13. Alternation (Continuation)

Last time:

- Alternation = generalization of non-determinism
- If t is at least linear:

$$
\operatorname{ATIME}(\mathrm{t}) \stackrel{1)}{\subseteq} \operatorname{DSPACE}(\mathrm{t}) \stackrel{2)}{\subseteq} \operatorname{NSPACE}(\mathrm{t}) \stackrel{3)}{\subseteq} \operatorname{ATIME}\left(\mathrm{t}^{2}\right)
$$

1) via depth-first search (and storing choices as transitions on a stack)
2) clear
3) via "parallel" implementation of PATH applied to the configuration graph

13.3 From alternating space to deterministic time

Goal:

- Alternating space coincides with exponentially more deterministic time

Theorem:

Let $s: \mathbb{N} \rightarrow \mathbb{N}$ with $s(n) \geq \log (n) \forall n$. Then

$$
\operatorname{ASPSACE}(\mathcal{O}(\mathrm{s}))=\operatorname{DTIME}\left(2^{\mathcal{O}(\mathrm{s})}\right)
$$

Corollary:

$$
A L=P, \quad A P S P A C E=E X P
$$

Proof of " \subseteq " in theorem:
Idea: Simulate $d \cdot s(n)$-space-bounded ATM M_{A} by $2^{\mathcal{O}(s)}$-time-bounded DTM M_{D} that uses the configuration graph of M.

Construction:

- On input x (of size n), M_{D} constructs the configuration graph of M_{A} on x.
- Nodes: configurations of M_{A} on x.
\downarrow One configuration uses at most $d \cdot s(n)$ space
- Edge from c to c^{\prime} if M_{A} can go from c to c^{\prime} in a single step.
- After construction the graph, M_{D} repeatedly scans it to mark configurations as accepting.
- Initially, \wedge-configurations without successors are marked.
- If all successors of an \wedge-configuration are already marked, mark it.
- If at least one successor of an \vee-configuration is marked, mark it.
- Repeat "scan \& mark" until
- either initial configuration is marked
$\left\llcorner M_{D}\right.$ accepts,
- or no new marks since last iteration (fixed point reached)
$\hookrightarrow M_{D}$ rejects.

Time consumption:

- Construct configuration graph in $2^{\mathcal{O}(s)}$ time.
- One scan takes $2^{\mathcal{O}(\mathrm{s})}$ time.
- At most $2^{\mathcal{O}(\mathrm{s})}$ scans.
(We either mark at least one new configuration per step or the fixed point is reached)
Total time:

$$
2^{\mathcal{O}(s)} \cdot 2^{\mathcal{O}(s)}+2^{\mathcal{O}(s)} \in 2^{\mathcal{O}(s)}
$$

Proof of " \supseteq " in theorem:

To do: Simulate a $2^{\text {d. } s(n)}$-time-bounded DTM M_{D} by an ATM M_{A} with $\mathcal{O}(s)$ space.

Tricky: Compared to M_{D} 's running time, we have very little space available.

Recall: As in the Ladner-Cook-Levin theorem, we can define the computation matrix of M_{D} of size $2^{d \cdot s(n)} \times 2^{d \cdot s(n)}$. ($\mathrm{i}^{\text {th }}$ row $=\mathrm{i}^{\text {th }}$ step of computation, cell $(\mathrm{i}, \mathrm{j})=$ cell content of j in this step.)

Idea: Construct and evaluate the CVP instance of size $2^{\mathrm{d} \cdot \mathrm{s}(\mathrm{n})}$ on the fly.
M_{A} recursively guesses and verifies the values of the variables $P_{i, j}^{a}$ and $Q_{i, j}^{p}$ (cell content, head position and control state).

In each step, M_{A} will guess the content of a cell (i.e. $P_{i, j}^{a}$ and $Q_{i, j}^{p}$ for all p) for a tuple (i, j). If $i>0, M_{A}$ verifies the guess as follows:

- M_{A} existentially (\mathbb{V}) guesses the values of the parent cells (in row $i-1$).
- M_{A} checks, whether the guessed values would yield the content of cell (i, j) (according to M_{D} 's transition relation).
- M_{A} universally (\wedge) branches to recursively verify the guesses for the parent cells.

If $\mathrm{i}=0$ (first row), M_{A} can check the guesses directly because it knows M_{D} 's initial configuration (compare input and control state).

