Concurrency theory Exercise sheet 4

Peter Chini, Prakash Saivasan

Due: November 26

Out: November 20

Submit your solutions until Tuesday, November 26, during the lecture. You may submit in groups up to three persons.

Exercise 1: Counter programs

You may use additional counter variables to solve these problems. In each part of this exercise, you may use the previous parts as subroutines.

Let n be some fixed number.

- a) Present a counter program $\mathtt{Set}_n(x_j)$ that sets the value of counter variable x_j to n.
- b) Present a counter program $Double(x_i)$ that doubles the value of counter variable x_i .
- c) Present a counter program $Power_n(x_i)$ that sets the value of counter variable x_i to 2^n .
- d) Present a counter program Square (x_j) that squares the value of counter variable x_j , i.e. the new value is v^2 , where v is the old value.

In each part of this exercise, argue briefly that your program is correct.

Exercise 2

Prove that given a Petrinet N = (P, T, in, out) and markings M_1 and M_2 , if $M_1 \xrightarrow{\sigma} M_2$ for some $\sigma \in T^*$ then

$$\forall p \in P, \quad M_2(p) = M_1(p) + \sum_{t \in T} (\operatorname{out}(t, p) - \operatorname{in}(p, t)) \cdot \Pi_{\sigma}(t)$$

Exercise 3

Recall the BPP net you obtained in the previous exercise to decide 3-SAT. Using the technique discussed in the class, obtain a system of linear equations for this BPP net. The system of linear equations should have an integer solution iff the final marking of the BPP net is coverable.