Games with perfect information						
Sebastian Muskalla	Exercise sheet 6	TU Braunschweig				
Prof. Dr. Roland Meyer		Summer term 2017				

Out: May 11

Due: May 19

Submit your solutions until Friday, May 19, 14:00, in the box next to office 343.

Exercise 1

Let \trianglelefteq be a partial order on some set V.

a) Let $X, Y \subseteq V$ be subsets of V with $X \subseteq Y$. Prove that $X \uparrow \subseteq Y \uparrow$.

Does $Min(X) \subseteq Min(Y)$ also hold?

- b) Prove that the union of upward-closed sets is again upward closed.
- c) Prove Lemma 6.8 from the lecture notes: Let $X \subseteq V$ be upward closed, i.e. $X = X \uparrow$, then $X = Min(X) \uparrow$.

Hint: Prove both inclusions separately. For one inclusion, you can use Part a).

Exercise 2: The subword relation

Let Σ be some fixed, finite, non-empty alphabet. We consider the set of words Σ^* over Σ .

We define the **subword relation** \leq on Σ^* as follows: We have $v \leq w$ if v can be obtained from w by deleting letters. This means that $w = a_0 a_1 \dots a_k$ for some $a_i \in \Sigma$, and $v = a_{j_0} a_{j_1} \dots a_{j_\ell}$ for $0 \leq j_0 < j_1 < \dots < j_\ell \leq k$.

For example, consider the alphabet $\{a, b\}$ and w = aba. The words ε , a, b, aa, ab, ba, aba are smaller with respect to \leq than w.

- a) Prove that \leq is a partial order.
- b) For each of the following languages over $\Sigma = \{a, b, c\}$, each represented by a regular expression, present their minimal elements and check whether they are upward-closed.
 - aΣ*bΣ*c
 - $ab \cup b\Sigma^*a \cup aabb$
 - cΣ⁺c

Recall that $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}.$

c) Let $w \in \Sigma$ be a word. How can one obtain a representation of the upward closure of the singleton set containing w, i.e. $\{w\} \uparrow ?$

Exercise 3: A not so intricate scheduling problem

Consider the instance of MOFST with the tasks $T = \{\tau_1, \tau_2, \tau_3\}$ specified by the table below, and m = 2 processors.

	Cτ	Dτ	T_{τ}
τ_1	1	1	2
τ_2	2	2	2
$ au_3$	1	1 2 2	2

Construct and solve the scheduling game for this input.