WS 2015/2016 16.12.2015

Exercises to the lecture Complexity Theory Sheet 8

Prof. Dr. Roland Meyer M.Sc. Peter Chini

Delivery until 06.01.2016 at 12h

Christmas Exercise

Exercise 8.1 (Alternation bounded QBF and collapsing of the polynomial hierarchy)

Consider the following definition:

- $\Sigma_i QBF = \{ \psi \mid \psi = \exists \overline{x_1} \forall \overline{x_2} \dots Q_i \overline{x_i} \varphi(\overline{x_1}, \dots, \overline{x_i}) \text{ is true } \},$
- $\Pi_i QBF = \{ \psi \mid \psi = \forall \overline{x_1} \exists \overline{x_2} \dots Q_i \overline{x_i} \varphi(\overline{x_1}, \dots, \overline{x_i}) \text{ is true } \},$

where $\overline{x_j}$ denotes a finite sequence of variables and Q_i is a quantor. Note that there are at most i-1 alternations of quantors.

These alternation bounded QBF problems will help us to understand the polynomial hierarchy in more detail:

- a) Show that $\Sigma_i QBF$ is in Σ_i^{P} and that $\Pi_i QBF$ is in Π_i^{P} .
- b) Prove that $\Sigma_i QBF$ is Σ_i^{P} -hard with respect to polytime reductions and that $\Pi_i QBF$ is Π_i^{P} -hard with respect to polytime reductions. Hint: Take an arbitrary language in Σ_i^{P} and reduce it to $\Sigma_i QBF$. Note that we showed that QBF is PSPACE-complete. Extract the idea from this proof.

Note that we now have the following situation:

- $SAT = \Sigma_1 QBF$ and this is $NP = \Sigma_1^P$ -complete,
- co- $SAT = \Pi_1 QBF$ and this is co- $NP = \Pi_1^P$ -complete.
- The alternation bounded QBF instances are complete for Σ_i^{P} and $\Pi_i^{\mathsf{P}},$
- \bullet and the general QBF which allows unbounded alternation is PSPACE-complete.

We can make use of this to show that in some situations, the polynomial hierarchy collapses:

- c) Assume we have a k so that $\Sigma_k^{\mathsf{P}} = \Sigma_{k+1}^{\mathsf{P}}$, then we also have $\Pi_k^{\mathsf{P}} = \Pi_{k+1}^{\mathsf{P}}$.
- d) If we have a k so that $\Sigma_k^{\mathsf{P}} = \Pi_k^{\mathsf{P}}$, then we have for any $k' \geq k$ that $\Sigma_{k'}^{\mathsf{P}} = \Pi_{k'}^{\mathsf{P}} = \Sigma_k^{\mathsf{P}}$. So the polynomial hierarchy collapses to this level. Hint: Prove this by induction on k'. Show that $\Sigma_{k+1}QBF$ is already in Σ_k^{P} .
- e) If we have a k so that $\Sigma_k^{\mathsf{P}} = \Sigma_{k+1}^{\mathsf{P}}$ then we already have that the polynomial hierarchy collapses to this level. Hint: Use parts d) and c).

We wish you a merry Christmas and a good start to the new year. Enjoy your vacation!

Delivery until 06.01.2016 at 12h into the box next to 34-401.4