.2 Semantics

There are various notions of semantics available, which differ in the time at which
constraints are evaluated but are still equivalent. We will take a look at late and very
late semantics, which we call concrete respectively symbolic semantics. In the following,
we provide an intuitive explanation of the concrete semantics before discussing the

9
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Structure of expression F: e(F) :
F ∈ N F
F = f (M̃), f ∈ F + f (e(M̃))
F = g(G̃), g ∈ F −, g(e(G̃))→Σ M M
otherwise ⊥

Table 3: Evaluation of Expressions.

φ : evaluates to:
~true� true
~ψ1 ∧ ψ2� ~ψ1� and ~ψ2�

~[F = G]� e(F) = e(G) , ⊥
~[F : N]� e(F) ∈ N

Table 4: Evaluation of Guards.

principles of symbolic semantics:

• 0: nil process. It does nothing and may as well be omitted.

• c(x).P: input on channel c and execute process P with x bound to the input.

• c〈M〉.P: output message M on channel c and execute P.

• P | Q: parallel composition of P and Q. The processes can execute their actions
independently or they choose to communicate over a common channel if there is
a matching pair of input and output actions available.

• (νa)P: create a new name a and execute P. The new name is not known outside the
process P.

• φP: if the guard φ evaluates to true, execute process P.

• !F(x).P: replication behaves like an unbounded number of copies of F(x).P running
in parallel.

We use→ to denote the relation on processes induced by the concrete semantics. Note
that in the following we consider only the subset of the Extended Spi Calculus not using
replication.

Since expressions may contain destructors, we need to define semantics for evaluation
of expressions under an equational theory Σ (see Table 3). As mentioned above, we re-
strict the possible equational theories to be constructor-destructor languages. Evaluation
of guards is defined in Table 4.

In case of an input like c(x).P an adversary (in form of a context) can send any term
it can construct resulting in infinitely many possibilities to instantiate the variable. The
symbolic semantics avoids this problem by postponing instantiation as far as possible.

10
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Cin
e(G) = a

G(x).P
a(x)
−−→ P

Sin
G(x).P

G(x)
−−−−−→
[G :N]

P

Sout
G〈F〉.P

G〈F〉
−−−−−−−−−−−→
[G :N]∧ [F :M]

P

Scom
P

(ν̃b) G〈F〉
−−−−−−→

φP
P′ Q

(ν̃c) G′(x)
−−−−−−→

φQ
Q′

P | Q
(ν̃b̃c) τ

−−−−−−−−−−−→
φP∧φQ∧[G=G′]

P′ | Q′ {F/x}

Table 5: Concrete (Cin) and Symbolic (Sin, Sout, Scom) Semantics.

Instead of directly instantiating and evaluating the conditions of a transition, we add
constraints that have to hold on the path in question. Thereby, existence of a path
becomes a satisfaction problem on the conjunction of the constraints of all its transitions,
making symbolic semantics a helpful step towards the quest of automated checking.

In Table 5 we present a selection of inference rules for the symbolic semantics opposed
to the inference rule Cin of the concrete semantics. Cin has the precondition e(G) = a
whereas Sin has no preconditions but introduces the equivalent path condition [G : N].

The exact definitions of the symbolic semantics are not necessary to understand the
insights to follow. We refer to Borgström’s thesis [11] for these definitions.

2.3 Environment-Sensitive Bisimulations

In this section we give a brief introduction to environment-sensitive bisimulations with
a focus on those suited for automated checking.

Environment-sensitive bisimulations require behavioral equivalence under all environ-
ments additionally to their bisimulation properties. Our target relation is observational
equivalence, an important representative of these equivalences, which is equivalent to
barbed equivalence [11, 20].

Definition 2.2. Observational equivalence is the largest symmetric relation R between
closed extended processes with the same domain such that A R B implies:

1. if A ⇓ c, then B ⇓ c;

2. if A→∗ A′, then B→∗ B′ and A′ R B′ for some B′;

3. C[A] R C[B] for all evaluation contexts C.

where P ⇓ c denotes possible output of process P on channel c and →∗ denotes the
transitive closure of the transition relation →. Evaluation contexts C are built from
[], C | P, P | P, (νa)C.

11
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Observational equivalence is hard to check, since the definition quantifies over all (in-
finitely many) contexts. In order to overcome this problem, we need a sound relation
that does not rely on this type of quantification. Therefore, we move to the correspond-
ing relation in the symbolic world, the symbolic bisimulation. Symbolic bisimulation
cirumvents the problem of infinite branching by replacing the contexts in definition 2.2
by symbolic environments distinguishing only finitely many cases.

We will not provide the definition of symbolic bisimulation and refer to the literature
[11, 16, 12, 18]. In his thesis, Borgström proves equivalence between the version of
concrete and symbolic bisimulation we use.

Hedged Bisimulation

With the aim of a checking method, Borgström introduced the Hedged bisimulation being
sound to symbolic bisimulation. The idea of this approach is to maintain a set of message
pairs each representing a fragment of information being exposed to the environment in
the respective processes at a common point of time. If the environment can distinguish
the messages of such a pair, the corresponding processes are not equivalent. The bisim-
ilarity check works by searching for a series of “consistent” hedges (see Definition 2.7)
that correspond to the evaluation steps of the processes.

