Exercise Sheet 11

Jun.-Prof. Roland Meyer, Georgel Călin
Technische Universität Kaiserslautern

Problem 1: Overapproximation Imitates WSTS

Let $T S=\left(\Gamma, \gamma_{0}, \rightarrow, \leq\right)$ be a wsts, (L, r) be an adequate domain of limits for (Γ, \leq), and let $\Gamma^{\prime} \subseteq \Gamma$ with $\gamma_{0} \in \Gamma^{\prime}$, respectively $L^{\prime} \subseteq L$ with $\top \in L^{\prime}$.

Consider a path $\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{k}$ in $T S$ and let $T=\left(N, n_{r}, \rightsquigarrow, \lambda\right)$ be an execution tree of $\operatorname{Over}\left(T S, \Gamma^{\prime}, L^{\prime}\right)$.

Prove that there is a path $n_{0} \rightsquigarrow n_{1} \rightsquigarrow \ldots \rightsquigarrow n_{2 k}$ with $n_{0}=n_{r}$ in T such that $\gamma_{i} \in r\left(\lambda\left(n_{2 i}\right)\right)$ for any $i \in\{0,1, \ldots, k\}$.

Problem 2: Adequate Domain of Limits for LCS

Let $\mathcal{L}=\left(Q, q_{0}, C, M, \rightarrow\right)$ be an lcs and \leq the standard wqo on configurations.
Define an adequate domain of limits ($a d l$) (L, r) for $\left(Q \times M^{* C}, \leq\right)$. Provide a method of enumerating the limits of the adl you suggested.

Problem 3: Expand, Enlarge, and Check

Consider the lcs depicted in the figure below:

Further consider the partial domains and limit sets described by

$$
\begin{aligned}
& \Gamma_{0}:=\left\{\left(q_{0}, \epsilon\right),\left(q_{0}, a\right)\right\}, \Gamma_{1}:=\Gamma_{0} \cup\left\{\left(q_{1}, a b\right),\left(q_{1}, a b b\right),\left(q_{2}, b\right)\right\} \\
& L_{0}:=\{\top\} \cup\left\{\left(q_{i},(a+b)^{*}\right) \mid i \in\{0,1,2\}\right\}, L_{1}:=L_{0} \cup\left\{\left(q_{0}, a^{*}\right),\left(q_{1}, a^{*} . b^{*}\right),\left(q_{2}, b^{*}\right)\right\} .
\end{aligned}
$$

Iterate the EEC algorithm using the $\left(\Gamma_{0}, L_{0}\right)$ and $\left(\Gamma_{1}, L_{1}\right)$ above to determine reachability of:

- the upward-closed set $U_{a}=\left\{\left(q_{2}, a\right)\right\} \uparrow$.
- the upward-closed set $U_{b}=\left\{\left(q_{2}, b\right)\right\} \uparrow$.

In case one of the sets is unreachable, state the avoiding execution tree that proves it.

Problem 4: EEC for Something Different

Let $\Gamma=\left\{(i, j) \in \mathbb{N}^{2} \mid i=j \vee j=i+2\right\}$ and wsts $T S=(\Gamma,(0,0), \rightarrow, \leq)$ with \rightarrow defined by $(i, i) \rightarrow(i, i+2)$ and $(i, i+2) \rightarrow(i+2, i+2)$ for $i \in \mathbb{N}$, respectively with \leq defined by $x \leq x+2 k \cdot(1,1)$ for all $k \in \mathbb{N}$ and $x \in \Gamma \backslash\{(0,0)\}$.

What is the coverability set of $T S$? Which are all the possible upward-closed sets in (Γ, \leq) ? Find a limit set L^{\prime} together with a partial domain Γ^{\prime} of Γ which allows you to determine if

$$
U_{2010}=\{x \in \Gamma \mid(2010,2010) \leq x\} \text { and } U_{2011}=\{x \in \Gamma \mid(2011,2011) \leq x\}
$$

are reachable or not using the EEC algorithm. What do the limits represent?

