
SS 2014 23.07.2014

Exercises to the lecture
Concurrency Theory

Sheet 14

Roland Meyer, Viktor Vafeiadis Optional sheet, no delivery

Exercise 14.1
Consider the following lock implementation lock(l) from the lecture:

do
T = l.CASacq(0, 1);
if ¬t then

while (l.load(rlx ) 6= 0);

while (¬t)

Prove that {Lock(l, P )} lock {Lock(l, P ) ∗ P} holds.

Exercise 14.2
Construct a proof in relaxed separation logic that the following program is data race free.

∗a = 7;
∗b = 8;
y.store(1, rel);

if (y.load(acq)) then
t1 = ∗a;

if (y.load(acq)) then
t2 = ∗b;
∗b = t2 + 1;

Exercise 14.3
Use the following program prog to prove that the rules for relaxed memory accesses are
unsound if there is a dependency cycle.

x = y = 0

if (x.load(rlx ) == 1) then
y.store(1, rlx );

if (y.load(rlx ) == 1) then
x.store(1, rlx );

t = x.load(rlx );

Hint: Show that {true} prog {t = 0} is derivable using RSL.

Exercise 14.4
Prove that in the following program, m always contains an even number:

x = y = 0(
t = x.load(rlx )
x.store(t+ 2, rlx )

)∗ (
u = x.load(rlx )
x.store(u× 2, rlx )

)∗

m = x.load(rlx )


