
13. Alternation (Continuation)
Last time:

• Alternation = generalization of non-determinism

• If t is at least linear:

ATIME(t)
1)
⊆ DSPACE(t)

2)
⊆ NSPACE(t)

3)
⊆ ATIME(t2)

1) via depth-first search (and storing choices as transitions on a stack)

2) clear

3) via "parallel" implementation of PATH applied to the configuration graph

13.3 From alternating space to deterministic time
Goal:

• Alternating space coincides with exponentially more deterministic time

Theorem:

Let s : N → Nwith s(n) ≥ log(n) ∀n. Then

ASPSACE
(
O
(
s
))

= DTIME
(
2O

(
s
))

Corollary:
AL = P, APSPACE = EXP

Proof of " ⊆ " in theorem:

Idea: Simulate d · s(n)-space-bounded ATMMA by 2O
(
s
)
-time-bounded DTMMD that

uses the configuration graph of M.

Construction:

• On input x (of size n), MD constructs the configuration graph of MA on x.

– Nodes: configurations of MA on x.�

One configuration uses at most d · s(n) space

– Edge from c to c′ if MA can go from c to c′ in a single step.

• After construction the graph, MD repeatedly scans it to mark configurations as ac-
cepting.

– Initially,∧-configurations without successors are marked.

1

– If all successors of an∧-configuration are already marked, mark it.

– If at least one successor of an∨-configuration is marked, mark it.

• Repeat "scan & mark" until

– either initial configuration is marked�

MD accepts,

– or no newmarks since last iteration (fixed point reached)�

MD rejects.

Time consumption:

• Construct configuration graph in 2O
(
s
)
time.

• One scan takes 2O
(
s
)
time.

• At most 2O
(
s
)
scans.

(Weeithermark at least onenewconfigurationper stepor the fixedpoint is reached)

Total time:
2O

(
s
)
· 2O

(
s
)
+ 2O

(
s
)
∈ 2O

(
s
)

Proof of " ⊇ " in theorem:

To do: Simulate a 2d·s(n)-time-bounded DTMMD by an ATMMA withO
(
s
)
space.

Tricky: Compared to MD's running time, we have very little space available.

Recall: As in the Ladner-Cook-Levin theorem, we can define the computation matrix
of MD of size 2d·s(n) × 2d·s(n).
(ith row = ith step of computation, cell (i, j) = cell content of j in this step.)

Idea: Construct and evaluate the CVP instance of size 2d·s(n) on the fly.

MA recursively guesses and verifies the values of the variables Pai,j and Qp
i,j (cell content,

head position and control state).

In each step, MA will guess the content of a cell (i.e. Pai,j and Qp
i,j for all p) for a tuple (i, j).

If i > 0, MA verifies the guess as follows:

• MA existentially (∨) guesses the values of the parent cells (in row i - 1).

2

• MA checks, whether the guessed values would yield the content of cell (i, j) (accord-
ing to MD's transition relation).

• MA universally (∧) branches to recursively verify the guesses for the parent cells.

If i = 0 (first row), MA can check the guesses directly because it knows MD's initial config-
uration (compare input and control state).

We can assume thatMD has a single accepting configuration (accepting state, empty tape,
head on $).

Therefore, start byguessing thecontrol stateof lowest left-most cell (2d·s(n), 1) tobeqaccept.
Verify the guess as above and accept if and only if verification is successful.

Space consumption: Only need a constant amount of pointers into the matrix. If we
store pointers in binary, we can do it in

log 2d·s(n) ∈ O
(
s
)

space.

14. The polynomial-time hierarchy
Goal:

• Introduce the polynomial-time hierarchy (PH)

– Hierarchy of complexity classes between P and PSPACE

– Introduced by Stockmeyer

– Not known whether the inclusions are strict

• Here: Definition using ATMs

• Complete problems for each level

• Later: Definition using oracles

3

14.1 PH defined via ATMs

Idea:

• NP defined by polytime NTM = polytime ATM with only∨-states (no alternation)

• PSPACE = AP defined by polytime ATM with arbitrary "mode"-alternation
(In fact, we have seen that PSPACE is about alternation before.)

