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Exercise 6.1
Perfect channel systems are defined like lossy channel systems but with only the first
two rules for the transition relation:

(q1,W )→ (q2,W [c = W (c).m]) if q1
c!m−−→ q2

(q1,W [c = m.W (c)])→ (q2,W ) if q1
c?m−−→ q2

Explain how to simulate a Turing machine with a perfect channel system.

Exercise 6.2
Consider two lossy channel systems Li = (Qi, q0i, C,M,→i) for i ∈ {1, 2}.

a) Explain how to construct a lossy channel system L1‖L2 that represents L1 and L2

running concurrently.

b) Assume that you additionally have a visible alphabet Σ. Thus, transitions are
additionally labelled with letters a ∈ Σ:

→ ⊆ (Q× (M∗)|C|)× Σ× (Q× (M∗)|C|) .

Furthermore, there is a subset F ⊆ Q of final states. The language of such a lossy
channel system L is defined by

a1 . . . an ∈ L(L) if and only if (q0, ε)
a1−→ . . .

an−→ (qn,Wn) and qn ∈ F .

Given two lossy channel systems L1 and L2, explain how to construct a product
system L1 × L2 so that L(L1 × L2) = L(L1) ∩ L(L2).

Exercise 6.3
Consider the following lossy channel system:

q0 q1 q2 q3 q4d!1

c!1
d!0

c?0

d?1

d!0

d?0

Use Abdulla’s backward search to check whether the configuration
(
q4,

(
0
ε

))
is coverable.



Exercise 6.4
Consider a lossy channel system L = (Q, q0, C,M,→). Extend the messages by a set S
of strong messages that cannot be forgotten.

a) Define a transition relation →′ for lossy channel systems with strong messages that
corresponds to → for S = ∅.

b) Assume that there is a bound k ∈ N so that the number of strong messages in each
channel is bounded by k. Prove that the new system L′ = (Q, q0, C,M ∪ S,→′) is
still a well-structured transition system.
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