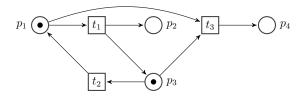

Concurrency Theory (WS 2011/12)

Review Exercise Sheet

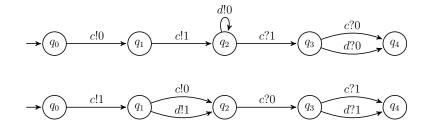

Jun.-Prof. Roland Meyer, Georgel Călin

Technische Universität Kaiserslautern

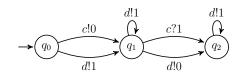
1. Consider the following Petri net modelling a traffic light:

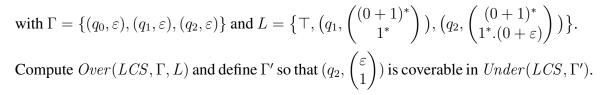
- (a) Fix the net in order to avoid unwanted behavior (e.g. $r \rightarrow ry \rightarrow rr$). Make it 1-safe.
- (b) Model two traffic lights handling a road crossing by using two such 1-safe Petri nets.
- 2. Petri nets are WSTS.
 - (a) Define a domain of limits L for Petri nets. Prove L's adequacy and its effectiveness.
 - (b) Compute $Over(N, \Gamma_1, L)$ and $Over(N, \Gamma_2, L)$ for the following Petri net N when $\Gamma_1 = \{M \in \mathbb{N}^S \mid M(s) \leq 1\}$ and $\Gamma_2 = \{M \in \mathbb{N}^S \mid M(s) \leq 2\}.$

- **3.** Let $u, v \in T$ such that $v^{\bullet} \cap {}^{\bullet}u = \emptyset$. Prove that $M[v.u\rangle M'$ implies $M[u.v\rangle M'$.
- 4. Prove (without computation) that there is no covering structural invariant for the net

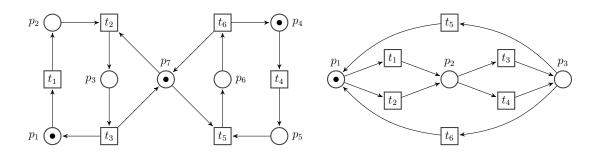

 $p_1 \bigcirc \longleftarrow t \longrightarrow \bigcirc p_2$

- 5. Give a recursive procedure that takes an SRE product p and returns a product p' that has the same language but no redundant atomic expressions.
- 6. Petri nets with transfer arcs (PNTs) have for each transition t at most one pair of places $p \in {}^{\bullet}t$, $p' \in t^{\bullet}$ with the property that when t is fired, all (including 0) tokens from p are moved to p'.

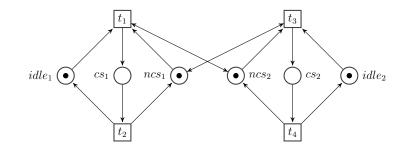

Prove PNT reachability undecidable. Hint: Use the trick from the last lecture.


7. Let $P \in \mathcal{P}_{fg<\infty}$ be an arbitrary structurally stationary process. It is known that the size of its structural semantics N(P) cannot be bounded by a primitive recursive function in the size of the process P. Give and explain a construction that shows this.

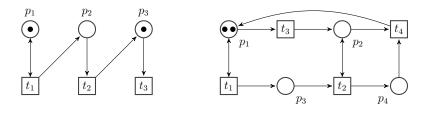
8. Use Abdulla's backward search to determine if (q_4, ϵ) is coverable in either lcs below:



9. Consider the lossy channel system *LCS*:



10. Unfold the nets below using ERV and McMillan's adequate order. Give the possible extensions and cut-offs (and argument why each of them is a cut-off) at each iteration.



11. Compute the S-invariants for the following Petri net. Prove mutual exclusion for cs_1, cs_2 .

- **12.** Consider (\leq^*) upward-closed languages $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$. Prove that $\mathcal{L}_1, \mathcal{L}_2$ is upward-closed and that $\overline{\mathcal{L}_1}$ is downward-closed.
- 13. Prove decidability of termination and reachability for restriction-free π -calculus.

14. Use the Karp and Miller algorithm to compute the coverability graph of the Petri nets:

