Exercises to the lecture Concurrency Theory Sheet 6

Roland Meyer, Viktor Vafeiadis

Delivery until 03.06.2014 at 12h

Exercise 6.1

Perfect channel systems are defined like lossy channel systems but with only the first two rules for the transition relation:

$$\begin{aligned} (q_1, W) &\to (q_2, W[c = W(c).m]) & \text{if } q_1 \xrightarrow{c!m} q_2 \\ (q_1, W[c = m.W(c)]) &\to (q_2, W) & \text{if } q_1 \xrightarrow{c?m} q_2 \end{aligned}$$

Explain how to simulate a Turing machine with a perfect channel system.

Exercise 6.2

Consider two lossy channel systems $L_i = (Q_i, q_{0i}, C, M, \rightarrow_i)$ for $i \in \{1, 2\}$.

- a) Explain how to construct a lossy channel system $L_1 || L_2$ that represents L_1 and L_2 running concurrently.
- b) Assume that you additionally have a visible alphabet Σ . Thus, transitions are additionally labelled with letters $a \in \Sigma$:

$$\rightarrow \subseteq (Q \times (M^*)^{|C|}) \times \Sigma \times (Q \times (M^*)^{|C|})$$

Furthermore, there is a subset $F \subseteq Q$ of final states. The *language* of such a lossy channel system L is defined by

 $a_1 \ldots a_n \in \mathcal{L}(L)$ if and only if $(q_0, \varepsilon) \xrightarrow{a_1} \ldots \xrightarrow{a_n} (q_n, W_n)$ and $q_n \in F$.

Given two lossy channel systems L_1 and L_2 , explain how to construct a product system $L_1 \times L_2$ so that $\mathcal{L}(L_1 \times L_2) = \mathcal{L}(L_1) \cap \mathcal{L}(L_2)$.

Exercise 6.3

Consider the following lossy channel system:



Use Abdulla's backward search to check whether the configuration $\left(q_4, \begin{pmatrix} 0 \\ \varepsilon \end{pmatrix}\right)$ is coverable.

Exercise 6.4

Consider a lossy channel system $L = (Q, q_0, C, M, \rightarrow)$. Extend the messages by a set S of *strong* messages that cannot be forgotten.

- a) Define a transition relation \rightarrow' for lossy channel systems with strong messages that corresponds to \rightarrow for $S = \emptyset$.
- b) Assume that there is a bound $k \in \mathbb{N}$ so that the number of strong messages in each channel is bounded by k. Prove that the new system $L' = (Q, q_0, C, M \cup S, \rightarrow')$ is still a well-structured transition system.

Delivery until 03.06.2014 at 12h into the box next to 34-401.4