Games with perfect information		
Sebastian Muskalla	Exercise sheet 11	TU Braunschweig
Prof. Dr. Roland Meyer		Summer term 2017

Due: June 30

Out: June 23

Submit your solutions until Friday, June 30, 14:00, in the box next to office 343.

Exercise 1

Let ${\mathcal G}$ be a zero-sum game. Prove that if ${\mathcal G}$ has a value, it has a unique value.

Use the definitions in your proof, do not use $\nu_{\bigcirc} > \nu_{\square}$ or the minmax theorem.

Exercise 2

Let \mathcal{G} be a length-k payoff game on a finite game arena $G = (V_{\Box} \cup V_{\bigcirc}, R)$ for some initial position $x_0 \in V$. We assume that there is a weight-function $w: R \to \mathbb{Z}$ assigning each arc is weight as an integer. The value of the payoff function φ of a play $p = r_0r_1r_2...r_n$ of length $n \leq k$ is defined as follows:

$$\varphi(p) = \sum_{i=0}^n w(r_i) \, .$$

Present a recursive algorithm determining the value $\boldsymbol{\nu}$ of such a game.

Hint: For each position y and each number $n \le k$, define $v_k(y)$ as the value achieved in the game where we see y as the initial position and n as the bound on the length of plays. Show how to compute these values.

Exercise 3

Let $G = (V_{\Box} \cup V_{\bigcirc})$ be a finite, deadlock-free game arena, $x_0 \in \bigcirc$ an initial position and $w: R \to \mathbb{R}$ a weight function. We assume that G is bipartite, i.e. the players alternately take turns.

We define a finite game \mathcal{G}^{fin} as follows: The players pick moves, starting from position x_0 .

A **repetition** is a move $r_m = (x, y) \in V_{\frac{1}{2d}} \times V_{\frac{1}{2d}}$ such that there is an $\ell < m$ with $r_{\ell} = (y, z) \in V_{\frac{1}{2d}} \times V_{\frac{1}{2d}}$.

The plays of \mathcal{G}^{fin} stops on the first repetition, say for the moves $\ell < m$. Then refuter pays to prover the value

$$\varphi^{fin}(p) = \frac{1}{m-\ell+1} \sum_{i=\ell}^{m} w(r_i) .$$

- a) Prove that if the moves corresponding to $\ell < m$ form a repetition, then $\ell + m$ is odd.
- b) Derive a bound on the length of maximal plays of \mathcal{G}^{fin} .
- c) Prove that \mathcal{G}^{fin} has a value by modeling \mathcal{G}^{fin} as a zero-sum game of bounded length.