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Problem 1: Unfolding Prefix
Use the ERV algorithm given in class with McMillan’s adequate order to compute the finite
and complete prefix of the unfolding of the following Petri net.
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Provide the set of possible extensions and cut-offs at each iteration. Note: The initial configu-
ration of an unfolding can be seen as the local configuration [e⊥] caused by an event e⊥.

Problem 2: Adequate Orderings
Establish adequacy of the following orderings:

(a) ≺m: [e] ≺ [e′] iff. |[e]| < |[e′]|;
(b) ≺lex: [e] ≺lex [e′] iff. |[e]| <| [e

′]| or, |[e]| = |[e′]| and order([e]) <lex order([e
′]).

Assume the set of transitions is totally ordered by the transitions’ indices. Define order(C) :=

t
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n , where #t(C) denotes the number of events e ∈ C labelled by t. For example,

if C = {e2, e4, e3, e1} is labelled by h(e2) = h(e4) = h(e3) = t1, h(e1) = t3 then order(E) :=
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0
4 = t1t1t1t3. Hence, for any two configurations C1 and C2, the strings order(C1) and

order(C2) can be ordered lexicographically by <lex (e.g. t1t1t1t3 <lex t1t2).

Problem 3: Yet Another Unfolding Prefix
Consider the following Petri net:
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Use≺m and≺lex from the previous problem to construct the net’s unfolding. Provide the set of
possible extensions and cut-offs at each iteration. What do you observe?



Problem 4: SAT-Based Verification
Consider the Petri net depicted below.
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(a) Compute the finite complete prefix of the Petri net’s unfolding under McMillan’s (≺m)
order and express the reachability of the marking (0 0 0 1)T as violation constraint V .

(b) Find a general formulaM characterizing reachability of a marking in a complete prefix
starting from the C ∧ V formula given in class.
Hint: Use extra Boolean variables xb for every b ∈ B of the unfolding (O, h) = (B,E,G).