We can assume that M_{D} has a single accepting configuration (accepting state, empty tape, head on \$).

Therefore, start by guessing the control state of lowest left-most cell $\left(2^{d \cdot s(n)}, 1\right)$ to be $\mathrm{q}_{\text {accept }}$. Verify the guess as above and accept if and only if verification is successful.

Space consumption: Only need a constant amount of pointers into the matrix. If we store pointers in binary, we can do it in

$$
\log 2^{d \cdot s(n)} \in \mathcal{O}(s)
$$

space.

14. The polynomial-time hierarchy

Goal:

- Introduce the polynomial-time hierarchy (PH)
- Hierarchy of complexity classes between P and PSPACE
- Introduced by Stockmeyer
- Not known whether the inclusions are strict
- Here: Definition using ATMs
- Complete problems for each level
- Later: Definition using oracles

14.1 PH defined via ATMs

Idea:

- NP defined by polytime NTM = polytime ATM with only \vee-states (no alternation)
- PSPACE = AP defined by polytime ATM with arbitrary "mode"-alternation (In fact, we have seen that PSPACE is about alternation before.)
- Get hierarchy in between by limiting the number of alternations

Definition:

An ATM M is k-alternation-bounded (for $k \in \mathbb{N}, k \geq 1$) if for every input x and every path $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ in the corresponding configuration tree, there are at most $\mathrm{k}-1$ positions where the mode of c_{i} is not equal to the mode of c_{i+1} (i.e. $q_{i} \in Q_{\vee,} q_{i+1} \in Q_{\wedge}$ or vice versa).

An ATM M is

- a Σ_{k}-machine if it is k -alternation-bounded and the initial state is existential $\left(\mathrm{q}_{0} \in \mathrm{Q}_{\vee}\right)$,
- $a \Pi_{\mathrm{k}}$-machine if it is k -alternation-bounded and the initial state is universal $\left(q_{0} \in Q_{\wedge}\right)$.

By convention, Π_{0}-machines $=\Sigma_{0}$-machines $=$ DTMs.

Remark:

When we defined alternating Turing machines, we said that we do not need to explicitly specify an accepting / rejecting state, because a universal (\wedge) configuration without successors is accepting and an existential (V) configuration without successors is rejecting.

This will now be problematic: depending one the mode of the current state, rejecting or accepting will now introduce an alternation. To avoid this, we again explicitly specify states $q_{\text {accept }}$ and $q_{\text {reject }}$ such that

- any configuration in which the control state is $\mathrm{q}_{\text {accept }}$ or $\mathrm{q}_{\text {reject }}$ has no successors,
- $q_{\text {accept }}$ and $q_{\text {reject }}$ are considered neither universal nor existential.

In particular, switching to them does not introduce an alternation.
Now our Turing machine can either accept by going to a universal state with no successors or by going to $q_{\text {accept. }}$. It can reject by going to an existential state with no successors or by going to $q_{\text {reject }}$.

Example:

- Σ_{1}-machines $=$ NTMs.
- The number of alternations of the examples we have seen (parallel PATH, on-the-fly CVP) grows with the input, i.e. those machines are not alternation-bounded.

Definition:

The complexity classes $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ and $\Pi_{\mathrm{k}}^{\mathrm{p}}$ of problems decidable by a polytime k -alternationbounded machine are defined as follows:
$\Sigma_{k}^{p}=\left\{\mathcal{L}(M) \mid M \Sigma_{k}\right.$-machine, t-time-bounded for some $\left.t \in \mathcal{O}\left(n^{m}\right), m \in \mathbb{N}\right\}$
$\Pi_{k}^{p}=\left\{\mathcal{L}(M) \mid M \Pi_{k}\right.$-machine, t-time-bounded for some $\left.t \in \mathcal{O}\left(n^{m}\right), m \in \mathbb{N}\right\}$

Note that

- $\Sigma_{0}^{\mathrm{p}}=\Pi_{0}^{\mathrm{p}}=\mathrm{P}$,
- $\Sigma_{1}^{\mathrm{p}}=\mathrm{NP}$,
- $\Pi_{1}^{\mathrm{p}}=\mathrm{coNP}$.

