Exercises to the lecture Concurrency Theory Sheet 5

Roland Meyer, Viktor Vafeiadis

Delivery until 27.05.2014 at 12h

Exercise 5.1 (Well-quasi orderings)

- a) Prove or disprove that $(\mathbb{N}, |)$ is a well-quasi ordering where a|b means "a divides b".
- b) Let (A, \leq) be a wqo. Prove that for $k \in \mathbb{N}$, (A^k, \leq^k) is a wqo. The ordering \leq^k is obtained by component-wise application of \leq on vectors in A^k . Thus, $(a_1, \ldots, a_k) \leq^k (a'_1, \ldots, a'_k)$ if and only if $a_i \leq a'_i$ for $i \in \{1, \ldots, k\}$.
- c) Given a set A and a set $W \subseteq \mathbb{P}(A \times A)$, so that (A, w) is a wqo for all $w \in W$. Show that $(A, (\bigcup_{w \in W} w)^+)$ is a wqo.

Exercise 5.2 (Upward-closed sets)

- a) For a finite alphabet Σ and $w_1, w_2 \in \Sigma^*$, let $w_1 \leq w_2$ if and only if w_1 is a subword of w_2 as defined in the lecture.
 - Show that for any language $\mathcal{L} \subseteq \Sigma^*$, the languages $\mathcal{L}\uparrow$ and $\mathcal{L}\downarrow$ are regular.
- b) Let (A, \leq) be a word and $M_1, M_2 \subseteq A$ finite. Show that it is decidable if $M_1 \uparrow = M_2 \uparrow$.

Exercise 5.3 (Well-Structured transition systems)

- a) Consider a transition system $(\Gamma, \gamma_0, \rightarrow)$ and a relation $\leq \subseteq \Gamma \times \Gamma$. Prove that \leq is a simulation if and only if pre(I) is upward-closed for every upward-closed set $I \subseteq \Gamma$.
- b) Let $TS = (\Gamma, \gamma_0, \rightarrow, \leq)$ be a well-structured transition system where
 - $\gamma \leq \gamma'$ is decidable for all $\gamma, \gamma' \in \Gamma$ and
 - for all $\gamma \in \Gamma$, the set $post(\gamma) := \{\gamma' \in \Gamma \mid \gamma \to \gamma'\}$ is finite and computable.

Prove that termination is decidable for TS.

Note: A transition system is *terminating*, if there are no infinite runs.

Exercise 5.4 (Petri nets)

Consider the following definition of *Petri nets* and their firing relation:

- A Petri net is a triple N = (P, T, W) where P is a set of places, T is a set of transitions, and $W : (P \times T) \cup (T \times P) \rightarrow \mathbb{N}$ is a weight function.
- A marking $M \in \mathbb{N}^{|P|}$ of N is a function that maps places to natural numbers.
- A transition $t \in T$ is enabled in M, if $M \ge W(-, t)$. W(-, t) is the vector $(W(p_1, t), \dots, W(p_{|P|}, t))$ and W(t, -) is defined analogously.
- If t is enabled in M_1 , it transforms the marking into a new marking M_2 by removing W(-,t) from M and adding W(t,-).

Formally, the firing relation $[\rangle \subseteq \mathbb{N}^{|P|} \times T \times \mathbb{N}^{|P|}$ contains the triple (M_1, t, M_2) (or $M_1[t\rangle M_2)$ if t is enabled in M_1 and $M_2 = (M_1 - W(-, t)) + W(t, -)$.

Given an *initial marking* M_0 , prove that the transition system $(N^{|P|}, M_0, [\rangle, \leq^{|P|})$ is a well-structured transition system.

Delivery until 27.05.2014 at 12h into the box next to 34-401.4