
DECISION PROBLEMS FOR NON-REGULAR LANGUAGES

GEORG ZETZSCHE

This part of the lecture is an introduction to techniques both for devising deci-
sion procedures and for proving undecidability of problems concerning non-regular
languages. Here, we will frequently make use of connections between decidability
and expressiveness.

1. Rational transductions

We begin with studying closure properties of language classes. Informally, a
closure property of a languages class C states that a certain type of transformation
applied to languages in C always yields languages that belong to C as well.

Examples for such transformations are:

(i) Homomorphisms α : X∗ → Y ∗. They transform a language L ⊆ X∗ into
the language α(L) = {α(w) | w ∈ L}.

(ii) Inverse homomorphisms. If α : X∗ → Y ∗ is a homomorphism, then, in-
versely applied to L ⊆ Y ∗, it yields α−1(L) = {w ∈ X∗ | α(w) ∈ L}.

(iii) Intersection with regular sets. For a regular language R ⊆ X∗, this trans-
formation turns a language L ⊆ X∗ into L ∩R.

A language is a subset of X∗ for some finite alphabet X. A language class
is a collection of languages that contains at least one non-empty language. A
language class C is said to be a full trio if it is closed homomorphisms, inverse
homomorphisms, and intersection with regular languages. If instead of arbitrary
homomorphisms, we only require closure under non-erasing homomorphisms (i.e.
α(x) 6= ε for all x ∈ X), then we have a trio.

Examples of full trios are:

• the regular languages,
• the context-free languages, and
• the recursively enumerable languages

(as we will see later). The context-sensitive languages constitute a trio, but not a
full trio.

Proposition 1.1. Every full trio includes the regular languages.

Proof. Suppose C is a full trio and let R ⊆ X∗ be regular. Since C is a language
class, there is a non-empty L ⊆ Y ∗ in C. We define α : Y ∗ → Y ∗ and β : X∗ → Y ∗

to be the homomorphisms with α(y) = ε for all y ∈ Y and β(x) = ε for all x ∈ X.
Then we have α(L) = {ε} and thus β−1(α(L)) = X∗. Hence β−1(α(L)) ∩ R = R.
Since C is a full trio, R belongs to C. �

We will now see a characterization of full trios that

• sometimes simplifies proofs that a class is a full trio and
• provides an intuition for the power of the trio operations.

A finite-state transducer is a tuple A = (Q,X, Y,E, q0, F), where
1

8ce169c 2015-07-23 19:22:52 +0200

2 GEORG ZETZSCHE

• Q is a finite set of states,
• X and Y are the input alphabet and the output alphabet, respectively,
• E is a finite subset of Q×X∗ × Y ∗ ×Q, whose elements are called edges,
• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final states.

A configuration of A is a triple (q, u, v) ∈ Q ×X∗ × Y ∗. We write (q, u, v) →A

(q′, u′, v′) is there is an edge (q, x, y, q′) with u′ = ux and v′ = vy. If there is an

edge (q, x, y, q′), we sometimes denote this fact by q
(x,y)−−−→A q

′.
A transduction is a subset of X∗ × Y ∗ for some finite alphabets X, Y . The

transduction defined by A is

T (A) = {(u, v) ∈ X∗ × Y ∗ | (q0, ε, ε)→∗A (f, u, v) for some f ∈ F}.

A transduction is called rational if it is defined by some finite-state transducer.
Note that if we regard (nondeterministic) finite automata as automata with

labels in the monoid X∗, then finite-state transducers can be seen as automata
with labels in the monoid X∗ × Y ∗. Formulating this for arbitrary monoids leads
to the concept of rational subsets of monoids.

We say that a language class C is closed under rational transductions if for each
language L in C, say L ⊆ X∗, and each rational transduction R ⊆ X∗ × Y ∗, the
language

LR := {v ∈ Y ∗ | (u, v) ∈ R for some u ∈ L}
also belongs to C.

Proposition 1.2. A language class is a full trio if and only if it is closed under
rational transductions.

In order to prove Proposition 1.2, we first need to show that the (full) trio
operations can all be realized by rational transductions.

• Homomorphisms. If α : X∗ → Y ∗ is a homomorphism, then the correspond-
ing transduction Tα = {(w,α(w)) | w ∈ X∗} is defined by the transducer

(x, α(x))

where the loop (x, α(x)) exists for each x ∈ X.
• Inverse homomorphisms. If α : X∗ → Y ∗ is a homomorphism, then the

transduction Tα−1 = (α(w), w) | w ∈ X∗} applies α in reverse and is
realized by

(α(x), x)

where, again, the loop (α(x), x) exists for each x ∈ X.
• If R ⊆ X∗ is a regular language, then we take a finite automaton accepting
R and replace every edge (q, w, q′) by an edge (q, w,w, q′). This yields a
finite-state transducer A with defining TR = {(w,w) ∈ X∗ ×X∗ | w ∈ R},
meaning LR = L ∩R for every language L ⊆ X∗.

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 3

In slight abuse of terminology, we sometimes regard homomorphisms, inverse homo-
morphisms, and regular intersections as rational transductions. Then, we actually
mean the transductions Tα, Tα−1 , and TR as constructed here.

Hence, every language class that is closed under rational transductions is a full
trio. The converse direction is a consequence of the next lemma.

Lemma 1.3 (Nivat). For each rational transduction R ⊆ X∗ × Y ∗, there is an
alphabet Z, homomorphisms α : Z∗ → X∗, β : Z∗ → Y ∗, and a regular language
K ⊆ Z∗ such that R = {(α(w), β(w)) | w ∈ K}.

Proof. Let A = (Q,X, Y,E, q0, F) be a finite-state transducer defining R. We
choose as Z the set of all pairs (x, y) ∈ X∗ × Y ∗ that appear as an edge label in
A. Then, wen can interpret A as a finite automaton A′ over Z and define K as the
language accepted by A′. Let α : Z∗ → X∗ and β : Z∗ → Y ∗ be defined by

α((x, y)) = x, β((x, y)) = y

for every (x, y) ∈ Z. Then (u, v) ∈ R if and only if there is a run

q0
(x1,y1)−−−−→A q1

(x2,y2)−−−−→A · · ·
(xn,yn)−−−−−→A qn

in A with u = x1 · · ·xn and v = y1 · · · yn. This equivalent to the existence of a run

q0
(x1,y1)−−−−→A′ q1

(x2,y2)−−−−→A′ · · ·
(xn,yn)−−−−−→A′ qn

with u = α((x1, y1) · · · (xn, yn)) and v = β((x1, y1) · · · (xn, yn)). This, in turn, is
equivalent to there being a w ∈ K with α(w) = u and β(w) = v.

On the other hand, if R = {(α(w), β(w)) | w ∈ K}, then we can turn a finite-
state automaton A accepting K into a finite-state transducer A′ by replacing every
edge (q, z, q′) with an edge (q, α(z), β(z), q′). Then, clearly, T (A′) = R. �

Corollary 1.4. For each rational transduction R ⊆ X∗ × Y ∗, there is an alphabet
Z, homomorphisms α : Z∗ → X∗, β : Z∗ → Y ∗, and a regular language K ⊆ Z∗

such that for every language L ⊆ X∗, we have LR = β(α−1(L) ∩K).

Proof. Take Z, α, β, and K as provided by Lemma 1.3. Then v ∈ LR if and only if
there is a u ∈ L with (u, v) ∈ R. By the choice of Z, α, β, and K, this is equivalent
to there being a w ∈ K with α(w) ∈ L and β(w) = v. This, in turn, is equivalent
to v ∈ β(α−1(L) ∩K). �

Observe that Corollary 1.4 completes the proof of Proposition 1.2: It tells us
that every rational transductions can be expressed by homomorphisms, inverse
homomorphisms, and intersections with regular languages.

The next theorem allows us to compose rational transductions.

Theorem 1.5 (Elgot & Mezei). If R ⊆ X∗ × Y ∗ and S ⊆ Y ∗ × Z∗ are rational
transductions, then their composition

R ◦ S = {(u,w) ∈ X∗ × Z∗ | ∃v ∈ Y ∗ : (u, v) ∈ R, (v, w) ∈ S}
is rational as well.

Proof. We apply a product construction. Let R and S be given by the finite-
state transducers A = (QA, X, Y,EA, q0,A, FA) and B = (QB , Y, Z,EB , q0,B , FB),
respectively. By introducing intermediate states, we can ensure that every edge
either reads at most one symbol (and outputs nothing) or it outputs at most one

8ce169c 2015-07-23 19:22:52 +0200

4 GEORG ZETZSCHE

symbol (and reads nothing). Hence, we may assume that for (q, x, y, q′) ∈ EA, we
have |x|+ |y| ≤ 1 and for (q, y, z, q′) ∈ EB , we have |y|+ |z| ≤ 1. We construct the
new finite-state transducer C = (QA×QB , X, Y,EC , (q0,A, q0,B), FA×FB) with the
following edges.

• For each (qA, x, ε, q
′
A) ∈ EA, we add an edge

((qA, qB), x, ε, (q′A, qB))

for each qB ∈ QB .
• For each y ∈ Y and edges (qA, ε, y, q

′
A) ∈ EA and (qB , y, ε, q

′
B) ∈ EB , we

add an edge
((qA, qB), ε, ε, (q′A, q

′
B)).