Definition 2.3. A hedge is a finite subset ofM×M. We denote byH the set of all hedges.

Example 2.4. This example gives corresponding hedges for a pair of processes.

(νa) c〈Hash(a)〉.c〈a〉.0,
and (νa) c〈Enc(a, a)〉.c〈a〉.0

The initial hedge contains the pairs of free names of the processes, in this case only
(c, c). After executing the first step of each process the hedge additionally contains the
pair (Hash(a), Enc(a, a)) which is still consistent as a is not known to the environment and
thus neither of the messages can be analyzed. Executing the next step will add the pair
(a, a) to the hedge. This enables the environment to analyze (decrypt) and distinguish
the previously received messages rendering the hedge inconsistent. The processes are
therefore not observationally equivalent.

Definition 2.5. For a hedge h, we obtain S+(h) by applying constructors to the elements
of h. The synthesis S(h) is the union of S+(h) and h. Note that the intersection of S+(h)
and h is not necessarily empty.

The analysis of a hedgeA(h) is defined as the union of h and the hedge resulting after
application of destructors with parameters that are constructible out ofA(h) itself.

The irreducibles I(·) of a hedge are defined as

I(h) B A(h) \ S+(A(h))

representing the minimal set of elements of h that are necessary to reconstruct S(A(h)).

12
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Example 2.6. We use the equational theory resulting from the union of all rewriting rules
defined in Section 2.1.3. Let

h = {(Hash(k),Hash(k)), (Pair(a, a), Pair(b, b)), (Enc(m,Hash(a)), Enc(m,Hash(b)))}.

Then the analysis of h isA(h) = h∪{(a, b), (m,m)}. Note that we can decrypt the encrypted
message, since we have (Hash(a),Hash(b)) ∈ S(A(h)).

The set of irreducibles is:

I(h) = {(Hash(k),Hash(k)), (a, b), (m,m)}

Definition 2.7. An irreducible hedge h is left consistent iff for all (M,N) ∈ h it holds that

1. if M ∈ N then N ∈ N , and

2. there is no N′ , N with (M,N′) ∈ S(h)

3. ∀ ˜(M′,N′) ∈ S(h), g ∈ F − : if g(M, M̃′) succeeds then g(N, Ñ′) succeeds as well.

where ˜(M′,N′) denotes a sequence of pairs and M̃′ as well as Ñ′ are their respective
projections. Note that we simplified condition 3 in order to avoid introducing several
hard to understand definitions. We call a hedge h consistent iff both h and h−1 are left
consistent.

Consistency is the most important definition in this report. It is a machine checkable
property of hedges (according to [11, p.105]) providing a sound indicator for observa-
tional equivalence.

Definition 2.8. A hedged relation R is a subset ofH ×P×P. We say that R is consistent if
h ` P R Q implies that h is consistent. A consistent hedged relation is a hedged simulation
if whenever h ` P R Q we have

1. if P τ
−→P′ then there exists Q′ such that Q τ

−→Q′ and h ` P′ R Q′.

2. if P
a(x)
−−→P′, h ` a↔ b, B ⊂ N is finite, B∩(fn(P,Q)∪n(h)) = ∅, M,N ∈ M, and h∪IdB `

M↔ N, then there exists Q′ such that Q
b(x)
−−→Q′ and h ∪ IdB ` P′{M/x} R Q′{N/x}.

3. if P
(ν̃c)a〈M〉
−−−−−−→P′, h ` a ↔ b and {̃c} ∩ ( f n(P) ∪ n(π1(h))) = ∅ there exist Q′, N, d̃ with

{d̃} ∩ (fn(Q) ∪ n(π2(h))) = ∅ such that Q
(νd̃)b〈N〉
−−−−−−→Q′ and I(h ∪ {(M,N)}) ` P′ R Q′.

R is a hedged bisimulation if both R and R−1 are hedged bisimulations.

This definition does not rely on quantification over environments. The automated
checking method of hedged bisimilarity builds the hedge in a stepwise manner as
described in the definition above and checks for consistency in each step.

13



3 EXTENSIONS TO SBC Călin, Rabe, Reischuk (revxported, 0 tds)

3 Extensions to SBC

Johannes Borgström and Sebastian Briais created a prototype tool ‘SBC’ to check ob-
servational equivalence for the Spi Calculus in an automated fashion. According to
Borgström’s thesis the checker is based on an unproven method [11, Appendix B].
Nevertheless, we decided to extend the checker, since it runs reasonable stable (it was
successfully tested on the subset of the Security Protocols Online REpository [13] using
only symmetric key encryption).

Our contribution is the extension of SBC towards checking protocol specifications in the
Extended Spi Calculus. As it was written for Spi Calculus constructs only, most functions
of the original tool had hardcoded parts for symmetric encryption and pairing. The
core task was to generalize each function to the case of arbitrary constructor-destructor
languages.

In the following, we give an overview of the tool’s method to check bisimilarity,
discuss the language extension necessary for specifying rewrite rules, explain selected
code excerpts, and take a look at the current state of the tool.

3.1 Overview

In the following, we give a high-level view on how the tool checks observational equiv-
alence. Little has changed in the general structure of the code, so the description fits on
both the original SBC as well as our extended version.

is current concrete 

hedge consistent?
Yes

Start

are there any 

transitions left?

add transitions 

to environment

compute 

irreducible

hedge
Yes

bisimulation 

found

No
no bisimulation 

found

No

Figure 2: Schematic Main Loop of SBC.

