Games with perfect information

Sebastian Muskalla
Exercise sheet 10
TU Braunschweig
Prof. Dr. Roland Meyer
Out: June 15, Updated: June 21
Submit your solutions until Friday, June 23, 14:00, in the box next to office 343.

Exercise 1: Applying Rabin's tree theorem

In this exercise, we want to apply Rabin's tree theorem to the automaton A_{1} from Part a) of Exercise 1 from the last exercise sheet.

$$
\begin{aligned}
& A_{1}=(\underbrace{\left\{a_{/ 2}, b_{2}\right\}}_{\Sigma}, \underbrace{\left\{q_{0}, q_{1}\right\}}_{Q}, q_{0}, \rightarrow,\left(q_{0} \stackrel{\Omega}{\mapsto} 0, q_{1} \stackrel{\Omega}{\mapsto}\right)) \text { with } \\
& \rightarrow a=\left\{\left(q_{0},\left(q_{1}, q_{1}\right)\right)\right\}, \quad \rightarrow b=\left\{\left(q_{1},\left(q_{0}, q_{0}\right)\right)\right\} .
\end{aligned}
$$

a) Construct the set $S=Q^{\leq n} \rightarrow D$.

Hint: To avoid the following construction becoming excessively large, restrict the domain to vectors of states that can actually occur.
b) Construct the parity word automaton $A_{\text {branches }}$.
c) Make $A_{\text {branches }}$ deterministic by adding an error-state and the corresponding transitions. (For each symbol a, s, d, and each state q, there needs to be exactly one transition $\left(q, q^{\prime}\right) \in \rightarrow a, s, d$. Complement $A_{\text {branches }}$ to obtain the automaton B with $\mathcal{L}(B)=\overline{\mathcal{L}\left(A_{\text {branches }}\right)}$.
d) Construct the parity tree automaton C for \mathcal{L}^{\prime} that simulates B on all branches of a tree.
e) Project C to Σ to obtain the automaton $\overline{A_{1}}$. Check that $\mathcal{L}\left(\overline{A_{1}}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$ indeed holds by describing the language of $\overline{A_{1}}$.

Remark: I know that doing this exercise is cumbersome, but I think it will help in understanding the details of the proof of Rabin's tree theorem.

Exercise 2: Emptiness games for PTAs

a) Let A be a PTA, and assume that refuter wins the parity game $\mathcal{G}(A)$ from the initial position q_{0}. Explain how a winning strategy for refuter can be used to define a tree in $\mathcal{T} \in \mathcal{L}(A)$. Make this formal by explaining the construction of the set of nodes \mathcal{T} and its labeling function label \mathcal{T}.
b) Consider automaton A_{2} from Part b) of Exercise 1 from the last exercise sheet.

$$
\begin{aligned}
A_{2}= & (\underbrace{\left\{a_{/ 2}, b_{/ 2}\right\}}_{\Sigma}, \underbrace{\left\{q_{+}, q_{-}\right\}}_{Q}, q_{+},\left(q_{+} \stackrel{\Omega}{\mapsto} 1, q_{-} \stackrel{\Omega}{\mapsto} 0\right)) \text { with } \\
& \rightarrow a=\left\{\left(q_{+},\left(q_{-}, q_{-}\right)\right)\right\}, \\
& \rightarrow b=\left\{\left(q_{+},\left(q_{+}, q_{-}\right)\right),\left(q_{+},\left(q_{-}, q_{+}\right)\right),\left(q_{-,}\left(q_{-}, q_{-}\right)\right)\right\} .
\end{aligned}
$$

Transform the automaton to a language-equivalent automaton that has at least one transition $(q, \vec{q}) \in \rightarrow a$ for each source state q and symbol a. (This will ensure that the parity game is deadlock-free.)

Construct the parity game $\mathcal{G}(A)$ and identify a positional winning strategy for refuter. How does the tree described by the strategy look like?

Hint: Restrict yourself to positions Q^{2} of prover that can actually occur during a play of the game. This prevents the game arena from becoming excessively large.

Exercise 3: Describing tree languages using S2S

We will introduce and discuss S2S in the exercise class on June 20. Afterwards, I will also add an explanation to the lecture notes.

Consider the Alphabet $\Sigma=\left\{a_{/ 2}, b_{/ 2}\right\}$. Our goal is to create a closed S2S-formula for the language \mathcal{L} of trees in which exactly one branch contains infinitely many as (known from Part c) of Exercise 1 from the last exercise sheet).
a) Consider the following S2S formula that has the free second-order variable X.

$$
\begin{align*}
\operatorname{Branch}(X)= & \varepsilon \in X \tag{1}\\
& \wedge \forall x: x \in X \rightarrow \exists y \exists z: S_{0}(x, y) \wedge S_{1}(x, z) \wedge(y \in X \oplus z \in X) \tag{2}\\
& \wedge \forall y:(y \in X \wedge y \neq \varepsilon) \rightarrow \exists x: x \in X \wedge\left(S_{0}(x, y) \vee S_{1}(x, y)\right) \tag{3}
\end{align*}
$$

Here, \oplus is XOR and \rightarrow is implication. They can be easily rewritten using negation, conjunction, and disjunction.

Argue that $\operatorname{Branch}(X)$ evaluates to true under a structure $\mathcal{S}(\mathcal{T})$ and an interpretation $\mathcal{I}_{\mathcal{T}}$ if and only if $\mathcal{I}_{\mathcal{T}}(X)$ is a set of positions that forms a branch of \mathcal{T}. Explain the purpose of each Line (1) - (3).
b) In S2S, we only have an equality predicate for first-order terms. Construct a formula Equal (X, Y) with two free second-order variables X, Y that evaluates to true under a structure $\mathcal{S}(\mathcal{T})$ and an interpretation $\mathcal{I}_{\mathcal{T}}$ if and only if $\mathcal{I}_{\mathcal{T}}(X)=\mathcal{I}_{\mathcal{T}}(Y)$.
c) Construct formulas $\operatorname{Fin}_{a}(X)$ respectively $\operatorname{Inf}_{a}(X)$ with one free second-order variable X that evaluate to true under a structure $\mathcal{S}(\mathcal{T})$ and an interpretation $\mathcal{I}_{\mathcal{T}}$ if and only if $\mathcal{I}_{\mathcal{T}}(X)$ contains only finitely many respectively infinite many nodes labeled by a.

For simplicity, you may suppose that $\mathcal{I}_{\mathcal{T}}(X)$ is a branch of \mathcal{T}.
d) Combine the previous parts of this exercises to construct a closed S 2 S -formula $\varphi_{\mathcal{L}}$ that evaluates to true under a structure $\mathcal{S}(\mathcal{T})$ if and only if $\mathcal{T} \in \mathcal{L}$.