• For each (qB , ε, z, q
′
B) ∈ EB , we add an edge

((qA, qB), ε, z, (qA, q
′
B))

for each qA ∈ QA.

Then we clearly have T (C) = R ◦ S. �

Observe that Corollary 1.4 and Theorem 1.5 immediately imply the following.

Corollary 1.6. The rational transductions are the smallest class of transductions
that is closed under composition and contains homomorphisms, inverse homomor-
phisms, and regular intersections.

Furthermore, Theorem 1.5 permits a simple proof that the regular languages are
closed under rational transductions.

Proposition 1.7. The regular languages constitute a full trio.

Proof. A language is regular if and only if it is accepted by some finite automaton.
This means, a language is regular if and only if it can be written as {ε}R for
some rational transduction R. Suppose L ⊆ X∗ is regular and S ⊆ X∗ × Y ∗ is
rational. Let L = {ε}R for some rational transduction R ⊆ X∗×X∗. Then we have
LS = ({ε}R)S = {ε}(R◦S) and since R◦S ⊆ X∗×Y ∗ is rational by Theorem 1.5,
LS is regular. �

Examples. Let us now see a few examples of relations that are rational.

• Factors. The relation {(uvw, v) | u, v, w ∈ X∗} is rational, since it is defined
by the transducer

(x, ε)

(ε, ε)

(x, x)

(ε, ε)

(x, ε)

where every edge involving x exists for each x ∈ X.
• Scattered subwords. The relation {(u, v) ∈ X∗ ×X∗ | v � u} is defined by

the transducer

(x, ε)

(x, x)

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 5

where, again, every edge involving x exists for each x ∈ X.
• Concatenation with regular languages. We want to show that for each

regular language K ⊆ X∗, the relation R = {(u,wu) | u ∈ X∗, w ∈ K} is
rational. Note that LR = KL.

In this example, it is more convenient to use trio operations. We define
the alphabets X ′ = {x′ | x ∈ X} and Y = X ∪ X ′. Furthermore, let
α : Y ∗ → X∗ and β : Y ∗ → X∗ be the homomorphisms with α(x′) = x and
α(x) = ε and β(x) = β(x′) = x for x ∈ X. Then, clearly,

KL = β(α−1(L) ∩KX ′∗).

Note that if for transductions S, T , we have LS = LT for every language
L, then S = T . Hence, this shows that R is rational.

As an illustration of how to work with full trios, we prove the following.

Proposition 1.8. Every full trio that is closed under union and Kleene iteration
(which transforms L into L∗) is also closed under concatenation.

Proof. Suppose C is a full trio that is closed under union and under Kleene iteration.
Let K ⊆ X∗ and L ⊆ Y ∗ be members of C. Choose c, d /∈ X ∪ Y . Since C is a
full trio, we have cK and dL in C. Since C is union closed, we also find cK ∪ dL
in C. By closure under Kleene iteration, we also have M = (cK ∪ dL)∗ in C. Let
β : (X∪Y ∪{c, d})∗ → (X∪Y)∗ be the homomorphism with β(z) = z for z ∈ X∪Y
and β(c) = β(d) = ε. Then clearly

KL = β(M ∩ cX∗dX∗),

which is in C because cX∗dX∗ is regular. �

An inspection of the proof of Proposition 1.8 shows that the Kleene iteration is
much stronger than what we require here: For example, a squaring operation would
have sufficed. In fact, we will see later that the converse of Proposition 1.8 is not
true: There are language classes that are closed under concatenation (and hence
under finite powers L 7→ Lk), but not under Kleene iteration.

2. Context-free languages

Let us now apply our knowledge of closure properties to the context-free lan-
guages. Of course, these are a very well-known language class and were originally
meant to describe grammatical sentences of natural languages. In the context of
verification, they are used to describe the behavior of recursive programs, since
they are characterized by pushdown automata.

Here, we define context-free languages using pushdown automata. Their defini-
tion, in turn, involves the following description of pushdown operations. Let X be
an alphabet. We define the new alphabets

X̄ = {x̄ | x ∈ X}, X̃ = X ∪ X̄.

We will regard symbols x ∈ X as push operations and symbols x̄ ∈ X̄ as pop
operations, and then for w ∈ X∗ and v ∈ X̃∗, define w · v as the result of applying
the operations in v to the word w.

8ce169c 2015-07-23 19:22:52 +0200

6 GEORG ZETZSCHE

The words over X̃ (and, in fact, the monoid X̃∗) act on the set X∗ ∪ {⊥} as
follows. For w ∈ X∗ and x ∈ X, we have

w · x := wx, w · x̄ :=

{
u if w = ux with u ∈ X∗,
⊥ otherwise,

⊥ · x := ⊥, ⊥ · x̄ = ⊥.

Moreover, we define s · v for s ∈ X∗ ∪ {⊥} and v ∈ X̃∗ recursively by setting

s · ε = s, s · (x̃v) := (s · x̃) · v

for s ∈ X∗ ∪ {⊥}, v ∈ X̃∗, and x̃ ∈ X̃.
A pushdown automaton is a tuple A = (Q,X, Y,E, q0, F), where

• Q is a finite set of states,
• X and Y are its input alphabet and stack alphabet, respectively,
• E is a finite subset of Q×X∗× Ỹ ∗×Q, the members of which are its edges,
• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final states.

A configuration of A is a tuple (q, u, v) ∈ Q × X∗ × Y ∗. We write (q, u, v) →A

(q′, u′, v′) if there is an edge (q, x, y, q′) ∈ E with u′ = ux and v′ = v · y. Note that
in particular, we can only enter a new configuration if v · y is in Y ∗ (and hence
differs from ⊥). The language accepted by A is

L(A) = {w ∈ X∗ | (q0, ε, ε)→∗A (f, w, ε) for some f ∈ F}.
We call a language context-free if it is accepted by some pushdown automaton. The
class of context-free languages is denoted by CF.

In the theory of context-free languages, the semi-Dyck languages play a promi-
nent role. For each n ∈ N, let Xn = {a1, . . . , an}. Then, the language

D′n = {w ∈ X̃∗n | ε · w = ε}
is called semi-Dyck language (over n pairs of parentheses). The special role of the
semi-Dyck languages is expressed in the Chomsky-Schützenberger Theorem and in
order to formulate it, we need some notions.

Let L be a class of languages. The full trio generated by L is defined as the
smallest full trio containing L. If this raises no ambiguities, we sometimes just say
that C is generated by L.

Lemma 2.1. The full trio generated by L consists of precisely those languages of
the form LR, where L is in L and R is a rational transduction.

Proof. Let C be the full trio generated by L and let D consist of the languages of
the form LR. Since C includes L, it has to include D. On the other hand, D is a
full trio: If LR is in D and S is a rational transduction, then (LR)S = L(R ◦ S) is
again in D since R ◦ S is rational. Therefore, C = D. �

Proposition 2.2. The context-free languages constitute a full trio that is generated
by the semi-Dyck languages.

Proof. Let D be the full trio generated by the semi-Dyck languages. We show that
CF coincides with D.

Suppose L ⊆ X∗ is context-free and accepted by the pushdown automaton A.
Without loss of generality, we may assume that the stack alphabet in A is Xn

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 7

for some n ∈ N. Switching the components in the labels of A results in a finite-
state transducer A′ with R = T (A′) ⊆ X̃∗n × X∗. By definition of L(A), we have
L = D′nR. Hence, L belongs to D.

For the other direction, let L ⊆ X∗ be in D. Then, according to Lemma 2.1,
we have L = D′nR for some rational transduction R ⊆ X̃∗n × X∗. Again, by
switching the components in the labels of a finite-state transducer for R, we obtain
a pushdown automaton with stack alphabet Xn that accepts L. �

From Proposition 2.2, we can now deduce the first version of the Chomsky-
Schützenberger Theorem.

Theorem 2.3 (Chomsky-Schützenberger I). A language is context-free if and only
if it can be written as β(α−1(D′n) ∩K) with n ∈ N, homomorphisms α, β, and a
regular language K.

Proof. The “if” direction follows directly from Proposition 2.2 and the “only if”
direction is provided by Proposition 2.2, Lemma 2.1, and Corollary 1.4. �

In order to get some intuition for the languages D′n, let us characterize them in
terms of insertions of factors.

Proposition 2.4. D′n is the smallest subset of X̃∗n that contains ε and such that

whenever uv ∈ D′n with u, v ∈ X̃∗n, we also have uaiāiv ∈ D′n for 1 ≤ i ≤ n.

Proof. Let Ln be the smallest subset of X̃∗n such that ε ∈ Ln and such that uv ∈ Ln
implies uaiāiv ∈ Ln.

Let w ∈ D′n. We show by induction on |w| that w ∈ Ln. If |w| = 0, then
w = ε ∈ Ln, so suppose |w| > 0. We claim that w starts in a symbol from Xn and
ends in a symbol from X̄n.

• Suppose w started in a symbol from X̄n, say w = x̄v for some v ∈ X̃∗n.
Then ε · w = (ε · x̄) · v = ⊥ · v = ⊥ 6= ε, contradicting w ∈ D′n.

• Suppose w ended in a symbol from Xn, say w = vx for v ∈ X̃∗n, x ∈ Xn.
Then, ε·w = (ε·v)·x is either ⊥ or a word ending in x, again a contradiction
to w ∈ D′n.