Lemma:

For all $\mathrm{k} \in \mathbb{N}$:
a) $\quad \Pi_{\mathrm{k}}^{\mathrm{p}}=\operatorname{co}_{\mathrm{k}}^{\mathrm{p}}=\left\{\overline{\mathcal{L}} \mid \mathcal{L} \in \Sigma_{\mathrm{k}}^{\mathrm{p}}\right\}$
b) $\quad \Pi_{\mathrm{k}}^{\mathrm{p}} \cup \Sigma_{\mathrm{k}}^{\mathrm{p}} \subseteq \Pi_{\mathrm{k}+1}^{\mathrm{p}} \cap \Sigma_{\mathrm{k}+1}^{\mathrm{p}}$
c) $\quad \bigcup_{k \in \mathbb{N}} \Sigma_{k}^{p}=\bigcup_{k \in \mathbb{N}} \Pi_{k}^{p} \subseteq$ PSPACE

Proof:

a) Given a machine M, we will construct a machine accepting the complement language $\overline{\mathcal{L}(M)}$ within the same time bounds.

We define the dual machine M_{d} : It behaves like M, just the modes of the states are swapped, i.e. existential states of M are universal states of M_{d} and vice versa. Whenever M would go to $q_{\text {accept }} / q_{\text {reject }}, M_{d}$ will go to $q_{\text {reject }} / q_{\text {accept }}$.

One can prove using induction on the structure of computation trees that M_{d} accepts the complement language of $\mathcal{L}(M)$.

Base case:

Induction step:

Note that the existential (\checkmark) state in the induction step is accepting if and only if at least one of the child nodes C_{i} is accepting. But in this case, the inverted child $\overline{\mathrm{C}}_{\mathrm{i}}$ is rejecting, and so is the universal (\wedge) state.

Furthermore, the shape of the computation trees and configurations of M and M_{d} are the same. In particular: If M was a polynomial time-bounded Σ_{k}-machine, M_{d} will be a polynomial time-bounded Π_{k}-machine. This proves the claim.
b) We need to show $\Pi_{\mathrm{k}}^{\mathrm{p}} \cup \Sigma_{\mathrm{k}}^{\mathrm{p}}$.
$\Pi_{\mathrm{k}}^{\mathrm{p}} \subseteq \Pi_{\mathrm{k}+1}^{\mathrm{p}}$ (and $\Sigma_{\mathrm{k}}^{\mathrm{p}} \subseteq \Sigma_{\mathrm{k}+1}^{\mathrm{p}}$) is clear.
To show $\Pi_{\mathrm{k}}^{\mathrm{p}} \subseteq \Sigma_{\mathrm{k}+1}^{\mathrm{p}}$ (and analogously $\Sigma_{\mathrm{k}}^{\mathrm{p}} \subseteq \Pi_{\mathrm{k}+1}^{\mathrm{p}}$), we introduce an auxiliary initial state.

If M is a Π_{k}-machine, we create a Σ_{k+1} machine by introducing a new existential control state q_{0}^{\prime}. We furthermore add a transition that changes the state from the new initial state $\mathrm{q}_{0}^{\prime} \in \mathrm{Q}_{\vee}$ to the old initial state $\mathrm{q}_{0} \in \mathrm{Q}_{\wedge}$.

All computations of this new machine will lead to the same result, they are just prolonged by the additional step in the beginning.
c) We need to show

$$
\bigcup_{k \in \mathbb{N}} \Sigma_{k}^{p} \stackrel{1)}{=} \bigcup_{k \in \mathbb{N}} \Pi_{k}^{p} \stackrel{2)}{\subseteq} \text { PSPACE }
$$

The equality 1) follows using b):
Suppose without loss of generality that there is a language \mathcal{L} with $\mathcal{L} \in \bigcup_{k \in \mathbb{N}} \Sigma_{\mathrm{k}}^{\mathrm{p}}$ but $\mathcal{L} \notin \bigcup_{k \in \mathbb{N}} \Pi_{\mathrm{k}}^{\mathrm{p}}$. Then there is some k^{\prime} such that

$$
\mathcal{L} \in \Sigma_{\mathrm{k}^{\prime}}^{\mathrm{p}} \subseteq \Pi_{\mathrm{k}^{\prime}+1}^{\mathrm{p}} \subseteq \bigcup_{\mathrm{k} \in \mathbb{N}} \Pi_{\mathrm{k}}^{\mathrm{p}} .
$$

This is a contradiction to the assumption.
Inclusion 2) follows from PSPACE $=\mathrm{AP}$, since number of alternation in AP is not bounded.

