Concurrency Theory (WS 2010/11)

Out: Wed, Jan 12 Due: Mon, Jan 17

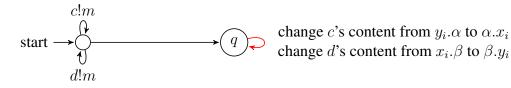
Exercise Sheet 10

Jun.-Prof. Roland Meyer, Georgel Călin

Technische Universität Kaiserslautern

Problem 1: Rotation Construction

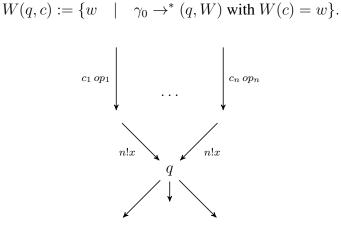
Remember the lcs sketched in class for proving RSP's undecidability:



Provide a formal description/depiction of the red transition.

Problem 2: Reasoning about Infinity

Recall the construction given for outlining the non-computability of



Prove that W(q, n) is infinite if and only if there is a transition sequence in the original lcs visiting q infinitely often. Implication \Rightarrow is not obvious and requires a tree representation of certain transition sequences.

Problem 3: Lemma on Reachability of Upward-closed Sets

Let $(\Gamma, \gamma_0, \rightarrow, \leq)$ be a well-structured transition system and $I \subseteq \Gamma$ an upward-closed set. Prove that $R(\gamma_0) \cap I = \emptyset$ if and only if $R(\gamma_0) \downarrow \cap I = \emptyset$.

Problem 4: Underapproximation

Consider a wsts $TS = (\Gamma, \gamma_0, \rightarrow)$ and let $\Gamma' \subseteq \Gamma$ with $\gamma_0 \in \Gamma'$. The Γ' -exact partial transition system of TS is $TS' = (\Gamma', \gamma_0, \rightarrow')$ with $\rightarrow' := \rightarrow \cap (\Gamma' \times \Gamma')$.

• Compute the Γ' -exact partial transition system of the alternating bit protocol with

 $\Gamma' :=$ All configurations with at most one symbol in channel N and no symbol in A.

• Let $I \subseteq \Gamma$ be an upward-closed set such that $R(\gamma_0) \cap I \neq \emptyset$ in TS. Prove that there exists $\Gamma' \subseteq \Gamma$ finite with $\gamma_0 \in \Gamma'$ such that $R(\gamma_0) \cap I \neq \emptyset$ in TS' as described above.