This means w must have a factor in XnX̄n, say w = uaiājv for u, v ∈ X̃∗n and
ai, aj ∈ Xn. Now suppose i 6= j. First, observe that p := ε · u is in X∗n, because
ε · u = ⊥ would imply ε · w = ⊥, in contradiction to w ∈ D′n. Then, however,

ε · w = (ε · u) · aiājv = ((pai) · āj) · v = ⊥ · v = ⊥.
Therefore, we have i = j and hence w = uaiāiv. Now we claim that uv ∈ D′n.
Since s · aiāi = s for any s ∈ X∗n ∪ {⊥}, We have

ε · uv = (ε · u) · v = ((ε · u) · aiāi) · v
= ε · (uaiāiv) = ε · w = ε,

and thus uv ∈ D′n. By induction, this means uv ∈ Ln and hence w = uaiāiv ∈ Ln.
Now let w ∈ Ln. We prove w ∈ D′n by induction on |w|. This is clear if |w| = 0,

so assume that |w| > 0. Then w = uaiāiv with uv ∈ Ln, u, v ∈ X̃∗n, and ai ∈ Xn.
Since |uv| < |w|, the induction hypothesis yields uv ∈ D′n, meaning ε · uv = ε.
Since, again, s · aiāi = s for every s ∈ X∗n ∪ {⊥}, we have

ε · w = ε · uaiāiv = ((ε · u) · aiāi) · v = (ε · u) · v = ε · uv = ε.

and hence w ∈ D′n. �

8ce169c 2015-07-23 19:22:52 +0200

8 GEORG ZETZSCHE

If there is a language L in C such that C is the full trio generated by the single
language L, then C is said to be a principal full trio. Our next goal is to show
that the context-free languages are in fact a principal full trio, by proving that in
Theorem 2.3, we can always use D′2 instead of D′n.

The homomorphism ιn : X̃∗n → X̃∗2 is defined by

ιn(ai) = a1a
i
2, ι(āi) = āi2ā1.

Moreover, the map ι̂n : X∗n ∪ {⊥} → X∗2 ∪ {⊥} is given by

ι̂n(s) =

{
ιn(s) if s ∈ X∗n,
⊥ otherwise.

These two maps allow us to translate between stack operations on X∗n and stack
operations on X∗2 , which is expressed in the following lemma.

Lemma 2.5. For every u ∈ X∗n and v ∈ X̃∗n, we have ιn(u) · ιn(v) = ι̂n(u · v).

Proof. We proceed by induction on |v|. If |v| = 0, then both sides equal ιn(u), so
let |v| > 0 and write v = xv′.

• Let x ∈ Xn, say x = ai. Then by the induction hypothesis, we have
ι̂n(ux ·v′) = ιn(ux) · ιn(v′). Moreover, we have ιn(x) ∈ X∗n, so that ux ·v′ =
u · xv′ and ιn(u) · ιn(x)ιn(v′) = ιn(u)ιn(x) · ιn(v′). Therefore,

ι̂n(u · v) = ι̂n(u · xv′) = ι̂n(ux · v′) = ιn(ux) · ιn(v′) = ιn(u)ιn(x) · ιn(v′)

= ιn(u) · ιn(x)ιn(v′) = ιn(u) · ιn(xv′) = ιn(u) · ιn(v).

• Let x ∈ X̄n, say x = āi. Now we have to distinguish three cases.
– Suppose u = ε. Then u · v = ⊥ and hence ι̂n(u · v) = ⊥. On the other

hand, we have

ιn(u) · ιn(v) = ε · ιn(v) = ε · ιn(xv′) = ε · āi2ā1ιn(v′) = ⊥

and hence ιn(u) · ιn(v) = ι̂n(u · v).
– Suppose u = u′aj with j 6= i. Then, ι̂n(u · v) = ι̂n(u′aj · āiv′) = ⊥.

Furthermore, we have ιn(u′)a1a
j
2 · āi2ā1ιn(v′) = ⊥. Therefore,

ιn(u) · ιn(v) = ιn(u′aj) · ιn(āiv
′) = ιn(u′)a1a

j
2 · āi2ā1ιn(v′) = ⊥.

�

Proposition 2.6. For every n ∈ N, we have D′n = ι−1n (D′2).

Proof. “⊆”: Let w ∈ D′n. Then ε · w = ε and hence

ε · ιn(w) = ιn(ε) · ιn(w) = ι̂n(ε · w) = ι̂n(ε) = ε

and thus ιn(w) ∈ D′2, meaning w ∈ ι−1n (D′2). “⊇”: Let w ∈ ι−1n (D′2). Then
ε · ιn(w) = ε and therefore

ι̂n(ε · w) = ιn(ε) · ιn(w) = ε · ιn(w) = ε,

which implies ε · w = ε. This means w ∈ D′n. �

This allows us to prove that the context-free languages are a principal full trio:

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 9

Theorem 2.7 (Chomsky-Schützenberger II). A language is context-free if and
only if it can be written as β(α−1(D′2)∩K) for homomorphisms α, β and a regular
language K.

Proof. In light of Theorem 2.3, it suffices to show the “only if” direction. Let L
be context-free. According to Theorem 2.3, there are is an n ∈ N, homomorphisms
α, β, and a regular language K such that L = β(α−1(D′n)∩K). By Proposition 2.6,
this means

L = β(α−1(ι−1n (Dn)) ∩K) = β((α ◦ ιn)−1(D′2) ∩K).

�

3. The hardest context-free language

Theorem 2.7 tells us that the single language D′2 suffices to obtain every context-
free language by way of rational transductions. The context-free languages share
this property with many other language classes–essentially all those that can be
characterized by an automata model with a finite-state control and a finite set of
storage instructions (whose application needs to be valid in some way).

However, in the case of the context-free languages, one can prove something
much stronger: There is even a single language L0, called the “hardest context-
free language”, from which every context-free language (that does not contain ε)
can be obtained via some inverse homomorphisms. To prove this, we first need to
show that a slight change in the operation of a pushdown automaton allows us to
eliminate ε-transitions. This, in turn, makes use of the Greibach normal form.

A context-free grammar is a tuple G = (N,T, P, S), where

• N , T are disjoint alphabets, called nonterminals and terminals, respec-
tively,
• P is a finite subset of N × (N ∪ T)∗, its elements are called productions,

and
• S ∈ N is its start symbol.

A production (A,w) is usually denoted by A→ w. Let us quickly recall how such
a grammar operates. For words u, v ∈ (N ∪ T)∗, we have u ⇒G v if u = xAy and
v = xwy for some production A→ w and x, y ∈ (N ∪ T)∗. The language generated
by G is then

L(G) = {w ∈ T ∗ | S ⇒∗G w},

where, as usual,⇒∗G denotes the reflexive transitive closure of⇒G. We assume that
the reader knows that a language is generated by a context-free grammar if and
only if it is accepted by a pushdown automaton and we assume basic familiarity
with derivation trees.

A context-free grammar is in Greibach normal form (GNF) if every production is
in N × TN∗. In other words, every right-hand side begins with a terminal symbol.
We will show that every context-free grammar (that does not generate ε) has an
equivalent in GNF. This requires the elimination of ε-productions. A production
A→ w is called ε-production if w = ε.

Proposition 3.1. For each context-free grammar G with ε /∈ L(G), we can compute
an equivalent context-free grammar G′ without ε-productions.

8ce169c 2015-07-23 19:22:52 +0200

10 GEORG ZETZSCHE

Proof. As a first step, we compute the set E = {A ∈ N | A⇒∗G ε}. To this end, let

Ei = {A ∈ N |A can derive ε with a derivation tree of height ≤ i}.

Here, we assume that a single leaf has height 0. Observe that E =
⋃
i≥0Ei and

∅ = E0 ⊆ E1 ⊆ · · · .
(1) Ei+1 = {A ∈ N | ∃A→ w ∈ P : w ∈ E∗i }.
This means if Ei = Ei+1, then Ej = Ei for all j ≥ i. This implies E = En, where
n = |N |: Indeed, if En (E, then En (En+1 and thus Ei (Ei+1 for all 1 ≤ i ≤ n
and therefore |E| ≥ n+ 1, which is impossible.

Hence, we can compute E = En by successively computing Ei+1 according to
Eq. (1).

We now transform G into the new grammar G′ as follows. For every production
A→ x1 · · ·xm in P with x1, . . . , xm ∈ N ∪T and every subset ∆ ⊆ {1, . . . ,m} with
xi ∈ E for i ∈ ∆, we add a new production A → xi1 · · ·xik , where i1 < · · · < ik
and {i1, . . . , ik} = {1, . . . ,m} \ ∆. Moreover, we remove all ε-productions. The
new grammar G′ clearly satisfies L(G′) ⊆ L(G).

For the converse direction, let w ∈ L(G) and let t be a derivation tree for w.
In t, we delete every subtree with yield ε. Since w 6= ε, this affects only proper
subtrees and by construction of G′, the new tree t′ is a derivation tree of G′. It
derives the word w, meaning w ∈ L(G′). �

Let us now describe how to achieve the Greibach normal form.

Proposition 3.2. For each context-free grammar G with ε /∈ L(G), one can con-
struct an equivalent in Greibach normal form.