We have to stress that the tool’s method cannot be complete since equality in observa-
tional equivalence is undecidable (not even semi-decidable).

The tool works with symbolic transitions and for a given pair of processes builds a
hedge and a symbolic environment as described in Borgström’s thesis [11, pp.122-134].
The main loop of the program (depicted schematically in Figure 2) repeatedly adds the
next transition constraints to the symbolic environment, computes the corresponding
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irreducible hedge, and checks for consistency.

If this procedure comes to an end, i.e. there are no unhandled transitions left, we found a
bisimulation for the process pair. Up to correct implementation of the theory, soundness
is guaranteed by Borgström’s theoretical results concerning symbolic bisimulations [11].

Once we found an inconsistent hedge, we report that no bisimulation could be found.
However, this does not necessarily mean that there is none, as the method is incomplete.
This result usually hints towards a violation of the property which we analyze, i.e. an
error in the protocol.

3.2 Parser Extension

We have extended the parser of SBC to give the possibility of specifying an arbitrary
constructor-destructor language via a set of rules.

The rules defining the equational theory are subject to the following grammar:

RULE F ‘rule’ BODY ‘ − >’ EXPR
BODY F des ‘(′ cons ‘(′ EXPRLIST ‘)′ ‘,′ EXPRLIST ‘)′

EXPRLIST F EXPR [‘,′ EXPRLIST]
EXPR F variable | cons ‘(′ EXPRLIST ‘)′

where variables (variable), constructors (cons), and destructors (des) are strings con-
sisting of alphanumeric characters. Constructor names have a leading ‘#’, destructor
names begin with ‘-’. Both constructors and destructors are introduced through their
occurrences in the rules.

The definition of constructor-destructor languages restricts the right-hand side of the
rewrite rule to occur as child expressions of the constructor or of the destructor (except
for its first child). We have decided to allow for specifying arbitrary subexpressions, as
it seems to cause no problems. This helps to specify some primitives like blinding which
have deeply nested return values.

When parsing a destructor rule we search for the following information in the destruc-
tor arguments:

(i) which subexpression is the return value?

(ii) which variables must be equal?

(iii) which constructor symbols occur at which locations?

Information (ii) is necessary to check for key matchings when a destructor is applied.
The third piece of information describes the structure of the destructor.

15
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Storing Arbitrary Destructor Rules

For extending SBC to constructor-destructor languages, the information for each destruc-
tor rule has to be stored for later access by the checker. For this purpose, we introduce a
new datatype destructorinfo consisting of three main components:

(i) address: the position of the return value in the destructor tree, stored as a list of
descendant node numbers.

(ii) matchlist: (address,address) pairs describing addresses in the destructor rule
where expressions have to be equal in order to apply the rule.

(iii) constructorlist: (address,constructor) pairs indicating the structure of the ex-
pression tree: for a rule to be applied, the respective constructor has to occur at the
given address.

These three components are stored in a table of type destructor * destructorinfo.

Example 3.1. Consider the rule

des(cons1(a, b, c), cons2(a, d), b)→ c

The destructorinfo contains the return address as [1;3], where 1 represents cons1 and 3
the variable c. The matchlist consists of the pairs ([1;1],[2;1]) and ([1;2],[3]) for the
matchings of a and b. The constructorlist contains two elements: for cons1 the pair
([1],cons1) and for cons2 the pair ([2],cons2).

3.3 Code Excerpts

In this section we describe some relevant functions of the extended SBC code. We explain
the role of the respective code excerpts and the changes that were necessary in order to
support arbitrary constructors and destructors.

Note that we did not remove the hard-coded primitives of the original version — we
even kept them up to date. Beyond possibilities for testing, this enables us to provide
simple cases that help the reader to get the rough idea before we discuss the general
cases.

The following three procedures are described. We start with a simple example,
eval concrete, implementing the evaluation of expressions described in Table 3. The
second code fragment consistency of concr hedge covers one of the most important pro-
cedures of the tool: the consistency check according to Definition 2.7. The last excerpt
shows how the analysis (Definition 2.5) for an expression pair is computed.
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3.3.1 Concrete Expression Evaluation

The function eval concrete evaluates a concrete term according to the definitions in
Table 3. It is used in multiple locations in the program. The method’s only parameter
is an expression F. It returns the evaluated expression if the evaluation of F is defined
— otherwise None. In the following listing we see some of the cases for hard-coded
functions implementing the rewriting rule Fst(Pair(x, y))→ x.

1 l e t rec e v a l c o n c r e t e = function
2 Name( n ) −> Some (Name( n ) )
3 | Pair ( f , g ) −> ( ∗ hard−c o d e d c o n s t r u c t o r ∗ )
4 match e v a l c o n c r e t e f , e v a l c o n c r e t e g with
5 Some (m) , Some ( n ) −> Some ( Pa i r (m, n ) )
6 | , −> None
7 | Fs t ( f ) −> ( ∗ hard−c o d e d d e s t r u c t o r ∗ )
8 match e v a l c o n c r e t e f with
9 Some ( Pa i r (m, ) ) −> Some (m)

10 | −> None

Listing 1: Concrete Evaluation for Pairs.

