WS 2016/2017 14.12.2016

Exercises to the lecture Complexity Theory Sheet 8

Prof. Dr. Roland Meyer Dr. Prakash Saivasan

Delivery until 10.01.2017 at 10h

Christmas Exercise

Exercise 8.1 (Alternation bounded QBF and collapsing of the polynomial hierarchy)

Consider the following definition:

- $\Sigma_i QBF = \{ \psi \mid \psi = \exists \overline{x_1} \forall \overline{x_2} \dots Q_i \overline{x_i} \varphi(\overline{x_1}, \dots, \overline{x_i}) \text{ is true } \},$
- $\Pi_i QBF = \{ \psi \mid \psi = \forall \overline{x_1} \exists \overline{x_2} \dots Q_i \overline{x_i} \varphi(\overline{x_1}, \dots, \overline{x_i}) \text{ is true } \},$

where $\overline{x_j}$ denotes a finite sequence of variables and Q_i is a quantor. Note that there are at most i-1 alternations of quantors.

These alternation bounded QBF problems will help us to understand the polynomial hierarchy in more detail:

- a) Show that $\Sigma_i QBF$ is in Σ_i^{P} and that $\Pi_i QBF$ is in Π_i^{P} .
- b) Prove that $\Sigma_i QBF$ is Σ_i^{P} -hard with respect to polytime reductions and that $\Pi_i QBF$ is Π_i^{P} -hard with respect to polytime reductions.

Hint: Take an arbitrary language in Σ_i^{P} and reduce it to $\Sigma_i QBF$. Note that we showed that QBF is $\mathsf{PSPACE}\text{-}complete$. Extract the idea from this proof.

Exercise 8.2 (co-Oracles)

Let C be a complexity class. Show that using oracles for C is equivalent to using oracles for co-C:

- a) Prove that $\mathsf{NP}^B = \mathsf{NP}^{\bar{B}}$ for any problem B in \mathcal{C} .
- b) Conclude that we have: $NP^{\mathcal{C}} = NP^{\text{co-}\mathcal{C}}$.

Exercise 8.3 (Minimal Boolean formulas)

Two Boolean formulas are called **equivalent** if they have the same value on any assignment to the variables. A formula φ is called **minimal** if there is no smaller formula that is equivalent to φ .

Consider the problem:

$$MIN = \{ \varphi \, | \, \varphi \text{ is minimal} \}.$$

- a) Show that deciding whether two formulas are equivalent is in co-NP.
- b) Prove that the co-problem $NOTMIN = \{ \varphi \mid \varphi \text{ is not minimal} \}$ is in NP^{NP} .
- c) Conclude that $M\!I\!N$ is a problem in $\Pi_2^{\mathsf{P}}.$

Wish you all a merry Christmas and a very happy new year. Enjoy your vacation!

Delivery until 10.01.2017 at 10h into the box next to room 343 in the Institute for Theoretical Computer Science, Muehlenpfordstrasse 22-23