Proof. If clearly suffices to construct a grammar with P ⊆ N × T (N ∪ T)∗. Let
G = (N,T, P, S) be a context-free grammar without ε-productions. We call a G
ordered if there is a linear order on N ∪ T such that a < A for each a ∈ T and
A ∈ N . Let A → xw be a production, where x ∈ N ∪ T and w ∈ (N ∪ T)∗. Then
we call this production

• increasing if A < x,
• decreasing if A > x, and
• looping if A = x.

Moreover, we call a production A-production if A is its left-hand side.
Suppose, for a moment, that in G, every production is decreasing. Then we

can unfold the first symbol of each right-hand side, i.e. replace the production
A → Bw with A → w1w, . . . , A → wnw, where B → w1, . . . , B → wn are all the
B-productions. Since N is finite, if we unfold again and again, we end up with a
grammar in Greibach normal form. This means, it suffices to construct a grammar
in which every production is decreasing. We do this as follows.

Suppose N = {A1, . . . , An}. We add new nonterminals N ′ = {B1, . . . , Bn} and
order the symbols so that A1 < · · · < An < B1 < · · · < Bn. Now, step by step, we
make all productions in our grammar decreasing. For each i = n, . . . , 1, we change
the productions so that every Aj-production with j ≥ i is decreasing.

We start with i = n and repeat the following for each n ≥ i ≥ 1. We have the
following invariant in every step:

• for every C > Ai, every C-production is decreasing, and
• for every C ≤ Ai, the right-hand side of every C-production is in (N ∪T)∗.

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 11

We call this invariant (∗). We proceed in two steps.

(i) If there are increasing Ai-productions, we can unfold them until all Ai-
productions are looping or decreasing (this is possible because of (∗)).

(ii) After the first step, we may assume that all Ai-productions are looping or
decreasing. Let Ai → Aiw1, . . . , Ai → Aiwm be all looping Ai-productions
and let Ai → z1, . . . , Ai → zk be all decreasing Ai-productions. Of course,
we may assume that wj 6= ε for all j, since otherwise, the production
Ai → Aiwj could be removed. Note that using left derivations, these
permit precisely the derivation of sentential forms in

(z1 + · · ·+ zk)(w1 + · · ·+ wm)∗.

Therefore, we replace the looping productions with the new productions

Ai → z1Bi, . . . , Ai → zkBi,

Bi → w1Bi, . . . , Bi → wmBi,

Bi → w1, . . . , Bi → wm.

Observe that these new productions are all decreasing: Because of (∗), the
words w1, . . . , wm are all in (N ∪T)∗, meaning their first symbol is smaller
than Bi. Moreover, our invariant (∗) now holds for i− 1.

In the end, our invariant implies that all productions are decreasing, which we
wanted to achieve. �

We now use the Greibach normal form to get one step closer to the hardest
context-free language: We show that every context-free language can be obtained
from a particular language using finite-state transducers with only one state. A
finite-state transducer A = (Q,X, Y,E, q0, F) is called ε-free if for every edge
(q, x, y, q′) ∈ E, we have y 6= ε. It is said to be stateless if Q = {q0}. For

each n ∈ N, we define the language In ⊆ X̃∗n as

In = {w ∈ X̃∗n | a1 · w = ε}.
Note that In is very similar to the semi-Dyck language, the only difference being
that the action sequences in In are applied to a1 instead of ε.

Proposition 3.3. For each context-free language L with ε /∈ L, there is an ε-free
stateless finite-state transducer A such that L = In(T (A)) for some n ∈ N.

Proof. Let G = (N,T, P, S) be a grammar in Greibach normal form for L. Without
loss of generality, let N = Xn, so N = {a1, . . . , an}, and S = a1. For each
production ai → xw with x ∈ T and w ∈ X∗n, we include an edge

(q0, āiw
R, x, q0),

where wR denotes the word w in reverse. The reader will easily verify by induction
on m ∈ N: A word vw, v ∈ T ∗, w ∈ N∗, is derivable by a left derivation in m
steps in G if and only if there is a word u ∈ X̃∗n such that w = (a1 · u)R and
(q0, ε, ε)→m

A (q0, u, v).
Since L consists of those words that are derivable in G using left derivations,

this implies L = In(T (A)). �

As we will see, Proposition 3.3 means that In (or, via a variant of ιn, I2) is
fit to be used as a building block for the hardest language. However, we will use
#D′n (more precisely: #D′2) instead, because (i) this highlights the similarity to

8ce169c 2015-07-23 19:22:52 +0200

12 GEORG ZETZSCHE

the Chomsky-Schützenberger theorem and (ii) Greibach herself used this language.

In the following, # is a fresh symbol, i.e. # /∈ X̃n. This means, #D′n is the set of
all words #w with w ∈ D′n.

Proposition 3.4. For each context-free language L with ε /∈ L, there is an ε-free
stateless finite-state transducer A such that L = #D′2(T (A)).

Proof. We proceed in two steps. First, we show that there is always an n ∈ N such
that the proposition holds for #D′n instead of #D′2.

Suppose L = In(T (A)) for a stateless ε-free finite-state transducer A and n ∈ N.

Then, for each edge (q0, w, x, q0) in A with w ∈ X̃∗n and x ∈ X, we add the edge

(q0,#a1w, x, q0)

and thereby obtain the transducer A′. Since for w ∈ X̃∗n, we have w ∈ In if and
only if #a1w ∈ #D′n, this means L = In(T (A)) = #D′n(T (A′)).

Now going from #D′n to #D′2 is again an application of Proposition 2.6: If

α : (X̃n ∪ {#})∗ → (X̃2 ∪ {#})∗ is the homomorphism that agrees with ιn on X̃n

and fixes #, then clearly #D′n = α−1(#D′2). This means, we can take A′ and
replace every edge (q0, y, x, q0) with (q0, α(y), x, q0) and obtain an ε-free stateless
finite-state transducer A′′ with L = #D′n(T (A′)) = #′D2(T (A′′)). �

Note that in Proposition 3.4, one cannot replace #D′2 with D′2: Just like in the
exercises, one can show that this would imply that every context-free language L
satisfies LL ⊆ L, which fails already for regular languages. Here, the # breaks the
symmetry of D′2 and thereby enables us to get rid of states.

Observe that a stateless ε-free finite-state transducer is almost a homomorphism:
Assume that it outputs at most one letter per edge. Then, for each letter x, there
are finitely many edges (q0, w1, x, q0), . . . , (q0, wn, x, q0). Hence, when producing x,
the transducer appends one of the words w1, . . . , wn to the word that, in the end,
has to be a word from #D2. In contrast, an inverse homomorphism assigns to each
input letter precisely one word. Therefore, the last step is to expand the control
language so that it can receive finitely many potential factors of #D′2 at once.

Let Y0 = X̃2∪{#,+, [,]}. The Greibach language L0 ⊆ Y ∗0 is the set of all words

(2) [w1,1 + · · ·+ w1,n1
][w2,1 + · · ·+ w2,n2

] · · · [wm,1 + · · ·+ wm,nm
]

for which wi,j ∈ (X̃2∪{#})∗ and there is a choice function f : {1, . . . ,m} → N such
that 1 ≤ f(i) ≤ ni for 1 ≤ i ≤ m and the word

w1,f(1)w2,f(2) · · ·wm,f(m)

belongs to #D′2. Observe that in particular, this means m ≥ 1, since #D′2 does not
contain ε. As the choice of symbols suggests, the word (2) corresponds to a product
of polynomials in non-commuting variables. Then, the condition of belonging to
L0 states: If we were to compute this product as a polynomial, then one of its
monomials would be a word in #D′2.

Proposition 3.5. L0 is context-free.

Proof. Exercise. �

We are finally ready to prove the well-known result of Greibach that L0 is a
hardest context-free language.

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 13

Theorem 3.6 (Greibach). For every context-free language L ⊆ X∗ with ε /∈ L,
there is a homomorphism α : X∗ → Y ∗0 such that L = α−1(L0).

Proof. Take the ε-free stateless finite-state transducer A with L = #D′2(T (A))
provided by Proposition 3.4. By introducing intermediate states, we may assume
that every edge in A is of the form (q0, w, x, q0) with x ∈ X. Fix x ∈ X and let

(q0, w1, x, q0), . . . , (q0, wk, x, q0)

be all edges of A that read x. Then, we put

α(x) := [w1 + · · ·+ wk].

Now the definition of L0 immediately yields that for w ∈ X∗, we have α(w) ∈ L0

holds if and only if w ∈ #D′2(T (A)). This means L = α−1(L0). �

4. The triple construction

Here, we shall become acquainted with a versatile construction for grammars.
Specifically, we see a proof that the context-free grammars define a full trio. Of
course, this also follows from the equivalence of these grammars with pushdown
automata. However, instead of providing a direct translation, we present a proof
employing the triple construction. The advantage is that variants of this construc-
tion can be applied to almost every type of grammar.

First, we have another collection of closure properties that characterize full trios.
It involves the shuffle product, which is defined as follows. For languages K,L ⊆ X∗,
we put

K � L = {v0u1v1 · · ·unvn | u1 · · ·un ∈ K, v0 · · · vn ∈ L,
u1, . . . , un, v0, . . . , vn ∈ X∗}.