The constructor Pair and destructor Fst succeed only if their subexpressions evaluate
successfully. The destructor Fst additionally requires the evaluated subexpression to be
a Pair, as it is necessary to apply the according rewrite rule.

Listing 2 shows the case for general constructors.

11 | Cons ( c , args ) −>
12 l e t rec e v a l a r g s = function
13 [ ] −> [ ]
14 | x : : xs −>
15 match e v a l c o n c r e t e x with
16 None −> [ ]
17 | Some ( ev ) −> ev : : ( e v a l a r g s xs )
18 in
19 match e v a l a r g s args with
20 [ ] −> None
21 | vs −> Some ( Cons ( c , vs ) )

Listing 2: Concrete Evaluation for Arbitrary Constructors.

All constructor arguments args are evaluated using the recursive procedure eval args
(line 19). If the evaluation of all subexpressions succeeds (line 21), we return the reduced
expression including the constructor — otherwise we return None (line 20).

Evaluation for destructors is more involved:

22 | Des ( d , args ) −>
23 match args with
24 [ ] −> ERROR!
25 | c : : da −>
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26 match e v a l c o n c r e t e c with
27 Some ( Cons ( cons , ca ) ) −>
28 l e t eva luated des args = L i s t . f o l d l e f t
29 ( fun e v l i s t arg −>
30 match e v a l c o n c r e t e arg with
31 Some ( eval ) −> eval : : e v l i s t
32 | None −> ERROR!
33 )
34 [ ] da
35 in
36 a p p l y d e s t r c o n c r e t e d ( Cons ( cons , ca ) : : eva luated des args )
37 | −> None

Listing 3: Concrete Evaluation for Arbitrary Destructors.

Line 24 implements the requirement for destructors to have at least one argument. The
first argument c should evaluate to a constructor cons (lines 25 to 27). In this case all other
destructor arguments da are evaluated using eval concrete (lines 28 to 34). Otherwise
the destructor cannot be evaluated (line 37). All of the destructor arguments should be
successfully evaluated in order to apply the destructor rule (line 32).

Assuming all evaluations succeeded, the destructor rule is applied (line 36) using
procedure apply destr concrete which is described below. Note that this method was
written with a possible further extension in mind — it can handle multiple rewrite rules
per destructor.

1 l e t rec a p p l y d e s t r c o n c r e t e d e s t r d e s t r a r g s =
2 l e t Cons ( c , cons args ) : : = d e s t r a r g s in
3 l e t rec c h e c k r u l e s = function
4 [ ] −> None
5 | ( addr , c o n s t r L i s t , matchList ) : : r u l e s −>
6 i f ( constructors match c o n s t r L i s t d e s t r a r g s )
7 && ( arguments match matchList d e s t r a r g s )
8 then Some ( ge t subexp at address addr d e s t r a r g s )
9 e lse c h e c k r u l e s r u l e s

10 in
11 c h e c k r u l e s ( d e s t r u c t o r s . lookup destructor d e s t r )

Listing 4: Concrete Application of a Destructor.

Given the destructor symbol destr and its arguments destr args (in which are con-
tained the constructor symbol c with arguments cons args, line 2), application of the
destructor is performed by calling the recursive procedure check rules (line 11) with all
corresponding rules for destructor destr.

If no rules are available (line 4) the destructor cannot be applied. Otherwise, it is
checked whether the constructors occur at the specified positions (line 6) and that cor-
responding arguments match (line 7). If this check succeeds the return value of the
destructor is returned (line 8). Otherwise the next rule is examined (line 9).
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3.3.2 Concrete Hedge Consistency

The procedure consistency of concr hedge is the very heart of SBC. Loosely speaking,
the consistency check reports whether two processes can be distinguished by the envi-
ronment.

The input is a concrete irreducible hedge h, the names of the left part of the current
knowledge of the environment and for the right part we have messages and variables.

The procedure iterates over all elements of the hedge (line 3). The current expression
pair is referred to as (exp1,exp2).

1 l e t c o n s i s t e n c y o f c o n c r h e d g e h le f t names right name msgs r i g h t v a r s =
2 l e t ( proj1 , pro j2 ) = Hedge . p r o j e c t i o n s o f h e d g e h in
3 Hedge . f o r a l l
4 ( fun ( exp1 , exp2 ) −> match ( exp1 , exp2 ) with

The case distinction for (exp1,exp2) is listed below. Consider the simple (hard-coded)
cases first.

5 Expression . Enc (m1, k1 ) , Expression . Enc (m2, k2 ) −>
6 not ( Express ionSet .mem k1 pro j1 ) && not ( Express ionSet .mem k2 pro j2 )

Given two encryptions, the environment is consistent if no key is available in the hedge
h (line 6).1

Intuitively, if key k1 is available in the hedge then decryption for the left process could
be applied, hence the message m1would be added to the knowledge of the environment.
Consequently, the attacker could distinguish the processes since the destructor only
succeeds for one of the processes. (Note that the keys cannot occur both in h. If so, the
pair (exp1,exp2) would not occur in the irreducible hedge h since it can be constructed
from h.)

More formally, line 6 implements part 3 of Definition 2.7.