Picture:

PSPACE

14.2 A generic complete problem

Goal:

- For each $\mathrm{k}>0$, find a $\Sigma_{\mathrm{k}}^{\mathrm{p}}$-complete language.

Definition:

Given any ATM M and natural numbers $k \geq 1, m \in \mathbb{N}$, we define the machine M_{k}^{m}. Initially, it behaves like M, but it is artificially restricted to m steps and k alternations. Furthermore, it always starts in an existential state.

- M_{k}^{m} has an additional alternation counter with values in $\{0, \ldots, k-1\}$. (Since k is fixed, this can be stored in the control state.)
- M_{k}^{m} has an additional step-counter with values in $\{0, \ldots, m\}$
- Initially, M_{k} behaves like M and the counter values are 0 .
- If the initial state is universal $\left(q_{0} \in Q_{\wedge}\right)$, introduce a new artificial initial state $q_{0}^{\prime} \in Q_{V}$ (as in the proof of the Lemma).
- Every time M changes from an \vee-state to an \wedge-state or vice versa, the alternation counter is increased by one.
- Every time M does a step, the step-counter is increased by one.
- If a transition would increase the alternation counter beyond $k-1$, it is not possible to take it.
- If a transition would increase the step counter beyond m, t is not possible to take it.

The computation tree of M_{k}^{m} one some input is a restricted version of the computation tree of M on this input. More precisely, branches that have length greater than m or more than k-1 alternations are cut off so that they respect the bounds.

Note: $\mathrm{M}_{\mathrm{k}}^{\mathrm{m}}$ is always a Σ_{k}-machine.

Definition:

For each $k \geq 1$, we define

$$
H_{k}=\left\{e \# x \#^{m} \in\{0,1, \#\}^{*} \mid m \in \mathbb{N}, e \text { is the encoding of an ATM } M, M_{k}^{m} \text { accepts } x\right\} .
$$

Note that we can encode an ATM similar to DTMs. We just need to additionally encode the modes of the states.

Theorem:
For all $k \geq 1, H_{k}$ is Σ_{k}^{p}-complete with respect to logspace-many-one reductions.

Proof (sketch):

To show membership, use a "universal ATM"-construction.
We construct an alternating Turing machine M^{\prime} deciding H_{k}. It will first check that the input is of the correct shape. In particular, it will check that e is the encoding of an alternating Turing machine M. It will then simulate M_{k}^{m} on x and accept if and only if x is accepted by M.

Note that we can use existential and universal states of M^{\prime} machine to simulate existential and universal states of M. Since we do not need an alternation to check whether the input has the correct shape, M^{\prime} is k -alternation bounded. The simulation takes only m steps, which is linear in the size of the input, since m is a part of the input. The simulation causes polynomial overhead and checking that the input is of the correct shape can also by done in polynomial time.

Overall: M^{\prime} is a polynomial time-bounded Σ_{k} machine deciding H_{k}.
To show hardness, assume $A \in \Sigma_{k}^{p}$, i.e. $A=\mathcal{L}(M)$ where M is n^{c}-time-bounded for some c and k-alternation bounded.

On input x of length n, choose $m=n^{c}$, then the computation trees of M and M_{k}^{m} are essentially the same. In particular:

$$
M \text { accepts } x \text { iff } M_{k}^{|x|^{c}} \text { accepts } x \text { iff } \quad \text { enc }(M) \# x \#|x|^{c} \in H_{k}
$$

Therefore, we can reduce A to H_{k} : Given an input x, the reduction will print the encoding of M followed by an \#, print the input x and finally print \#|x|c.

Since M is independent of the input, printing its encoding requires constant space and time. To print the input, the transducer computing the reduction can just copy it from its own input tape. To print $\#|x|^{c}$, we need a binary counter with values in $\left\{1, \ldots,|x|^{c}\right\}$. Storing it needs $\log \left(|x|^{c}\right) \in \mathcal{O}(\log (|x|))$ space.

Overall, the reduction can be computed using logarithmic space.

Corollary:

For every $\mathrm{k} \geq 1, \overline{\mathrm{H}_{\mathrm{k}}}$ is $\Sigma_{\mathrm{k}}^{\mathrm{p}}$-complete with respect to logspace-many-one reductions.

