Games with perfect information

Sebastian Muskalla
Exercise sheet 3

Submit your solutions until Monday, April 24, 14:00, in the box next to office 343.

Exercise 1: Determinacy of games of finite length

When considering chess, we have already used the theorem that you will prove in this exercise.
Let $\mathcal{G}=(G, w i n)$ be a game such that each maximal play of \mathcal{G} has finite length. Then \mathcal{G} is determined, i.e. every position is winning for exactly one of the players, $V=W_{\bigcirc} \cup W_{\square}$.

Exercise 2: Attractors have attractive algorithmics!

a) Prove that if $\operatorname{Attr}_{\underset{\sim}{c}}^{i}(B)=\operatorname{Attr}_{\underset{\sim}{3}}^{i+1}(B)$, then we have $\operatorname{Attr}_{\underset{\sim}{*}}^{i}(B)=\operatorname{Attr}_{\vec{\sim}}(B)$.

Conclude that if the set of positions V is finite, we have $\operatorname{Attr}_{\substack{*}}(B)=\operatorname{Attr}_{\psi^{2}}^{|V|}(B)$.
b) Let $G=(V, E)$ be a finite game arena, and let $B \subseteq V$ be a set. We consider the reachability game on G with respect to B. As in the lecture, we assume that refuter wants to reach B, while prover wants to prevent this.

Write down pseudo-code for an algorithm that computes the winning region W_{\bigcirc} of refuter, and at the same time computes uniform positional winning strategies s, s_{\square} for both players.
c) Consider a 2×2-variant of tic tac toe, i.e. tic tac toe played on a 2×2 matrix. We assume that o starts. The player that is first able to put 2 of her marks into one row, column or diagonal wins, and the game then stops.

Formalize this game as a reachability game and solve it using the attractor algorithm.

Exercise 3: Graphs with infinite out-degree

In the lecture, we made the assumption that the out-degree of the graph is finite. In this exercise, we want to understand this restriction.

Let $\mathbb{N}^{+}=\{1,2,3, \ldots\}$ denote the positive natural numbers. We consider the graph $G=(V, R)$ given by

$$
\begin{aligned}
& V=\{\text { start, goal }\} \cup \bigcup_{i \in \mathbb{N}^{+}} \text {Path }_{i}, \text { where for each } i \in \mathbb{N}^{+}, \text {we have Path } i=\left\{p_{1}^{i}, p_{2}^{i}, \ldots, p_{i}^{i}\right\}, \\
& R=\bigcup_{i \in \mathbb{N}^{+}}\left\{\left(\text {start, } p_{1}^{i}\right)\right\} \cup \bigcup_{i \in \mathbb{N}^{+}}\left\{\left(p_{i}^{i}, \text { goal }\right)\right\} \cup \bigcup_{i \in \mathbb{N}^{+}} \bigcup_{j=1}^{i-1}\left\{\left(p_{j}^{i} p_{j+1}^{i}\right)\right\} .
\end{aligned}
$$

We want to consider a reachability game on G with respect to the winning set $\{g o a l\}$, i.e. refuter \bigcirc needs to reach the position goal, prover wants to prevent this.
a) Draw a schematic representation of the graph G, e.g. involving the vertices $\{$ start, goal $\}$ and the positions in Path_{i} for $i \leq 4$.
b) Assume that all positions are owned by refuter. For each position $x \in V$, give the minimal $i_{x} \in \mathbb{N}$ such that $x \in \operatorname{Attr}_{\bigcirc}^{i_{x}}(\{$ goal $\})$, respectively $i_{x}=\infty$ if no such i_{x} exists.

Present a winning strategy for the reachability game from the position start.
c) Assume that all positions are owned by prover. For each position $x \in V$, give the minimal i_{x} such that $x \in \operatorname{Attr}{ }^{i_{X}}(\{$ goal $\})$, respectively $i_{x}=\infty$ if no such i_{x} exists.

Which player wins the reachability game from start?