7 | Expression .Name( a1 ) , Expression .Name( a2 ) −>
8 not ( NameSet .mem a1 le f t names )
9 | | ( Express ionSet .mem ( Expression .Name( a2 ) ) right name msgs )

10 | | not ( NameSet .mem a2 r i g h t v a r s )

Given two names a1 and a2, we check the implication

a1 ∈ left names ⇒ a2 ∈ right name msgs ∨ a2 < right vars

In other words, the first part of the disjunction requires a2 to be available in the right
hand side of h. It corresponds to case 1 of the consistency definition (Definition 2.7).

1The attentive reader might ask why we only test for membership of the hedge h and not of the synthesis
of h: for hard-coded encryptions, compound keys are not allowed.
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The arbitrary case for constructors looks as follows:

11 | Expression . Cons ( c1 , ca1 ) , Expression . Cons ( c2 , ca2 ) −>
12 l e t a l l a r g s 1 = L i s t . f o r a l l ( fun e −> i s i n s y n t h h e pro j1 ) ca1 in
13 l e t a l l a r g s 2 = L i s t . f o r a l l ( fun e −> i s i n s y n t h h e pro j2 ) ca2
14 in
15 not a l l a r g s 1 && not a l l a r g s 2
16 && ( des can be appl ied exp1 h = des can be appl ied exp2 h )

For both constructors c1 and c2we check that there exists at least one argument that is
not available in the synthesis of hedge h. Otherwise, if all arguments for one constructor
are available then condition 2 of Definition 2.7 is violated. Recall that we assume h to be
irreducible, hence not all arguments for both constructors will be in the synthesis for h.

Additionally, we have to check that application of destructors must be possible for both
constructors or not possible at all. The procedure des can be applied (line 16) performs
this check by iterating over all destructors. This implements part 3 of definition 2.7.

We stress that in general there is neither an implication between the condition in
line 15 to the one in line 16 nor in the converse direction. Consider a case in which not all
arguments of a constructor are available, hence the attacker cannot construct the object
himself. However, a destructor might be applied when all required destructor arguments
are available. On the other hand, consider asymmetric deterministic encryption and
decryption. The attacker might reconstruct the ciphertext, but as the private key is not
known, may not decrypt it.

Note that we do not explicitly treat pairs here. As the destructor for pairs has no
restriction, the pair’s components can always be reconstructed. Hence, pairs should
never occur in any irreducible hedge. The following rule covers pairing constructors as
well as any destructor. Further, it implements the cases in which we get a pair of two
different constructs (e.g. a pair and a name).

17 | −> f a l s e

Besides the cases above, the for-all construct in line 18 to 20 additionally checks the
implication exp1=exp1’⇒ exp2=exp2’ implementing part 2 of Definition 2.7.

18 && Hedge . f o r a l l
19 ( fun ( exp1 ’ , exp2 ’ ) −> not ( exp1 = exp1 ’ ) | | ( exp2 = exp2 ’ ) )
20 h

3.3.3 Analysis for Hedges

The procedure check analyse tries to apply destructors in order to compute the analysis
of a hedge. It is iteratively called with the sets of process pairs doneset, to check, and
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newset together with the current expression pair (e1,e2) from to check. At the beginning,
doneset and newset are empty, to check contains the knowledge of the environment, i.e.
is the hedge to analyze. Over time, processed expression pairs move from to check

to doneset while newly discovered pairs are added to newset. At the end, the hedges
doneset, to check, and newset are returned. Check analyse is re-executed unless a fixed
point has been computed, i.e. no more elements of to check can be analyzed.

Again, let us consider the simplest cases first.

1 l e t check analyse ( e1 , e2 ) ( doneset , to check , newset ) =
2 match e1 , e2 with

4 Pair ( f1 , g1 ) , Pa i r ( f2 , g2 ) −>
5 l e t to check ’ = Hedge . remove ( e1 , e2 ) to check in
6 l e t doneset ’ = Hedge . add ( e1 , e2 ) doneset in
7 l e t newset ’ =
8 i f ( Hedge .mem ( f1 , f2 ) to check ) | | ( Hedge .mem ( f1 , f2 ) doneset )
9 then newset

10 e lse Hedge . add ( f1 , f2 ) newset in
11 l e t newset ’ =
12 i f ( Hedge .mem ( g1 , g2 ) to check ) | | ( Hedge .mem ( g1 , g2 ) doneset )
13 then newset ’
14 e lse Hedge . add ( g1 , g2 ) newset ’
15 in
16 ( doneset ’ , to check ’ , newset ’ )

Listing 5: check analyse for Pairs.

The analysis procedure for pairs returns their components since the destructors Fst
and Snd can always be applied. Hence both pairs (e1,e2) are moved from to check to
doneset (line 5 to 6). The components are only added to newset if not already contained
in the analysis (line 7 to 14).

Next, consider the analysis for encryptions.

17 | Enc (m1, k1 ) , Enc (m2, k2 ) −>
18 i f i s i n s y n t h h ( k1 , k2 ) ( Hedge . union to check doneset )
19 then ( ∗ k e y s a r e a v a i l a b l e ∗ )
20 l e t to check ’ = Hedge . remove ( e1 , e2 ) to check in
21 l e t doneset ’ = Hedge . add ( e1 , e2 ) doneset in
22 l e t newset ’ =
23 i f ( Hedge .mem (m1,m2) to check ) | | ( Hedge .mem (m1,m2) doneset )
24 then newset
25 e lse Hedge . add (m1,m2) newset
26 in
27 ( doneset ’ , to check ’ , newset ’ )
28 e lse ( ∗ k e y s a r e not a v a i l a b l e ∗ )
29 ( doneset , to check , newset )

Listing 6: check analyse for Encryptions.

