Exercises to the lecture
Concurrency Theory

Exercise 5.1 (Well-quasi orderings)
a) Prove or disprove that (\mathbb{N}, \mid) is a well-quasi ordering where $a \mid b$ means " a divides b ".
b) Let (A, \leq) be a wqo. Prove that for $k \in \mathbb{N},\left(A^{k}, \leq^{k}\right)$ is a wqo.

The ordering \leq^{k} is obtained by component-wise application of \leq on vectors in A^{k}. Thus, $\left(a_{1}, \ldots, a_{k}\right) \leq^{k}\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$ if and only if $a_{i} \leq a_{i}^{\prime}$ for $i \in\{1, \ldots, k\}$.
c) Given a set A and a set $W \subseteq \mathbb{P}(A \times A)$, so that (A, w) is a wqo for all $w \in W$. Show that $\left(A,\left(\bigcup_{w \in W} w\right)^{+}\right)$is a wqo.

Exercise 5.2 (Upward-closed sets)
a) For a finite alphabet Σ and $w_{1}, w_{2} \in \Sigma^{*}$, let $w_{1} \leq w_{2}$ if and only if w_{1} is a subword of w_{2} as defined in the lecture.
Show that for any language $\mathcal{L} \subseteq \Sigma^{*}$, the languages $\mathcal{L} \uparrow$ and $\mathcal{L} \downarrow$ are regular.
b) Let (A, \leq) be a wqo and $M_{1}, M_{2} \subseteq A$ finite. Show that it is decidable if $M_{1} \uparrow=M_{2} \uparrow$.

Exercise 5.3 (Well-Structured transition systems)
a) Consider a transition system $\left(\Gamma, \gamma_{0}, \rightarrow\right)$ and a relation $\leq \subseteq \Gamma \times \Gamma$. Prove that \leq is a simulation if and only if $\operatorname{pre}(I)$ is upward-closed for every upward-closed set $I \subseteq \Gamma$.
b) Let $T S=\left(\Gamma, \gamma_{0}, \rightarrow, \leq\right)$ be a well-structured transition system where

- $\gamma \leq \gamma^{\prime}$ is decidable for all $\gamma, \gamma^{\prime} \in \Gamma$ and
- for all $\gamma \in \Gamma$, the set $\operatorname{post}(\gamma):=\left\{\gamma^{\prime} \in \Gamma \mid \gamma \rightarrow \gamma^{\prime}\right\}$ is finite and computable.

Prove that termination is decidable for $T S$.
Note: A transition system is terminating, if there are no infinite runs.

Exercise 5.4 (Petri nets)

Consider the following definition of Petri nets and their firing relation:

- A Petri net is a triple $N=(P, T, W)$ where P is a set of places, T is a set of transitions, and $W:(P \times T) \cup(T \times P) \rightarrow \mathbb{N}$ is a weight function.
- A marking $M \in \mathbb{N}^{|P|}$ of N is a function that maps places to natural numbers.
- A transition $t \in T$ is enabled in M, if $M \geq W(-, t)$. $W(-, t)$ is the vector $\left(W\left(p_{1}, t\right), \ldots, W\left(p_{|P|}, t\right)\right)$ and $W(t,-)$ is defined analogously.
- If t is enabled in M_{1}, it transforms the marking into a new marking M_{2} by removing $W(-, t)$ from M and adding $W(t,-)$.
Formally, the firing relation $[\rangle \subseteq \mathbb{N}^{|P|} \times T \times \mathbb{N}^{|P|}$ contains the triple $\left(M_{1}, t, M_{2}\right)$ (or $\left.M_{1}[t\rangle M_{2}\right)$ if t is enabled in M_{1} and $M_{2}=\left(M_{1}-W(-, t)\right)+W(t,-)$.

Given an initial marking M_{0}, prove that the transition system $\left(N^{|P|}, M_{0},[\rangle, \leq^{|P|}\right)$ is a well-structured transition system.

Delivery until 27.05.2014 at 12 h into the box next to 34 -401.4

