Exercises to the lecture Concurrency Theory Sheet 6

Dr. Prakash Saivasan Peter Chini

Delivery until 14.01.2020 at 12:00

Exercise 6.1 (Well Quasi Orderings?)

Prove or disprove that the following are well quasi orderings:

- a) The quasi ordering $(\mathbb{N}, |)$, where $a \mid b$ means that a divides b.
- b) The quasi ordering $(Bin, <_{lex})$. Here $Bin = \{0, 1\}^*$ is the set of all binary strings and $<_{lex}$ is the lexicographical ordering, defined by:

 $u <_{lex} v$ if and only if u is a prefix of v or the first symbol $u[\ell]$

that does not coincide with $v[\ell]$ satisfies $u[\ell] < v[\ell]$.

Note that $u[\ell]$ refers to the ℓ -th symbol of u.

c) The colexicographical ordering $(Bin, <_{colex})$ defined by:

 $u <_{colex} v$ if and only if u is a postfix of v or the last symbol $u[\ell]$

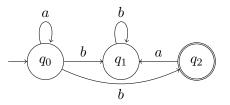
that does not coincide with $v[\ell]$ satisfies $u[\ell] < v[\ell]$.

Exercise 6.2 (Upward and Downward closed sets)

Let Σ be a finite alphabet. From the lecture we know that (Σ^*, \leq) is a well quasi ordering, where \leq is the subword relation.

- a) Let L be a regular language over Σ . Explain how to construct a finite automaton for the upward closure $L\uparrow$.
- b) Let L be any language in Σ^* . Show that $L\uparrow$ and $L\downarrow$ are regular.

Exercise 6.3 (Downward closure of a regular language) Let the following automaton A be given:



Give an automaton for the language $L(A)\downarrow$.

Delivery until 14.01.2020 at 12:00