Games with perfect information

Sebastian Muskalla
Exercise sheet 4
TU Braunschweig
Prof. Dr. Roland Meyer
Out: April 26
You can submit your solutions on Tuesday, May 2, at the beginning of the exercise classes (since Monday, May 1 , is a public holiday.) I will grade and return the submissions as soon as possible!

Assume that we are in the same setting as in Section 6, Büchi and CoBüchi games: $G=\left(V_{\square} \cup V_{\bigcirc}, R\right)$ is a finite, deadlock-free game arena, and $B \subseteq V$ is a winning set. Recall the definitions of the sets B^{i} and P^{i} :

$$
\begin{aligned}
B^{0} & =B, \\
P^{i} & =V \backslash \operatorname{Attr}_{\bigcirc}\left(B^{i}\right), \\
B^{i+1} & =B \backslash \operatorname{CPre}_{\square}\left(P^{i}\right) .
\end{aligned}
$$

Recall that the controlled predecessors of a set $X \subseteq V$ were defined as

$$
\operatorname{CPre}_{\vec{\jmath}}(X)=\left\{x \in V_{\bar{\jmath}} \mid \exists(x, y) \in R: y \in X\right\} \cup\left\{x \in V_{\overline{\hat{u}}} \mid \forall(x, y) \in R: y \in X\right\}
$$

and that using this definition, the attractor can be defined as follows.

$$
\begin{aligned}
& \operatorname{Attr}_{\hat{\sim}}^{0}(X)=X
\end{aligned}
$$

Exercise 1: Proof of Lemma 6.9

Prove Lemma 6.9 from the lecture notes:
The sets B^{i} form a descending, the sets W_{i} form an ascending chain. There is an index $m \in \mathbb{N}$ such that the chains simultaneously become stationary.

$$
\begin{aligned}
B= & B^{0} \supseteq B^{1} \supseteq \ldots \supseteq B^{m}=B^{m+1}=\bigcap_{i \in \mathbb{N}} B^{i} \\
& P^{0} \subseteq P^{1} \subseteq \ldots \subseteq P^{m}=P^{m+1}=\bigcup_{i \in \mathbb{N}} P^{i}
\end{aligned}
$$

Exercise 2：A more intuitive definition of recurrence sets

In this exercise，we give a more intuitive definition of the recurrence sets B^{i} ，and we prove that it is equivalent to the definition in the lecture．

We need a slightly modified attractor construction：

$$
\begin{aligned}
& A_{\lrcorner}^{0}(X)=\varnothing \\
& A_{\grave{i}}^{i+1}(X)=A_{\grave{\imath}}^{i}(X) \cup \operatorname{CPre}_{\grave{i}}\left(A_{\grave{\imath}}^{i}(X) \cup X\right) \\
& \operatorname{Attr}_{ふ}^{+}(X)=\bigcup_{i \in \mathbb{N}} A_{\rightsquigarrow}^{i}(X)
\end{aligned}
$$

Now we give an alternative definition for the sets B^{i} ，here called $B_{e x}^{i}$ ：

$$
\begin{aligned}
B_{e x}^{0} & =B \\
B_{e x}^{i+1} & =B \cap \operatorname{Atr}^{+}\left(B_{e x}^{i}\right)
\end{aligned}
$$

a）Describe the difference between $\operatorname{Attr}_{\substack{+}}^{+}(B)$ and $\operatorname{Attr}_{\text {访 }^{(B)}}(B)$ in your own words． （Not more than 2 sentences please．）
b）Formally prove using induction on i that $A_{\stackrel{\Sigma}{3}}^{i}(B) \cup B=\operatorname{Attr}_{\stackrel{\rightharpoonup}{\Omega}}^{i}(B)$ for all $i \in \mathbb{N}$ and conclude $\operatorname{Attr}_{\mathcal{W}_{3}}^{+}(B) \cup B=\operatorname{Attr}_{\tilde{N}_{3}}(B)$ ．
c）Formally prove using induction on i that $B^{i}=B_{e x}^{i}$ for all $i \in \mathbb{N}$ ．
Hint：In the induction step，you essentially need to prove

$$
V \backslash \operatorname{Attr}_{\bigcirc}^{+}\left(B^{i}\right)=\operatorname{CPre} \square\left(V \backslash \operatorname{Attr}_{\bigcirc}\left(B^{i}\right)\right) .
$$

Part b）of this exercise is crucial for proving this statement．

