Exercises to the lecture Concurrency Theory Sheet 14

Roland Meyer, Viktor Vafeiadis

Optional sheet, no delivery

Exercise 14.1

Consider the following lock implementation lock(l) from the lecture:

do $T = l.CAS_{acq}(0, 1);$ if $\neg t$ then while $(l.load(rlx) \neq 0);$ while $(\neg t)$

Prove that ${Lock(l, P)}$ lock ${Lock(l, P) * P}$ holds.

Exercise 14.2

Construct a proof in relaxed separation logic that the following program is data race free.

Exercise 14.3

Use the following program prog to prove that the rules for relaxed memory accesses are unsound if there is a dependency cycle.

$$\begin{array}{c} x = y = 0\\ \textbf{if} \ (x.\text{load}(rlx) == 1) \ \textbf{then} \\ y.\text{store}(1, rlx); \\ t = x.\text{load}(rlx); \\ t = x.\text{load}(rlx); \end{array} \qquad \textbf{if} \ (y.\text{load}(rlx) == 1) \ \textbf{then} \\ x.\text{store}(1, rlx); \\ t = x.\text{load}(rlx); \end{array}$$

Hint: Show that $\{\mathbf{true}\}$ prog $\{\mathbf{t} = 0\}$ is derivable using RSL.

Exercise 14.4

Prove that in the following program, m always contains an even number:

$$\begin{pmatrix} x = y = 0 \\ t = x.\operatorname{load}(rlx) \\ x.\operatorname{store}(t+2, rlx) \end{pmatrix}^* \left\| \begin{pmatrix} u = x.\operatorname{load}(rlx) \\ x.\operatorname{store}(u \times 2, rlx) \end{pmatrix} \right\|^*$$
$$m = x.\operatorname{load}(rlx)$$