Sebastian Muskalla Exercise sheet 10 TU B	3raunschweig
Prof. Dr. Roland Meyer Summ	ner term 2017

Out: June 15, Updated: June 21

Submit your solutions until Friday, June 23, 14:00, in the box next to office 343.

Due: June 23

Exercise 1: Applying Rabin's tree theorem

In this exercise, we want to apply Rabin's tree theorem to the automaton A_1 from Part a) of Exercise 1 from the last exercise sheet.

$$A_{1} = \left(\underbrace{\{a_{/2}, b_{/2}\}}_{\Sigma}, \underbrace{\{q_{0}, q_{1}\}}_{Q}, q_{0}, \rightarrow, \left(q_{0} \stackrel{\Omega}{\mapsto} 0, q_{1} \stackrel{\Omega}{\mapsto} 0\right)\right) \text{ with }$$

$$\rightarrow_{a} = \left\{\left(q_{0}, (q_{1}, q_{1})\right)\right\}, \qquad \rightarrow_{b} = \left\{\left(q_{1}, (q_{0}, q_{0})\right)\right\}.$$

a) Construct the set $S = Q^{\leq n} \rightarrow D$.

Hint: To avoid the following construction becoming excessively large, restrict the domain to vectors of states that can actually occur.

- b) Construct the parity word automaton A_{branches}.
- c) Make $A_{branches}$ deterministic by adding an error-state and the corresponding transitions. (For each symbol a, s, d, and each state q, there needs to be exactly one transition $(q, q') \in \rightarrow_{a,s,d}$.) Complement $A_{branches}$ to obtain the automaton B with $\mathcal{L}(B) = \overline{\mathcal{L}(A_{branches})}$.
- d) Construct the parity tree automaton C for \mathcal{L}' that simulates B on all branches of a tree.
- e) Project *C* to Σ to obtain the automaton $\overline{A_1}$. Check that $\mathcal{L}(\overline{A_1}) = \overline{\mathcal{L}(A_1)}$ indeed holds by describing the language of $\overline{A_1}$.

Remark: I know that doing this exercise is cumbersome, but I think it will help in understanding the details of the proof of Rabin's tree theorem.

Exercise 2: Emptiness games for PTAs

a) Let A be a PTA, and assume that refuter wins the parity game $\mathcal{G}(A)$ from the initial position q_0 .

Explain how a winning strategy for refuter can be used to define a tree in $\mathcal{T} \in \mathcal{L}(A)$. Make this formal by explaining the construction of the set of nodes \mathcal{T} and its labeling function label $_{\mathcal{T}}$.

b) Consider automaton A_2 from Part b) of Exercise 1 from the last exercise sheet.

$$A_{2} = \left(\underbrace{\{a_{/2}, b_{/2}\}}_{\Sigma}, \underbrace{\{q_{+}, q_{-}\}}_{Q}, q_{+}, \rightarrow, \left(q_{+} \stackrel{\Omega}{\mapsto} 1, q_{-} \stackrel{\Omega}{\mapsto} 0\right)\right) \text{ with}$$
$$\rightarrow_{a} = \left\{\left(q_{+}, (q_{-}, q_{-})\right)\right\},$$
$$\rightarrow_{b} = \left\{\left(q_{+}, (q_{+}, q_{-})\right), \left(q_{+}, (q_{-}, q_{+})\right), \left(q_{-}, (q_{-}, q_{-})\right)\right\}.$$

Transform the automaton to a language-equivalent automaton that has at least one transition $(q, \vec{q}) \in \rightarrow_a$ for each source state q and symbol a. (This will ensure that the parity game is deadlock-free.)

Construct the parity game $\mathcal{G}(A)$ and identify a positional winning strategy for refuter. How does the tree described by the strategy look like?

Hint: Restrict yourself to positions Q^2 of prover that can actually occur during a play of the game. This prevents the game arena from becoming excessively large.

Exercise 3: Describing tree languages using S2S

We will introduce and discuss S2S in the exercise class on June 20. Afterwards, I will also add an explanation to the lecture notes.

Consider the Alphabet $\Sigma = \{a_{/2}, b_{/2}\}$. Our goal is to create a closed S2S-formula for the language \mathcal{L} of trees in which exactly one branch contains infinitely many *a*s (known from Part c) of Exercise 1 from the last exercise sheet).

a) Consider the following S2S formula that has the free second-order variable X.

Branch(X) = $\varepsilon \in X$ (1) $\land \quad \forall x: x \in X \rightarrow \exists y \exists z: S_0(x, y) \land S_1(x, z) \land (y \in X \oplus z \in X)$ (2) $\land \quad \forall y: (y \in X \land y \neq \varepsilon) \rightarrow \exists x: x \in X \land (S_0(x, y) \lor S_1(x, y))$ (3)

Here, \oplus is XOR and \to is implication. They can be easily rewritten using negation, conjunction, and disjunction.

Argue that Branch(X) evaluates to true under a structure S(T) and an interpretation I_T if and only if $I_T(X)$ is a set of positions that forms a branch of T. Explain the purpose of each Line (1) - (3).

- b) In S2S, we only have an equality predicate for first-order terms. Construct a formula Equal(X, Y) with two free second-order variables X, Y that evaluates to true under a structure S(T) and an interpretation I_T if and only if $I_T(X) = I_T(Y)$.
- c) Construct formulas $\operatorname{Fin}_{a}(X)$ respectively $\operatorname{Inf}_{a}(X)$ with one free second-order variable X that evaluate to true under a structure $\mathcal{S}(\mathcal{T})$ and an interpretation $\mathcal{I}_{\mathcal{T}}$ if and only if $\mathcal{I}_{\mathcal{T}}(X)$ contains only finitely many respectively infinite many nodes labeled by *a*.

For simplicity, you may suppose that $\mathcal{I}_{\mathcal{T}}(X)$ is a branch of \mathcal{T} .

d) Combine the previous parts of this exercises to construct a closed S2S-formula $\varphi_{\mathcal{L}}$ that evaluates to true under a structure $\mathcal{S}(\mathcal{T})$ if and only if $\mathcal{T} \in \mathcal{L}$.