Games with perfect information		
Sebastian Muskalla	Exercise sheet 3	TU Braunschweig
Prof. Dr. Roland Meyer		Summer term 2017

Out: April 19

Due: April 24

Submit your solutions until Monday, April 24, 14:00, in the box next to office 343.

Exercise 1: Determinacy of games of finite length

When considering chess, we have already used the theorem that you will prove in this exercise.

Let $\mathcal{G} = (G, win)$ be a game such that each maximal play of \mathcal{G} has finite length. Then \mathcal{G} is determined, i.e. every position is winning for exactly one of the players, $V = W_{\bigcirc} \cup W_{\bigcirc}$.

Hint: Construct a reachability game whose set of positions is Plays⁹.

Exercise 2: Attractors have attractive algorithmics!

a) Prove that if $\operatorname{Attr}_{\frac{1}{\sqrt{2}}}^{i}(B) = \operatorname{Attr}_{\frac{1}{\sqrt{2}}}^{i+1}(B)$, then we have $\operatorname{Attr}_{\frac{1}{\sqrt{2}}}^{i}(B) = \operatorname{Attr}_{\frac{1}{\sqrt{2}}}(B)$.

Conclude that if the set of positions V is finite, we have $Attr_{x}(B) = Attr_{x}(B)$.

b) Let G = (V, E) be a finite game arena, and let $B \subseteq V$ be a set. We consider the reachability game on G with respect to B. As in the lecture, we assume that refuter wants to reach B, while prover wants to prevent this.

Write down pseudo-code for an algorithm that computes the winning region W_{\bigcirc} of refuter, and at the same time computes uniform positional winning strategies s_{\bigcirc} , s_{\square} for both players.

c) Consider a 2 × 2-variant of tic tac toe, i.e. tic tac toe played on a 2 × 2 matrix. We assume that ○ starts. The player that is first able to put 2 of her marks into one row, column or diagonal wins, and the game then stops.

Formalize this game as a reachability game and solve it using the attractor algorithm.

Exercise 3: Graphs with infinite out-degree

In the lecture, we made the assumption that the out-degree of the graph is finite. In this exercise, we want to understand this restriction.

Let $\mathbb{N}^+ = \{1, 2, 3, ...\}$ denote the positive natural numbers. We consider the graph G = (V, R) given by

$$V = \left\{ start, goal \right\} \cup \bigcup_{i \in \mathbb{N}^+} Path_i, \text{ where for each } i \in \mathbb{N}^+, \text{ we have } Path_i = \left\{ p_1^i, p_2^i, \dots, p_i^i \right\},$$
$$R = \bigcup_{i \in \mathbb{N}^+} \left\{ \left(start, p_1^i \right) \right\} \cup \bigcup_{i \in \mathbb{N}^+} \left\{ \left(p_{i}^i, goal \right) \right\} \cup \bigcup_{i \in \mathbb{N}^+} \bigcup_{j=1}^{i-1} \left\{ \left(p_{j}^i, p_{j+1}^i \right) \right\}.$$

We want to consider a reachability game on *G* with respect to the winning set $\{goal\}$, i.e. refuter \bigcirc needs to reach the position *goal*, prover wants to prevent this.

- a) Draw a schematic representation of the graph *G*, e.g. involving the vertices $\{start, goal\}$ and the positions in *Path_i* for $i \le 4$.
- b) Assume that all positions are owned by refuter. For each position $x \in V$, give the minimal $i_x \in \mathbb{N}$ such that $x \in \operatorname{Attr}_{\bigcirc}^{i_x}(\{goal\})$, respectively $i_x = \infty$ if no such i_x exists.

Present a winning strategy for the reachability game from the position *start*.

c) Assume that all positions are owned by prover. For each position $x \in V$, give the minimal i_x such that $x \in Attr_{\bigcirc}^{i_x}(\{goal\})$, respectively $i_x = \infty$ if no such i_x exists.

Which player wins the reachability game from start?