Exercise Sheet 10

Jun.-Prof. Roland Meyer, Georgel Călin
Technische Universität Kaiserslautern

Problem 1: Control Loop Acceleration

Let $\preceq_{c y c}^{*}$ and $\preceq_{\text {grow }}^{*}$ the word orderings given in class for proving Theorem 7.3. Determine n and $p \oplus o p s^{\geq n}$ when $p=(a+b)^{*}(c+\epsilon) b^{*}$ and ops is each of:

$$
\begin{aligned}
& ? a!b ? c \\
& !a!b ? c ? a \\
& !a ? c!b ? a!c \\
& ? c!c!a ? a!b!c!a
\end{aligned}
$$

Specify and argument in which of the four cases discussed in class each sequence falls.

Problem 2: Control Loop Acceleration

Consider the following control loop in a lossy channel system:

Set up the sequences of channel operations $o p s_{c}$ and $o p s_{d}$ and determine

$$
\left(q,\binom{\left((b+\varepsilon) \cdot(a+b)^{*}\right) \oplus o p s_{c}^{*}}{b^{*} \oplus o p s_{d}^{*}}\right)
$$

State and justify the case (1)-(4) that applies for the acceleration of $o p s_{c}$ and $o p s_{d}$, respectively. Give numbers n after which the effect of $o p s_{c}$ and $o p s_{d}$ stabilises.

Problem 3: Conditional Construction

Give a construction that implements (by several lcs transitions) the "transition" outlined below.

The construction should deadlock if $m \notin W(c)$ in state q. Otherwise, it should change state and leave the channel content in q^{\prime} identical to the one in q up to lossines.

Problem 1: Rotation Construction

Remember the lcs sketched in class for proving RSP's undecidability:

change c 's content from $y_{i} . \alpha$ to $\alpha . x_{i}$ change d 's content from $x_{i} . \beta$ to $\beta . y_{i}$

Provide a formal description/implementation of the red "transition".

