Exercise Sheet 5

Jun.-Prof. Roland Meyer, Georgel Călin

Technische Universität Kaiserslautern

Problem 1: Unfolding Prefix

Use the ERV algorithm given in class with McMillan's adequate order to compute the finite and complete prefix of the unfolding of the following Petri net.

Provide the set of possible extensions and cut-offs at each iteration. Note: The initial configuration of an unfolding can be seen as the local configuration $\left[e_{\perp}\right]$ caused by an event e_{\perp}.

Problem 2: Adequate Orderings

Establish adequacy of the following orderings:
(a) $\prec_{m}:[e] \prec\left[e^{\prime}\right]$ iff. $|[e]|<\left|\left[e^{\prime}\right]\right|$;
(b) $\prec_{l e x}:[e] \prec_{l e x}\left[e^{\prime}\right]$ iff. $|[e]|<_{1}\left[e^{\prime}\right] \mid$ or, $|[e]|=\left|\left[e^{\prime}\right]\right|$ and $\operatorname{order}([e])<_{l e x} \operatorname{order}\left(\left[e^{\prime}\right]\right)$.

Assume the set of transitions is totally ordered by the transitions' indices. Define order $(C):=$ $t_{1}^{\# t_{1}(C)} \ldots t_{n}^{\#_{t_{n}}(C)}$, where $\#_{t}(C)$ denotes the number of events $e \in C$ labelled by t. For example, if $C=\left\{e_{2}, e_{4}, e_{3}, e_{1}\right\}$ is labelled by $h\left(e_{2}\right)=h\left(e_{4}\right)=h\left(e_{3}\right)=t_{1}, h\left(e_{1}\right)=t_{3}$ then order $(E):=$ $t_{1}^{3} t_{2}^{0} t_{3}^{1} t_{4}^{0}=t_{1} t_{1} t_{1} t_{3}$. Hence, for any two configurations C_{1} and C_{2}, the strings order $\left(C_{1}\right)$ and $\operatorname{order}\left(C_{2}\right)$ can be ordered lexicographically by $<_{\text {lex }}\left(\right.$ e.g. $\left.t_{1} t_{1} t_{1} t_{3}<_{\text {lex }} t_{1} t_{2}\right)$.

Problem 3: Yet Another Unfolding Prefix

Consider the following Petri net:

Use \prec_{m} and $\prec_{l e x}$ from the previous problem to construct the net's unfolding. Provide the set of possible extensions and cut-offs at each iteration. What do you observe?

Problem 4: SAT-Based Verification

Consider the Petri net depicted below.

(a) Compute the finite complete prefix of the Petri net's unfolding under McMillan's (\prec_{m}) order and express the reachability of the marking $(0001)^{T}$ as violation constraint \mathcal{V}.
(b) Find a general formula \mathcal{M} characterizing reachability of a marking in a complete prefix starting from the $\mathcal{C} \wedge \mathcal{V}$ formula given in class.
Hint: Use extra Boolean variables x_{b} for every $b \in B$ of the unfolding $(\mathcal{O}, h)=(B, E, G)$.

