Exercise Sheet 11

Zetzsche, Furbach, D'Osualdo
Technische Universität Kaiserslautern

Problem 1: Hardest Language

A language L_{0} is a hardest language for a language class \mathcal{C} if for every $L \in \mathcal{C}$ there exists an homomorphism α such that $L=\alpha^{-1}\left(L_{0}\right)$.

For any regular language L, let $\|L\|$ be the minimum number of states of an automaton generating L, i.e. $\|L\|=\min \left\{|Q| \mid A=\left(Q, E, q_{0}, F\right), L=\mathcal{L}(A)\right\}$. Show that:
a) $L=\alpha^{-1}\left(L^{\prime}\right)$ implies $\|L\| \leq\left\|L^{\prime}\right\|$.
b) For each $n \in \mathbb{N}$, there exists a regular language with $\|L\|>n$.
c) Use 1.a and 1.b to show that there is no hardest language for the class of regular languages.

Problem 2: Concatenation

a) Show that if $L^{\prime} \subseteq X^{*}$ is closed under concatenation and $L=\alpha^{-1}\left(L^{\prime}\right)$, then L is closed under concatenation.
b) Show that D_{2}^{\prime} is not a hardest language for CFL.

Problem 3: Kleene Iteration

Let $L \subseteq X^{*}$. Show that the full trio generated by $(L \#)^{*}$ is closed under Kleene iteration.

Problem 4: Generating languages

Let $M=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ and \mathcal{C}_{M} be the full trio generated by M.
a) Let $R_{n}=\left\{w \bar{w} \mid w \in X_{n}^{*}\right\}$ where \bar{w} is the word w with each occurrence of each letter x_{i} replaced by the letter $\overline{x_{i}} \in \bar{X}_{n}$.
Show that for each $n \in \mathbb{N}$, the complement of R_{n} is in \mathcal{C}_{M}.
b) Sketch how you can adapt the solution of the previous problem to prove that for each homomorphism $\alpha: X^{*} \rightarrow Y^{*}$, with $X \cap Y=\emptyset$, the complement of the language $\left\{w \alpha(w) \mid w \in X^{*}\right\}$ is in \mathcal{C}_{M}.