Proposition 4.1. A language class is a full trio if and only if it is closed under

• homomorphisms,
• intersection with regular sets, and
• flooding, which, for some a ∈ X, maps L ⊆ X∗ to L� {a}∗.

Proof. Exercise. �

The reason we use Proposition 4.1 is that inverse homomorphisms are usually
awkward to realize in grammar constructions. Flooding, on the other hand, is very
natural:

Proposition 4.2. For each context-free grammar G = (N,T, P, S), homomorphism
α : T ∗ → U∗, and a ∈ T , one can construct context-free grammars G′ and G′′ with

L(G′) = α(L(G)), L(G′′) = L(G)� {a}∗.
Proof. Exercise. �

Since we want to show that the context-free grammars generate a full trio, Propo-
sition 4.2 leaves us with the task of proving closure under regular intersecion. This
is where the triple construction comes into play. Our proof will employ the following
notation. For a context-free grammar G = (N,T, P, S) and A ∈ N , we write

LG(A) = {w ∈ T ∗ | A⇒∗G w}.
Similarly, if A = (Q,X,E, q0, F) is a finite automaton and p, q ∈ Q, we write

LA(p, q) = {w ∈ X∗ | p w−→ q}.

8ce169c 2015-07-23 19:22:52 +0200

14 GEORG ZETZSCHE

Proposition 4.3. Given a context-free grammar G = (N,T, P, S) and a regular
language R ⊆ T ∗, one can construct a context-free grammar G′ such that we have
L(G′) = L(G) ∩R.

Proof. Take a finite automaton A = (Q,T,E, q0, F) that accepts R. We may
assume that the edges of A are all in Q × T × Q and F = {qf} (why?). Our new
grammar has triples as nonterminals

N ′ = Q× (N ∪ T)×Q,
hence the name “triple construction”. As the new start symbol S′, we choose
(q0, S, qf). The productions of G′ are set up as follows. For every production
B → w in P with w = x1 · · ·xn, x1, . . . , xn ∈ N ∪ T , we include all productions

(p,B, q)→ (p1, x1, q1) · · · (pn, xn, qn)

where qi = pi+1 for 1 ≤ i < n, p1 = p, and qn = q. Moreover, for every edge (p, a, q)
in A, we add a production

(p, a, q)→ a.

We claim that for each (p,B, q) ∈ N ′, we have

LG′((p,B, q)) = LG(B) ∩ LA(p, q).(3)

“⊆”: Suppose w ∈ LG′((p,B, q)). Then (p,B, q) ⇒n
G′ w for some n ≥ 1. By

induction on n, one can easily show that then w ∈ LG(B) ∩ LA(p, q).
“⊇”: Suppose w ∈ LG(B) ∩ LA(p, q). Then, for some n ≥ 1, we have B ⇒n

G w

and p
w−→ q. Again, by induction on n, we can convince ourselves that then w

belongs to LG′((p,B, q)).
We have thus shown Eq. (3). Since R = LA(q0, qf), this implies

L(G′) = LG′((q0, S, qf)) = LG(S) ∩ LA(q0, qf) = L(G) ∩R.
�

5. General undecidability results

In this section, we will see some general techniques to prove undecidability.
We consider decision problems whose input is a language from a full trio. Since

formally, decision problems always have strings as input, we need to describe our
languages finitely. Therefore, we assume that for the full trios we consider, there is
some form of representation for the languages. This is then used as the actual input.
For example, regular languages can be represented by finite automata and context-
free languages are represented by pushdown automata. We also assume that the
application of all mentioned closure properties can be carried out effectively. For
example, given a representations of a language L and of a finite-state transducer
A, one can compute a representation of L(T (A)).

When we prove undecidability of a problem A, we usually take a problem B that
is known to be undecidable and reduce it to A. Here, the role of B will be played
by the Post Correspondence Problem (PCP), which is defined as follows.

Input: Homomorphisms α, β : X∗ → Y ∗ for some alphabets X, Y
Question: Is there a word w ∈ X+ such that α(w) = β(w)?

Observe that it is important to look for a word in X+ (as opposed to X∗), be-
cause otherwise, the answer would always be yes, rendering the problem trivially
decidable.

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 15

Theorem 5.1 (Post). The PCP is undecidable.

The first decision problem we consider is the universality problem. Formally, the
if C is a language class, then the universality problem for C is defined as follows.

Input: A language L ⊆ X∗ in C for some alphabet X
Question: Does L equal X∗?

We will see that the universality problem is undecidable for a large variety of
full trios, namely all those that contain the language

S= = {anbn | n ≥ 0}.
In fact, the most difficult part has already been shown in the exercises. For the sake
of completeness, we record the statement of the exercise. For each homomorphism
α : X∗ → Y ∗ with X ∩ Y = ∅, we have the language

Pα = {wα(w) | w ∈ X∗}.

Proposition 5.2. Let X and Y be disjoint alphabets and let α : X∗ → Y ∗ be a
homomorphism. Then, the language (X ∪ Y)∗ \ Pα is contained in the full trio
generated by S=. Moreover, given α, the representation of (X ∪ Y)∗ \ Pα can be
computed.

(The part after “Moreover” was not asked in the exercise, but is obvious from
the solution.)

We also need the fact that principal full trios are closed under union. (In fact,
among the finitely generated full trios, this characterizes principal full trios, whichis
why we extend the exercise a bit.)

Proposition 5.3. Let C be a finitely generated full trio, i.e. generated by a finite
set of languages. Then, C is a principal full trio if and only if C is closed under
union.

Proof. Exercise. �

We can now use Proposition 5.2 to prove the undecidability of the universality
problem. The following applies to a fairly large class of full trios, given that the
language S= is very simple.

Theorem 5.4. Let C be a full trio that contains S=. Then, universality is unde-
cidable for C.

Proof. We reduce the PCP to the universality problem for C. Hence, suppose
we are given two homomorphisms α, β : X∗ → Y ∗. We may clearly assume that
X ∩ Y = ∅. Let Z = X ∪ Y . Then, the PCP asks whether Pα ∩ Pβ ∩ X+Y ∗ is
non-empty. Equivalently, it asks whether the language

K = (Z∗ \ Pα) ∪ (Z∗ \ Pβ) ∪ (Z∗ \X+Y ∗)(4)

includes all of Z∗. Since Z∗ \ X+Y ∗ is regular, applying Proposition 5.2 to the
principal full trio generated by S=, we see that K belongs to C (and we can compute
a representation for it). Hence, we have Z∗ ⊆ K if and only if the answer to the
PCP is “no”. �

The input to the universality problem is a language over some alphabet X. Of
course, this raises the question whether the problem becomes decidable for small,
fixed alphabets. This motivates the binary universality problem for C:

8ce169c 2015-07-23 19:22:52 +0200

16 GEORG ZETZSCHE

Input: A language L ⊆ {a, b}∗ in C
Question: Does L equal {a, b}∗?

Theorem 5.5. For each full trio C, the universality problem for C can be reduced
to the binary universality problem for C.

Proof. Let L ⊆ X∗ be an instance of the universality problem for C and suppose
X = {x1, . . . , xn}. Consider the homomorphism α : X∗ → {a, b}∗ with α(ai) = bai

for 1 ≤ i ≤ n. We claim that

X∗ ⊆ L if and only if {a, b}∗ ⊆ α(L) ∪ {a, b}∗ \ α(X∗).

“=⇒”: Suppose X∗ ⊆ L and w ∈ {a, b}∗. We distinguish two cases. If w ∈ α(X∗),
say w = α(u) with u ∈ X∗, then u ∈ L and hence w = α(u) ∈ α(L). If w /∈ α(X∗),
then of course, w ∈ {a, b}∗ \ α(X∗).

“⇐=”: Suppose {a, b}∗ ⊆ α(L) ∪ {a, b}∗ \ α(X∗) and w ∈ X∗. Then, by
assumption, α(w) ∈ α(L) ∪ {a, b}∗ \α(X∗), but we also have α(w) ∈ α(X∗). This
only leaves α(w) ∈ α(L). Since α is injective, this implies w ∈ L. This proves our
claim.

Since α(L) ∪ {a, b}∗ \ α(X∗) belongs to C (why?) and we can compute a
representation of it, this reduces the universality problem to the binary universality
problem. �

Next, we want to apply the undecidability of the universality problem: We
consider the problem of deciding whether a given language belongs to a particular
class. Unfortunately, this will again be undecidable in most cases.

The proof requires a simple lemma. For languages K,L ⊆ X∗, we define

K−1L = {w ∈ X∗ | ∃v ∈ K : vw ∈ L}.

We call K−1L the quotient of L with respect to K.

Lemma 5.6. Full trios are closed under quotients with respect to regular languages.
In other words, if L belongs to the full trio C and K is regular, then K−1L belongs
to C as well.

Proof. Let X ′ = {x′ | x ∈ X} consist of fresh symbols. We define the homomor-
phisms α, β : (X ∪X ′)∗ → X∗ by α(x) = α(x′) = x, β(x′) = x, and β(x) = ε for
all x ∈ X. Then, we clearly have K−1L = β(α−1(L) ∩KX ′∗). �

Theorem 5.7 (Greibach). Let C and D be full trios such that

(i) D is not included in C
(ii) D contains S= = {anbn | n ≥ 0}, and

(iii) D is closed under union.