• Get hierarchy in between by limiting the number of alternations

Definition:

An ATM M is k-alternation-bounded (for k ∈ N, k ≥ 1) if for every input x and every path
c1, ..., cn in the corresponding configuration tree, there are at most k - 1 positions where
the mode of ci is not equal to the mode of ci+1 (i.e. qi ∈ Q∨, qi+1 ∈ Q∧ or vice versa).

An ATMM is

• a Σk-machine if it is k-alternation-bounded and the initial state is existential
(q0 ∈ Q∨),

• aΠk-machine if it is k-alternation-bounded and the initial state is universal
(q0 ∈ Q∧).

By convention,Π0-machines = Σ0-machines = DTMs.

Remark:

When we defined alternating Turing machines, we said that we do not need to explicitly
specify an accepting / rejecting state, because a universal (∧) configuration without suc-
cessors is accepting and an existential (∨) configuration without successors is rejecting.

This will now be problematic: depending one the mode of the current state, rejecting or
acceptingwill now introduce analternation. To avoid this,weagain explicitly specify states
qaccept and qreject such that

• any configuration in which the control state is qaccept or qreject has no successors,

• qaccept and qreject are considered neither universal nor existential.
In particular, switching to them does not introduce an alternation.

Nowour Turingmachine can either accept by going to a universal statewith no successors
or by going to qaccept. It can reject by going to an existential state with no successors or
by going to qreject.

4

Example:

• Σ1-machines = NTMs.

• The number of alternations of the exampleswe have seen (parallel PATH , on-the-fly
CVP) grows with the input, i.e. those machines are not alternation-bounded.

Definition:

The complexity classes Σp
k and Π

p
k of problems decidable by a polytime k-alternation-

bounded machine are defined as follows:

Σ
p
k =

{
L
(
M
)
| M Σk-machine, t-time-bounded for some t ∈ O

(
nm

)
, m ∈ N

}
Π
p
k =

{
L
(
M
)
| MΠk-machine, t-time-bounded for some t ∈ O

(
nm

)
, m ∈ N

}
Note that

• Σ
p
0 = Π

p
0 = P,

• Σ
p
1 = NP,

• Π
p
1 = coNP.

Lemma:

For all k ∈ N:

a) Π
p
k = coΣp

k =
{
L | L ∈ Σ

p
k

}
b) Π

p
k ∪ Σ

p
k ⊆ Π

p
k+1 ∩ Σ

p
k+1

c)
∪
k∈N

Σ
p
k =

∪
k∈N

Π
p
k ⊆ PSPACE

Proof:

a) Given a machine M, we will construct a machine accepting the complement language
L
(
M
)
within the same time bounds.

We define the dual machine Md: It behaves like M, just the modes of the states are
swapped, i.e. existential states ofM are universal states ofMd and vice versa.Whenever
M would go to qaccept/qreject, Md will go to qreject/qaccept.

One can prove using induction on the structure of computation trees that Md accepts
the complement language of L

(
M
)
.

5

Base case:

∨ ∧

rejecting accepting

Induction step:

∨ ∧

C1 C2 C3 C1 C2 C3

Note that the existential (∨) state in the induction step is accepting if andonly if at least
one of the child nodes Ci is accepting. But in this case, the inverted child Ci is rejecting,
and so is the universal (∧) state.

Furthermore, the shape of the computation trees and configurations of M and Md are
the same. In particular: If M was a polynomial time-bounded Σk-machine, Md will be a
polynomial time-boundedΠk-machine. This proves the claim.

b) We need to showΠ
p
k ∪ Σ

p
k .

Π
p
k ⊆ Π

p
k+1 (and Σ

p
k ⊆ Σ

p
k+1) is clear.

To show Π
p
k ⊆ Σ

p
k+1 (and analogously Σ

p
k ⊆ Π

p
k+1), we introduce an auxiliary initial

state.

IfM is aΠk-machine,we create aΣk+1machineby introducing a newexistential control
state q′0. We furthermore add a transition that changes the state from the new initial
state q′0 ∈ Q∨ to the old initial state q0 ∈ Q∧.

