$\mathrm{SS}~2014$ 

Exercises to the lecture Concurrency Theory Sheet 7

Roland Meyer, Viktor Vafeiadis Delivery until 10.06.2014 at 12h

**Exercise 7.1** (Bounded round TSO-reachability)

Describe the general case for the bounded round TSO-reachability problem that was described in the lecture: Given a concurrent program P with  $n \in \mathbb{N}$  threads and a bound  $k \in \mathbb{N}$  on the number of rounds that each thread can make, explain how to construct a program P' so that the following holds:

A program counter pc is TSO-reachable in P iff pc is SC-reachable in P'.

Note: you do not have to give a formal construction. It is sufficient to list the additional global variables needed, explain their meaning and how they are used by P'.

Exercise 7.2 (Donward-closure of regular languages)

a) Compute  $\mathcal{L}(A) \downarrow$  for the following automaton A:



b) Give a general procedure that computes  $\mathcal{L}(A) \downarrow$  for a finite state automaton A.

**Exercise 7.3** (Conditionals in lossy channel systems)

We extend lossy channels with a transition that, given a channel c and a word  $w \in \Sigma^*$ , checks if c contains w as a subword:

$$q_1 \bigcirc \xrightarrow{\text{check } w \text{ in } c} \bigcirc q_2$$

We extend the transition relation to  $\rightsquigarrow$  by adding the following rule:

$$(q_1, W) \rightsquigarrow (q_2, W)$$
 if  $q_1 \xrightarrow{\text{check } w \text{ in } c} q_2 \text{ and } w \le W(c)$ 

Given an extended lossy channel system  $L = (Q, q_0, C, M, \rightarrow_L)$ , construct a lossy channel system  $L' = (Q', q_0, C, M, \rightarrow_{L'})$  with  $Q \subseteq Q'$  where the following holds for all  $q_1, q_2 \in Q$ :

$$(q_1, W) \rightsquigarrow^* (q_2, W')$$
 in  $L$  if and only if  $(q_1, W) \rightarrow^* (q_2, W')$  in  $L'$ .

Delivery until 10.06.2014 at 12h into the box next to 34-401.4