First, we have to check whether both keys (k1,k2) are available in the synthesis of the
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current knowledge (line 18). If this is the case then the decryption destructor can be
applied by the environment. Hence, as above, we have to move both encryptions from
to check to doneset (line 20 to 21). If the messages (m1,m2) are not yet contained in the
analysis, add them to newset (line 22 to 25).

If the keys are not both available in the current knowledge then the three hedges are
not modified (line 29).

In the following, we show a simplified version of the case for arbitrary constructors.
Loosely speaking, we have to check if there are destructors to be applied. In particular,
we have to check if all required arguments of the destructor are in the synthesis. If
destructors can be applied we add the values they return to the analysis, hence to
newset.

We iterate over all available destructor rules (line 33 to 73) in order to find the destruc-
tors corresponding to constructor c (line 30). As the current knowledge know is invariant
we compute it outside the iteration (line 31).

30 | Cons ( c , es ) , Cons ( c ’ , f s ) when c = c ’ −>
31 l e t know = Hedge . union to check doneset in

33 Hashtbl . fo ld ( ∗ i t e r a t e o v e r a l l d e s t r u c t o r r u l e s ∗ )
34 ( fun d e s t r u c t o r d e s t r u c t o r i n f o ( doneset ’ , to check ’ , newset ’ ) −>
35 l e t ( address , c o n s t r u c t o r l i s t , m a t c h l i s t ) = d e s t r u c t o r i n f o in
36 l e t rec t r y c o n s t r u c t o r s = function
37 [ ] −> ( doneset ’ , to check ’ , newset ’ )

For each rule (consisting of destructor, address, constructorlist, matchlist, line 34
to 35) the function tryconstructors is called with the constructorlist (lines 36 and 71)
containing information at which address certain constructors must appear. If the re-
quired constructor c cannot be found in this list (line 37) then the analysis cannot be
extended, hence the hedges are not modified.

Now assume, the required constructor cons is found to appear as first argument of a
destructor (line 38). We then have to check if all required arguments of the corresponding
destructor are in the analysis. A required destructor argument contains at least one
subexpression whose address has to occur in the matchlist, and exactly one component
of this matchlist entry has to refer to a subexpression of a constructor argument. As an
example, consider the destructor rule from page 16 (Example 3.1) again:

des(cons1(a, b, c), cons2(a, d), b)→ c

The first required argument is cons2 (with argument a) since the subexpression a occurs
in the constructor arguments. This is encoded in the destructorinfo by the fact that the
address of the subexpression a occurs in the matchlist, and the corresponding partner in
the matchlist occurs as address inside the constructor arguments. The second required
argument is b as it occurs directly in the constructor.

The necessary expressions that occur top-level, not nested in a constructor, (like the b
above) are obtained by the folding (line 39 to 50).
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38 | ( [ 1 ] , cons ) : : c l when c = cons −>
39 l e t ( es ’ , f s ’ ) = L i s t . f o l d l e f t
40 ( fun ( es ’ ’ , f s ’ ’ ) ( addr a , addr b ) −>
41 match addr a , addr b with
42 ( 1 : : addr a ’ ) , [ b ] when ( b>1) −>
43 ( ge t subexp at address addr a ’ es ) : : es ’ ’ ,
44 ( ge t subexp at address addr a ’ f s ) : : f s ’ ’
45 | [ a ] , ( 1 : : addr b ’ ) when ( a>1) −>
46 ( ge t subexp at address addr b ’ es ) : : es ’ ’ ,
47 ( ge t subexp at address addr b ’ f s ) : : f s ’ ’
48 | , −> es ’ ’ , fs ’ ’
49 )
50 ( [ ] , [ ] ) m a t c h l i s t

We iterate over all pairs in the matchlist. Note that exactly one component must refer
to a constructor argument, hence the address must begin with 1 to be an argument
of the constructor which is the first destructor argument (lines 42, 45). In particular,
as the addresses addr a and addr b refer to destructor arguments while we search the
constructor arguments es and fs, we must omit the leading 1 by using addr a’ and
addr b’ (lines 43,44 and 46,47).

The top-level arguments to be checked are now contained in (es’,fs’) (line 39). We
still need the required constructors. These are added to (es’,fs’) by the procedure
get required constructors (lines 51 and 52).

51 in l e t ( es ’ , f s ’ ) = g e t r e q u i r e d c o n s t r u c t o r s ( es ’ , fs ’ )
52 c o n s t r u c t o r l i s t m a t c h l i s t c ( es , f s )

The latter iterates over the constructors in constructorlist and does the following:

• for each constructor c: all addresses in the matchlist whose second component in
the corresponding matchlist pair refers to a constructor argument are collected

• from these addresses, two constructors are built using the corresponding expres-
sions from (es,fs).

• the constructor pair is added to (es’,fs’).

The procedure hedge is in synth h (line 54) checks whether all expression pairs built
from es’ and fs’ are in the synthesis of the current knowledge know (line 31).