All computations of this new machine will lead to the same result, they are just pro-
longed by the additional step in the beginning.

c) We need to show ∪
k∈N

Σ
p
k
1)
=

∪
k∈N

Π
p
k

2)
⊆ PSPACE

The equality 1) follows using b):

Suppose without loss of generality that there is a language L with L ∈
∪
k∈N Σ

p
k but

L ̸∈
∪
k∈NΠ

p
k . Then there is some k′ such that

L ∈ Σ
p
k′
⊆ Π

p
k′+1

⊆
∪
k∈N

Π
p
k .

This is a contradiction to the assumption.

Inclusion 2) follows from PSPACE = AP , since number of alternation in AP is not
bounded.

6

Picture:

PSPACE

...
...

...

Σ
p
2 ∩ Π

p
2

Σ
p
2 Π

p
2

◦L ◦L

NP = Σ
p
1 coNP = Π

p
1

P = Σ
p
0 = Π

p
0

7

14.2 A generic complete problem

Goal:

• For each k > 0, find a Σp
k -complete language.

Definition:

Given any ATMM and natural numbers k ≥ 1,m ∈ N, we define themachineMm
k . Initially,

it behaves like M, but it is artificially restricted to m steps and k alternations. Furthermore,
it always starts in an existential state.

• Mm
k has an additional alternation counter with values in

{
0, ..., k - 1

}
.

(Since k is fixed, this can be stored in the control state.)

• Mm
k has an additional step-counter with values in

{
0, ..., m

}
• Initially, Mk behaves like M and the counter values are 0.

• If the initial state is universal (q0 ∈ Q∧), introduceanewartificial initial stateq′0 ∈ Q∨

(as in the proof of the Lemma).

• Every time M changes from an ∨-state to an ∧-state or vice versa, the alternation
counter is increased by one.

• Every time M does a step, the step-counter is increased by one.

• If a transition would increase the alternation counter beyond k - 1, it is not possible
to take it.

• If a transition would increase the step counter beyondm,it is not possible to take it.

The computation tree of Mm
k one some input is a restricted version of the computation

tree of M on this input. More precisely, branches that have length greater than m or more
than k - 1 alternations are cut off so that they respect the bounds.

Note: Mm
k is always a Σk-machine.

Definition:

For each k ≥ 1, we define

Hk =
{
e#x#m ∈

{
0, 1, #

}∗ | m ∈ N, e is the encoding of an ATMM,Mm
k accepts x

}
.

Note that we can encode an ATM similar to DTMs.We just need to additionally encode the
modes of the states.

Theorem:

For all k ≥ 1, Hk is Σ
p
k -complete with respect to logspace-many-one reductions.

8

Proof (sketch):
To showmembership, use a "universal ATM"-construction.

Weconstruct analternatingTuringmachineM′ decidingHk. Itwill first check that the input
is of the correct shape. In particular, it will check that e is the encoding of an alternating
Turing machine M. It will then simulate Mm

k on x and accept if and only if x is accepted by
M.

Note that we can use existential and universal states of M′machine to simulate existential
and universal states of M. Since we do not need an alternation to check whether the input
has the correct shape, M′ is k-alternation bounded. The simulation takes only m steps,
which is linear in the size of the input, sincem is a part of the input. The simulation causes
polynomial overhead and checking that the input is of the correct shape can also by done
in polynomial time.

Overall: M′ is a polynomial time-bounded Σk machine deciding Hk.

To show hardness, assume A ∈ Σ
p
k , i.e. A = L

(
M
)
where M is nc-time-bounded for some c

and k-alternation bounded.

On input x of length n, choose m = nc, then the computation trees of M and Mm
k are

essentially the same. In particular:

M accepts x iff M|x|c

k accepts x iff enc(M)#x#|x|
c
∈ Hk

Therefore, we can reduce A to Hk: Given an input x, the reduction will print the encoding
of M followed by an #, print the input x and finally print #|x|

c
.

Since M is independent of the input, printing its encoding requires constant space and
time. To print the input, the transducer computing the reduction can just copy it from its
own input tape. To print #|x|

c
, we need a binary counter with values in

{
1, ..., |x|c

}
. Storing

it needs log(|x|c) ∈ O
(
log(|x|)

)
space.

Overall, the reduction can be computed using logarithmic space.

Corollary:

For every k ≥ 1, Hk is Σ
p
k -complete with respect to logspace-many-one reductions.

9