Then, the C-membership problem for D is undecidable:

Input: A language L in D.
Question: Does L belong to C?

Proof. Since D is not included in C, there is a language D ⊆ X∗ in D that does not
belong to C.

According to Theorem 5.4, the universality problem is undecidable for D. There-
fore, we reduce the undecidability problem for D to the C-membership problem.

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 17

Hence, let L ⊆ Y ∗ be a given member of D. Moreover, let # /∈ X ∪ Y be a fresh
symbol. By the assumed closure properties, the language

K = L#X∗ ∪ Y ∗#D

is contained in D. We now show that K is in C if and only if L = Y ∗, clearly
completes our reduction. We begin with the “if” statement. Suppose L = Y ∗.
Then

K = L#X∗ ∪ Y ∗#D = Y ∗#X∗,

which is regular and hence contained in C. Now suppose L 6= Y ∗ and K ∈ C. Then
there is a word w ∈ Y ∗ \ L. By Lemma 5.6, we have {w#}−1K ∈ C. However, we
will show that {w#}−1K = D.

• “⊆”: Let v ∈ {w#}−1K. Then w#v ∈ K = L#X∗ ∪ Y ∗#D. Since w /∈ L,
this means w#v ∈ Y ∗#D and hence v ∈ D.
• “⊇”: Let v ∈ D. Then w#v ∈ Y ∗#D ⊆ K and thus v ∈ {w#}−1K.

This means, however, that D belongs to C, in contradiction to the choice of D. �

Next, we mention an undecidability results that will permit us to prove that
the set of palindromes (i.e. the set of words w with wR = w) is not a Petri net

language. Recall that Xn = {a1, . . . , an}, X̄n = {ā1, . . . , ān}, and X̃n = Xn ∪ X̄n.
For each homomorphism α : X∗ → Y ∗, let

Qα = {wα(wR) | w ∈ X∗},

where, again, wR is the word w in reverse. Moreover, let γn : X∗n → X̄∗n be the
homomorphism that adds bars: γn(ai) = āi for 1 ≤ i ≤ n. With this, we define

Qn = Qγn = {wγn(wR) | w ∈ X∗n}.

The set of palindromes over X is the set of all w ∈ X∗ such that wR = w. First,
we want to understand which full trios contain the languages Qα and the set of
palindromes.

Proposition 5.8. Let C be a full trio. Then, the following are equivalent:

• C contains Q2

• C contains the set of palindromes over {a, b}.
• C contains Qα for every homomorphism α : X∗ → Y ∗.

Proof. Exercise. �

Theorem 5.9. Let C be a full trio that contains Q2 (or the set of palindromes over
{a, b}). Then, the intersection problem for C is undecidable:

Input: Languages K,L in C.
Question: Is the intersection K ∩ L empty?

Proof. We reduce the PCP to the intersection problem, so suppose α, β : X∗ → Y ∗

are homomorphisms and define the homomorphisms αR, βR : X∗ → Y ∗ so that
αR(x) = α(x)R and βR(x) = β(x)R for x ∈ X. According to Proposition 5.8, C
effectively contains QαR and QβR . Observe that our PCP instance has a solution
if and only if QαR ∩ QβR ∩X+Y ∗ 6= ∅ and since QαR ∈ C and QβR ∩X+Y ∗ ∈ C,
this is an instance of the intersection problem for C. �

8ce169c 2015-07-23 19:22:52 +0200

18 GEORG ZETZSCHE

6. The recursively enumerable languages

In this section, we present a language that generates the recursively enumerable
languages as a full trio. This will allow us to show that the Petri net languages are
not closed under Kleene iteration.

Recall that D′n = {w ∈ X̃∗n | ε · w = ε}. Here, we also need

D̂′1 = {w ∈ {a2, ā2}∗ | ε · w = ε}.

Clearly, D̂′1 is a homomorphic image of D′1. Let #1,#2 /∈ X̃n be fresh symbols and
define

C = (D′1#1)∗ � (D̂′1#2)∗.

We want to show that C generates the recursively enumerable languages as a full
trio. Observe that if we interpret

• ai as ‘increment counter i’,
• āi as ‘decrement counter i’, and
• #i as ‘test counter i for zero’ (i.e. proceed only if counter i is zero),

then C is the set of instruction sequences that operate faithfully on two coun-
ters. Therefore, we can use C and rational transductions to simulate two-counter
machines.

A two-counter machine is a tuple A = (Q,X,E, q0, F), where

• Q is a finite set of states,
• X is its input alphabet,
• E is a finite subset of Q × X∗ × {0, 1} × {−1, 0, 1} × Q, called the set of

edges,
• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final states.

The counters in a two-counter machine can only assume non-negative values. There-
fore, a configuration is a tuple (q, w, c0, c1) ∈ Q×X∗ ×N×N. Intuitively, an edge
(q, u, i, d) tells us to operate on counter i and apply the operation indicated by
d ∈ {−1, 0, 1}, where −1, 0, 1 means decrement, zero test, and increment, respec-
tively. Let us define this formally. For configurations (q, w, c0, c1), (q′, w′, c′0, c

′
1), we

write (q, w, c0, c1)→A (q′, w′, c′0, c
′
1) if there is an edge (q, u, i, d, q′) with w′ = wu,

c′1−i = c1−i, and

• If d ∈ {−1, 1}, then c′i = ci + d and
• if d = 0, then c′i = ci = 0.

The language accepted by A is defined as

L(A) = {w ∈ X∗ | (q0, ε, 0, 0)→∗A (f, w, 0, 0) for some f ∈ F}.

Theorem 6.1 (Minsky). The languages accepted by two-counter machines are pre-
cisely the recursively enumerable languages.

Corollary 6.2. The recursively enumerable languages are the smallest full trio
containing C.

Proof. Since C is recursively enumerable, every language CR with a rational trans-
duction R is recursively enumerable as well. Hence, the smallest full trio containing
C is included in the recursively enumerable languages.

Let L be recursively enumerable and let A be a two-counter machine accepting
L. From A, we construct the finite-state transducer A′ as follows. A′ has the same

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 19

states, initial state, and final states as A. Moreover, it has the following edges: For
each edge (q, u, d1, d2, q

′) in A, we add an edge (q, u, v, q′), where

v =



a1 if i = 0, d = 1,

ā1 if i = 0, d = −1,

#1 if i = 0, d = 0,

a2 if i = 1, d = 1,

ā2 if i = 1, d = −1,

#2 if i = 1, d = 0.

Then, since C is the set of legal instruction sequences for two counters, we have
CT (A′) = L(A) = L. �

Remark. In this section, we have seen a number of undecidability results for full
trios. Since the problems we proved undecidable are often useful in the con-
text of verification, an important line of research seeks restricted models that
still permit decision procedures. Notable examples are deterministic pushdown
automata [Koz97] and visibly pushdown automata [AM04]. Compared to general
pushdown automata, these models have less freedom to operate for a given input
word. This means, it is easier to reason about how an automaton will behave for
certain inputs.

For example, for deterministic or visibly pushdown automata, it is decidable
whether they accept a regular language [Ste67; BLS06]. Moreover, a famous result
of Sénizergues [Sen97] states that the equivalence problem (given two languages
K,L, does K = L?) is decidable for deterministic pushdown automata. (Note that
Theorem 5.4 implies that this is undecidable for general pushdown automata.) For
visibly pushdown automata, an analogous problem is also decidable [AM04].

7. Petri net languages

In this section, we apply the general results on full trios to the class of Petri
net languages. Specifically, we show how decidability and undecidability results
can be used to make conclusions about expressiveness. The definition of Petri net
languages already appeared in the exercises, but we include it here as a reminder.
A labeled Petri net is a tuple N = (S, T,W,M0, X, λ, F), where

• (S, T,W,M0) is a marked Petri net,
• X is its label alphabet,
• λ : T → X ∪ {ε} is its labeling function,
• F ⊆ NS is a finite set of final markings.

The language accepted by N is defined as

L(N) = {w ∈ X∗ | ∃σ ∈ T ∗,M ∈ F : M0[σ〉M, w = λ(σ)}.
Note that here, we identified λ with the unique extension of λ to a homomorphism
T ∗ → X∗. It was an exercise to show the following.

Proposition 7.1. The Petri net languages form a full trio.

We have already mentioned the following result.

Theorem 7.2 (Mayr). The reachability problem for Petri nets is decidable.

As a simple consequence of Theorem 7.2, we have:

8ce169c 2015-07-23 19:22:52 +0200

20 GEORG ZETZSCHE

Proposition 7.3. The emptiness problem is decidable for Petri net languages:

Input: A Petri net language L.
Question: Is L empty?

In particular, each Petri net language itself is decidable.

The following is almost a characterizing property of the Petri net languages: In
an exercise, it will be shown that the Petri net languages are the smallest full trio
that contains D′1 and is closed under intersection.

Proposition 7.4. The Petri net languages are closed under shuffle. In particular,
they are closed under intersection.

Proof. In order to construct a Petri net for the shuffle language, one can just take
the disjoint union of two Petri nets and combine the initial and the final markings.
It was an exercise to show that a full trio is closed under shuffle if and only if it is
closed under intersection. This proves the second statement. �

We are ready to deduce inexpressibility results from decidability and undecid-
ability. Together, Corollary 6.2 and Proposition 7.3 almost immediately imply the
following.