53 in
54 i f h e d g e i s i n s y n t h h ( es ’ , fs ’ )
55 then
56 l e t to check ’ ’ = Hedge . remove ( e1 , e2 ) to check ’ in
57 l e t doneset ’ ’ = Hedge . add ( e1 , e2 ) doneset ’ in
58 l e t newset ’ ’ =
59 l e t 1 : : consaddr = address in
60 l e t r e t v a l = ( ge t subexp at address consaddr es ,
61 get subexp at address consaddr f s ) in
62 i f not ( i s i n s y n t h h r e t v a l know)
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63 then Hedge . add r e t v a l newset ’
64 e lse newset ’
65 in
66 ( doneset ’ ’ , to check ’ ’ , newset ’ ’ )

If this check succeeds, as seen before, the current expression pair (e1,e2) is marked as
processed by moving it from to check to doneset (lines 56 and 57). If not yet available,
the expression to which the destructor evaluates is added to the analysis, hence to newset
(line 58 to 64). Note that the first part of the address has to be truncated (line 59) since
address refers to the position in the destructor arguments.

If not all arguments are available in the synthesis the destructor cannot be applied,
hence the hedges are returned without modifications (line 68).

67 e lse
68 ( doneset ’ , to check ’ , newset ’ )

If in the matching of line 36 a constructor in the constructorlist for the current
destructor does not appear as first argument of the destructor we jump over it (line 69).

69 | : : c l −> t r y c o n s t r u c t o r s c l
70 in
71 t r y c o n s t r u c t o r s c o n s t r u c t o r l i s t
72 )
73 ( d e s t r u c t o r s # t a b l e ( ) ) ( doneset , to check , newset )

The last case in the matching of line 2 covers everything else, hence destructors or pairs
of different constructors (line 74). In these cases no analysis is possible.

74 | −> ( doneset , to check , newset )

3.4 Tool Assessment

The extension of SBC is not yet completed. There are still some functions and cases not
extended. However, the most relevant procedures are extended so that we are able to
provide a number of running examples. The following sections give an overview of the
current state of the tool.

3.4.1 Examples

Our test suite contains about 30 examples which were not expressible with the original
SBC as they use rewrite rules not available in the restricted Spi Calculus [3] used. Our
extended version of the tool yields correct results for these examples. Some of them are
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described in the following. We provide insights into the functionality of hedge analysis,
synthesis and irreducibles.

Example 3.2. This example shows a processing for hash functions (i.e. functions which
have no rewrite rules). Even if the structure of the message being hashed is different, no
environment can detect this difference, as the basic ingredients (the fresh names a and
b) are not available.

agent P ( c ) = ( ˆ a ) ’ c<#hash ( a)>
agent Q( c ) = ( ˆ b ) ’ c<#hash(<b , b>)>

sbisim P ( c ) Q( c )

After executing the output action ’c<·> the hedge consists of the pairs (c, c) and
(#hash(a), #hash(〈b, b〉)) where 〈·, ·〉 denotes the build-in pair constructor and ( â) a fresh
name a. This hedge is already irreducible and is consistent. Our extended tool outputs
the corresponding bisimulation.

Example 3.3. In contrast to the previous example, all names in the following specification
are free. Thus, the environment may use them to reconstruct messages.

r u l e −symdec (# symenc (m, k ) , k ) −> m

agent P ( c ,m, k , l ) = ’ c<#hash (# symenc (m, k))>
agent Q( c ,m, k , l ) = ’ c<#hash (# symenc (m, l ))>

sbisim P ( c ,m, k , l ) Q( c ,m, k , l )

The hedge contains not only the sent messages and the pair of channel names, but also
the pairs (m,m), (k, k), and (l, l) as they are not restricted by the processes. As the message
pair (#hash(#symenc(m, k)), #hash(#symenc(m, l))) can be constructed by the environment,
we have two non-identical pairs with equal left components in the synthesis of the
hedge. Hence, consistency is violated.

Example 3.4. Consider the following specification of processes P and Q using determin-
istic asymmetric encryption:

r u l e −asymdec (# asymenc (m, # pk ( k ) ) , # sk ( k ) ) −> m

agent P ( c ) = ( ˆ a ) ( ˆ b ) ’ c<#asymenc ( a , # pk ( a ) ) > . ’ c<<a , a>>
agent Q( c ) = ( ˆ a ) ( ˆ b ) ’ c<#asymenc ( a , # pk ( b ) ) > . ’ c<<b , b>>

sbisim P ( c ) Q( c )

We consider the hedge after the first send operation in the processes P and Q which con-
sists of only two tuples (c, c) and (#symenc(a, #pk(a)), #symenc(a, #pk(b))). As the names a
and b are not known to the environment, the ciphertexts cannot be decrypted. How-
ever, after the execution of the second send operation the environment gains the pair
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(〈a, a〉, 〈b, b〉). After applying irreducibles, this pair gets replaced by (a, b), as this suffices
to reconstruct the original pairs.

Additionally, the irreducible hedge contains the pair (a, a) by a direct analysis step:
when the operation tries to apply the destructor −asymdec it checks whether the second
argument can be constructed by the environment. As the pair (a, b) is available, the envi-
ronment can also construct the secret keys (#sk(a), #sk(b)). Thus, we have the final hedge
{(a, b), (a, a), (c, c)}which is not consistent. Hence, the two processes are not bisimilar.