Proposition 7.5. The following languages are not Petri net languages:

• C,
• the palindromes over {a, b},
• (D′1#1)∗.

In particular, the Petri net languages are not closed under Kleene iteration.

Proof. If C were a Petri net language, then every recursively enumerable language
would be a Petri net language because of Corollary 6.2. However, Proposition 7.3
tells us that every Petri net language is decidable.

Since C can be obtained from (D′1#1)∗ by applications of a homomorphism and
shuffle, this means (D′1#1)∗ is not a Petri net language either.

Furthermore, if the palindromes over {a, b} were a Petri net language, this would
imply undecidability of the intersection problem for the Petri net languages (The-
orem 5.9). However, Propositions 7.3 and 7.4 imply that this problem is decidable.

Finally, the language D′1 is easily seen to be accepted by the labeled Petri net

a1 ā1

with empty initial and final marking. This means, D′1#1 is also a Petri net language.
�

Corollary 7.6. The Petri net languages and the context-free languages are incom-
parable.

Proof. The language (D′1#1)∗ and the palindromes over {a, b} are two examples
of languages that are context-free but do not belong to the Petri net languages.
Moreover, the language {anbncn | n ≥ 0} is a Petri net language (exercise!), but
not context-free. �

Corollary 7.7. The following two problems are undecidable:

• Given a Petri net language L, is L context-free?
• Given a context-free language L, is L a Petri net language?

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 21

Proof. Since S= is both context-free and a Petri net language, and both classes are
closed under union, this follows immediately from Corollary 7.6 and Theorem 5.7.

�

8. Downward closures

In this section, we learn about the computation of downward closure. In other
words, we study the question for which language classes C there is an algorithm that,
given a language L in C, computes a finite automaton for L↓. We are interested in
this because downward closures are abstractions of languages that reflect important
properties:

• L is infinite if and only if L↓ is infinite.
• a can occur somewhere after b in a word in L if and only if ba ∈ L↓.

Moreover, maybe more importantly, if we can compute finite automata for down-
ward closures, we can decide whether K↓ ⊆ L↓ for given languages K,L in C. Note
that straight inclusion (“Does K ⊆ L?”) is almost always undecidable!

This means, downward closure are an alternative when we want to abstract lan-
guages from a class that does not guarantee semilinearity of Parikh images: We
know that the downward closure is always regular, but Parikh images are not al-
ways semilinear (for example, in the case of Petri net languages). However, while
downward closures are always regular, it is not clear when we can effectively con-
struct finite automata for them. Let us formalize this problem.

If C is a language class, we say that downward closures are computable for C if
there is an algorithm that, given a language L in C, computes a finite automaton
for the language L↓.

A useful tool for the analysis of downward closed languages are the so-called
ideals. An ideal is a language of the form

X∗0{x1, ε}X∗1 · · · {xn, ε}X∗n,

where X0, . . . , Xn are alphabets and x1, . . . , xn are letters. Clearly, every ideal is
downward closed. The converse is not true. For example, the language {a, b, ε} is
downward closed, but not an ideal. However, the following theorem tells us that
the converse is almost true.

Theorem 8.1 (Jullien ’69, Abdulla et. al. ’04). A language L is downward closed
if and only if it a finite union of ideals.

In order to prove Theorem 8.1, we need a lemma.

Lemma 8.2. If I and J are ideals, then IJ is a finite union of ideals.

Proof. Supppose I = X∗0{x1, ε}X∗1 · · · {xn, ε}X∗n and J = Y0{y1, ε}Y ∗1 · · · {ym, ε}Y ∗m.
Observe that Y ∗0 = {ε} ∪

⋃
y0∈Y0

{y0, ε}Y ∗0 . Therefore, we have

IJ =X∗0{x1, ε}X∗1 · · · {xn, ε}X∗n{y1, ε}Y ∗1 · · · {ym, ε}Y ∗m
∪

⋃
y0∈Y0

X∗0{x1, ε}X∗1 · · · {xn, ε}X∗n{y0, ε}Y ∗0 {y1, ε}Y ∗1 · · · {ym, ε}Y ∗m.

�

This allows us to prove Theorem 8.1.

8ce169c 2015-07-23 19:22:52 +0200

22 GEORG ZETZSCHE

Proof of Theorem 8.1. In the lecture, we have already seen that for every language
L, the language L↓ is regular. This means in particular that every downward closed
language L can be written in the form R↓ with a regular language R. Therefore, it
suffices to prove: for every regular language R ⊆ X∗, its downward closure R↓ is a
finite union of ideals.

We proceed by induction with respect to a rational (also known as: regular)
expression for R.

• If R = ∅, then R is trivially a finite union of ideals.
• If R = {x}, then R↓ = {x, ε} is an ideal.
• If R = ST , then by induction we have S =

⋃
1≤i≤n In and T =

⋃
1≤i≤m Ji

with ideals Ii and Ji. Observe that

R = ST =
⋃

1≤i≤n,1≤j≤m

IiJj

and since each IiJj is a finite union of ideals (Lemma 8.2), this proves that
R is such a finite union.
• If R = S ∪T , then this follows directly from the fact that S and T are each

a finite union of ideals.
• If R = S∗, then we define Y = {x ∈ X | ∃w ∈ S : |w|x ≥ 1} the set of all

letters that occur in some member of S. We claim that R↓ = Y ∗. Of course,
we have R ⊆ Y ∗ and hence R↓ ⊆ Y ∗. On the other hand, if w ∈ Y ∗, then
by definition of Y , each letter in w occurs in a word from S: We can write
w = x1 · · ·xn, x1, . . . , xn ∈ Y and find w1, . . . , wn ∈ S such that |wi|xi

≥ 1
for 1 ≤ i ≤ n. Then the word w1 · · ·wn belongs to S∗, and since w is a
subword of w1 · · ·wn, this implies w ∈ S∗↓ = R↓. This proves R↓ = Y ∗. In
particular, R↓ is an ideal.

�

Our characterization of when downward closures are computable involves a de-
cision problem. The simultaneous unboundedness problem (SUP) for C is the fol-
lowing decision problem:

Input: A language L ⊆ a∗1 · · · a∗n in C.
Question: Does L↓ equal a∗1 · · · a∗n?

Theorem 8.3 (Z. ’15). Let C be a full trio. Then, the following are equivalent:

(i) Downward closures are computable for C
(ii) The SUP for C is decidable.

Proof. The implication “(i)⇒(ii)” is easy: If we can compute downward closures
for C, then we can compute a finite automaton for L↓ and compare its language
with a∗1 · · · a∗n. Hence, let us prove “(ii)⇒(i)”.

First, we observe that decidability of the SUP implies decidability of the empti-
ness problem: Given L ⊆ X∗, we can use the rational transduction

R = {(w, an) | w ∈ X∗, n ≥ 0}
and apply the SUP to the language LR ⊆ a∗. Clearly, L 6= ∅ if and only if
(LR)↓ = a∗. Hence, we can decide the emptiness problem for C.

Let us now compute the downward closure for L ⊆ X∗. In order to find a finite
automaton for L↓, we use the fact that L↓ has a decomposition into ideals: We
enumerate all finite unions R of ideals. This means, at some point we will arrive

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 23

at a representation for L↓, so that we merely have to check whether R = L↓. We
have to verify two inclusions.

• In order to check whether L↓ ⊆ R, we notice that L↓ is effectively contained
in C (L↓ can be obtained from L using a rational transduction). Further-
more, C is effectively closed under intersection with regular languages, so
that L↓∩(X∗\R) belongs to C. Since L↓ ⊆ R if and only if L↓∩(X∗\R) = ∅
and since emptiness is decidable for C, we can decide whether L↓ ⊆ R.
• Now, we want to check whether R ⊆ L↓. Since R is a finite union of ideals,

we can check whether each of these ideals is contained in L↓. Hence, we
assume that we have an ideal I = X∗0{x1, ε}X∗1 · · · {xn, ε}X∗n and want to
decide whether I ⊆ L↓.

For each i ∈ {0, . . . , n}, we choose a word ui such that each letter
from Xi occurs precisely one in ui. Observe that then, we have I ⊆ L↓
if and only if for every k ≥ 0, there are numbers m0, . . . ,mn ≥ k with
um0
0 x1u

m1
1 · · ·xnumn

n ∈ L↓. Hence, it remains to decide whether such num-
bers m0, . . . ,mn exists for every k ≥ 0.

Let A be the following finite-state transducer:

· · ·

(u0, a0)

(x1, ε)

(u1, a1)

(x2, ε) (xn, ε)

(un, an)

and let T be the transduction generated by A. Then, we have

(L↓)T = {am0
0 · · · amn

n | um0
0 x1u

m1
1 · · ·xnumn

n ∈ L↓}.

In particular, (L↓)T ⊆ a∗0 · · · a∗n and

I ⊆ L↓ if and only if ((L↓)T)↓ = a∗0 · · · a∗n
and the latter is an instance of the SUP. Therefore, we can decide whether
I ⊆ L↓.

�

Coming back to our motivation, we can now use Theorem 8.3 to show that
downward closures can be used at least as often as Parikh images. We say that a
language class C exhibits effectively semilinear Parikh images if given a language
L from C, we can effectively compute a semilinear representation (equivalently, a
Presburger formula) for its Parikh image Ψ(L).

Corollary 8.4. If C exhibits effectively semilinear Parikh images, then downward
closures are computable for C.

Proof. Exercise. �

This already allows us to compute downward closures for a number of language
classes. In the next section, we will see that Parikh images of context-free languages
are effectively semilinear.

9. Algebraic extensions

In this section, we learn about a generalization of context-free grammars. What
makes this generalization interesting is that its additional capabilities permit very

8ce169c 2015-07-23 19:22:52 +0200

24 GEORG ZETZSCHE

elegant inductive proofs: When we prove a statement about the generalization in-
stead of context-free grammars, the statement, and hence the induction hypothesis,
becomes stronger.

Let C be a language class. A C-grammar is a tuple G = (N,T, P, S), where

• N and T are disjoint alphabets, its elements are called nonterminals and
terminals, respectively,
• P is a finite set of productions A → M , where A ∈ N and M ⊆ (N ∪ T)∗

is a language in C,
• S ∈ N is called the start symbol.

Of course, the difference from context-free grammars is that the right-hand sides
of productions are languages instead of words. Here, the idea is that a production
A → M can be thought of as the (potentially infinite) set of productions A → w
for w ∈ M . Therefore, we write u ⇒G v if there are words x, y ∈ (N ∪ T)∗ with
u = xAy and v = xwy for some production A → M with w ∈ M . Then, again,
⇒∗G denotes the reflexive, transitive closure of ⇒G and the language generated by
G is defined as

L(G) = {w ∈ T ∗ | S ⇒∗G w}.
We call a language L algebraic over C if L = L(G) for some C-grammar G. The
class of all languages that are algebraic over C is denoted by Alg(C). The class
Alg(C) is also called the algebraic extension of C.

Examples. In order to get an intuition about algebraic extension, we mention two
examples.

• Observe that Alg(CF) = CF, since a CF-grammar can always be turned into
an equivalent context-free grammar.
• We also have Alg(Reg) = CF, where Reg denotes the regular languages. The

inclusion Alg(Reg) ⊆ CF follows from the last example and CF ⊆ Alg(Reg)
follows because already singleton right-hand sides would suffice to obtain
all context-free languages.

The reason we mention algebraic extension here is that they permit elegant in-
ductive proofs. As a representative of such a proof, we present van Leeuwen’s
generalization of Parikh’s theorem. In fact, this result was the reason van Leeuwen
introduced algebraic extensions. The statement of this result requires another con-
cept.

Let C be a language class. A substitution is a map σ : X → P(Y ∗). If it satisfies
σ(x) ∈ C for each x ∈ X, we call σ a C-substitution. For w ∈ X∗, w = x1 · · ·xn,
x1, . . . , xn ∈ X, we write σ(w) for the set of all words w1 · · ·wn where wi ∈ σ(xi)
for 1 ≤ i ≤ n. In particular, we have σ(ε) = {ε}. Moreover, for L ⊆ X∗, we define

σ(L) =
⋃
w∈L

σ(w).

We say that C is substitution closed if σ(L) belongs to C whenever L belongs to C
and σ is a C-substitution.

Examples. Language classes that are subsitution closed are:

• the context-free languages,
• more generally, Alg(C) for each language class C,
• the regular languages.

8ce169c 2015-07-23 19:22:52 +0200

DECISION PROBLEMS FOR NON-REGULAR LANGUAGES 25

However, as the following shows, not every full trio is closed under substitution:

Proposition 9.1. Substitution closed full trios are also closed under Kleene it-
eration and union. In particular, the Petri net languages are not closed under
substitution.

Proof. Let C be a substitution closed full trio and let K,L ⊆ X∗ belong to C.
Consider the C-substitution σ : {a, b} → P(X∗) with σ(a) = L and σ(b) = K. Since
C is a full trio, it contains the regular languages {a}∗ and {a, b}. Therefore, the
substitution closure of C yields that L∗ = σ({a}∗) and L∪K = σ({a, b}) belong to
C. This proves that C is closed under Kleene iteration and union.

Recall that the Petri net languages are not closed under Kleene iteration. �

The announced generalization of Parikh’s theorem is the following.

Theorem 9.2 (van Leeuwen). For every substitution closed full trio C, we have
Ψ(Alg(C)) = Ψ(C).

The main tool in the proof is what we call the van Leeuwen decomposition.
Let G = (N,T, P, S) be a C-grammar with |N | ≥ 2 and choose A ∈ N . The

van Leeuwen decomposition (with respect to A) consists of two grammars:

• The first is the C-grammar GA = ({A}, T ∪ N \ {A}, PA, A), where PA is
the set of productions PA = {B → M ∈ P | B = A}. In other words, PA
contains all productions from G whose left-hand side is A.

• The second grammar is defined using a substitution in the following way.
Let σ : N ∪T → P((T ∪N \ {A})∗) be the substitution with σ(x) = {x} for
x ∈ T ∪N \ {A} and σ(A) = L(GA). Then, we define the Alg(C)-grammar
G′ = (N \ {A}, T, P ′, S), where P ′ is the set

P ′ = {B → σ(M) | B →M ∈ P, B 6= A}.
In other words, P ′ is obtained from P by taking all productions with a
left-hand side 6= A and replacing in the right-hand side every occurrence of
A with L(GA).

The name ‘decomposition’ is justified by the fact that we have L(G′) = L(G).
Indeed, G′ simulates the applications of productions of G merely in a different order:
Whenever in G an occurrence of A is produced, G′ instead immediately produces
all possible sentential forms that can result from A by applying only A-productions
until there is no A left.

Furthermore, observe that GA comprises just one nonterminal and G′ has one
nonterminal less than G. The right-hand sides of G′ are substitutions of L(GA) and
languages form C. Therefore, in order to prove something about all languages in
Alg(C), it often suffices to show it for the one-nonterminal case and for substitutions.
This is the case in the proof of Theorem 9.2.

Lemma 9.3. Let C be a substitution closed full trio. If G is a C-grammar with one
nonterminal, then Ψ(L(G)) = Ψ(L) for some effectively constructible L in C.

Proof. Let G = (N,T, P, S) with N = {S}. Since C is union closed (Proposi-
tion 9.1), we may assume that there is just one production S → K in G. We
define

K0 = K ∩ T ∗,
K1 = {uv | uSv ∈ K, u, v ∈ (N ∪ T)∗}.

8ce169c 2015-07-23 19:22:52 +0200

26 GEORG ZETZSCHE

Note that since C is a full trio, the languages K0 and K1 belong to C. Moreover, we
use the substitution σ : T ∪N → P(T ∗) by σ(x) = {x} for x ∈ T and σ(S) = K0.
Observe that then, we have Ψ(L(G)) = Ψ(σ(SK∗1)). Since C is a substitution closed
full trio and thus Kleene closed (Proposition 9.1), the language σ(SK∗1) belongs to
C and can therefore serve as the desired L. �

We are now ready to prove Theorem 9.2.

Proof of Theorem 9.2. Let G = (N,T, P, S) be a C-grammar. We proceed by in-
duction on the number of nonterminals. The case |N | = 1 has been covered in
Lemma 9.3. Hence, suppose |N | ≥ 2. Let A ∈ N \ {S} and consider the van
Leeuwen decomposition into G′ and GA. According to Lemma 9.3, there is a lan-
guage LA in C with Ψ(LA) = Ψ(L(GA)). Since the right-hand sides ofG′ result from
substituting L(GA) for A, we construct another grammar G′′ analogous to G′, but
instead of substituting L(GA), we substitute LA for A. Since Ψ(LA) = Ψ(L(GA)),
this guarantees Ψ(L(G′′)) = Ψ(L(G′)) = Ψ(L(G)). Moreover, G′′ is a C-grammar
because LA belongs to C.

Hence, G′′ is a C-grammar with Ψ(L(G′′)) = Ψ(L(G)) and that has one non-
terminal less than G. Therefore, the induction hypothesis yields a K in C with
Ψ(K) = Ψ(L(G′′)) = Ψ(L(G)). �

Note that Theorem 9.2 generalizes Parikh’s theorem because it tells us, in par-
ticular, that for every context-free language L, we can find a regular language R
with Ψ(R) = Ψ(L). To obtain Parikh’s theorem, one just has to show that every
regular language has a semilinear Parikh image. This, however, is not hard to do
using another induction on the structure of regular expressions.

References

[AM04] Rajeev Alur and P. Madhusudan. “Visibly Pushdown Languages”. In:
Proceedings of STOC 2004. New York, NY, USA: ACM, 2004, pp. 202–
211.

[BLS06] Vince Bárány, Christof Löding, and Olivier Serre. “Regularity Problems
for Visibly Pushdown Languages”. In: Proceedings of STACS 2006. Ed.
by Bruno Durand and Wolfgang Thomas. Vol. 3884. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006, pp. 420–431.

[Koz97] Dexter C. Kozen. Automata and computability. New York: Springer-Verlag,
1997.

[Sen97] Géraud Sénizergues. “The equivalence problem for deterministic push-
down automata is decidable”. In: Proceedings of ICALP 1997. Vol. 1256.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1997,
pp. 671–681.

[Ste67] R. E. Stearns. “A regularity test for pushdown machines”. In: Information
and Control 11.3 (1967), pp. 323–340.

8ce169c 2015-07-23 19:22:52 +0200