Example 3.5. In this example we show the tool’s ability to find the right instantiations
of input variables to distinguish two processes with different guard conditions. Ad-
ditionally, it shows that the tool makes use of the knowledge gained during process
execution.

agent P ( c ) = ( ˆ a ) ’ c<a> . c ( x ) . { [ x=#hash1 ( a ) ] } ’ c<x>
agent Q( c ) = ( ˆ a ) ’ c<a> . c ( x ) . { [ x=#hash2 ( a ) ] } ’ c<x>

sbisim P ( c ) Q( c )

Both processes reveal their private symbol a and read on channel c afterwards. As c is a
public channel, the environment can instantiate variable x as needed for distinguishing
the processes. For example, #hash1(a) is a distinguishing instantiation, as the guard
expression of P will succeed, whereas process Q gets stuck.

Our test suite contains examples that are significantly more complex. For the sake of
simplicity we choose not to present them in detail here.

3.4.2 Limitations of the Tool

The approach chosen by Borgström and extended by us has some limitations. In this
section we describe a false negative example whose incompleteness is caused by the
approach.

For the following example, the original as well as the extended version of the tool fails:

agent P ( c , x ) = { [ x=c ] } ’ c<x> + ’ c<x>
agent Q( c , x ) = ’ c<x>

sbisim P ( c , x ) Q( c , x )

The processes P and Q are clearly bisimilar as both of them can do only one thing, namely
sending x over channel c — no matter whether the guard evaluates successfully or not.
However, the tool considers them not to be equivalent since it does not find the correct
matching partners. This example shows that the tool cannot handle branching over the
choice operator correctly. Note that this error does not lead to unsound results.
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4 Conclusions

After introducing message algebras and the extended version of Spi Calculus used by
SBC, we recapitulated the important parts of Johannes Borgström’s theory necessary for
checking observational equivalence.

We gave documented some relevant code fragments of the existing SBC tool. We have
partially extended the tool to allow for checking processes defined in the Extended Spi
Calculus with an arbitrary constructor-destructor language. For some procedures, we
documented the extensions and gave references to the theory.

Our extended tool is now able to handle a large class of examples that was not checkable
before. Most of the examples are now processable by the extended SBC because of the
increased expressiveness of freely specifiable rewrite rules.

Still missing are the extensions for arbitrary constructors and destructors in
the procedures Hedge.check ast, the application of destructors on names in
Formula.reduce expression, and the extensions for constructors in Formula.q.

4.1 Future Work

As mentioned above, there are still procedures that are not yet completely extended.
In order to finish the extension, one would have to look very carefully at the indicated
locations and invest more time to understand them. Testing how the tool behaves with
bigger examples would be the most immediate improvement that could be brought. Fur-
ther, it would be necessary to prove correctness of the tools algorithm. In the following
we describe additional possible extensions.

Multiple rules per destructor. An idea which we want to take a closer look at is the
specification of multiple rewrite rules per destructor. While experimenting with different
rewrite systems, we encountered that the restriction to one rule makes it hard to specify
some cryptographic primitives. For example a logical ‘or’ or some Zero Knowledge
primitives can hardly be realized without the possibility for multiple rules:

or(x, true)→ true

or(true, x)→ true

However, we discovered some elementary difficulties with the implementation when
we tried to drop this limitation. As an example, let us consider an equational theory
with the above specified destructor or and the processes

P = c(x).c(y).[or(x, y) = true] c〈a〉

Q = c(x).c(y).[or(x, y) = true] c〈b〉

The tool then needs the guard to evaluate to true in order to proceed with the search
(and obtain an inconsistent hedge). Obviously, there are different instantiations that
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lead to this effect. The problem is that currently the tool cannot branch over different
instantiations; it fully relies on the uniqueness of the instantiations which holds under
constructor-destructor languages with the restriction in question.

Yet not impossible to solve, we believe that fundamental changes in the program
structure are necessary in order to handle this additional type of branching. Furthermore,
the theoretical soundness of this extension would need to be preserved. Hence, we
decided to stay with the restriction of one rule per destructor for the scope of this
seminar and leave this point as a possible extension to the ideas we realized.

Protocol phases. As an optimization, we could allow for specification of protocol
phases as it is possible in ProVerif [8]. This would require to adapt the used syntax and
semantics as well as the related theory and implementation.

Allowing a larger class of equational theories. An extension to the tool could be
brought by using Baudet’s NP algorithm for checking symbolic environment consistency.
This would allow SBC to work with arbitrary subterm-convergent rewrite systems.

Extending completeness. So far there are false positive tests. It would be important to
extend the completeness of the tool such that we obtain less or no false positives.

Negation in guards. Negation is not permitted in the semantics for Boolean guards. It
would be helpful in order to specify branchings in the processes.

Private function symbols. The user can already specify private function symbols.
However, it is still cumbersome to do this by hand and implementing a syntactic exten-
sion to deal with it would prove to be useful.

Zero Knowledge primitives. It is possible to implement Zero Knowledge primitives
as a constructor-destructor language using a technique similar to the one introduced
by Backes, Maffei, Unruh [5]. It would be beneficial to provide a syntactical extension
supporting their handling. This extension would allow trying SBC on electronic voting
protocols such as Civitas or DAA (Direct Anonymous Attestation).
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