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Exercise 1: Gale-Stewart games as graph games
Let G(A, B) be a Gale-Stewart game. Define an equivalent game over a graph with the set of
positions

a) V = A×
{
□,#}

,

b) V = A∗.

In each case, specify the ownership, the arcs, the winning condition, and the initial position of
interest.

Proof:

a) We give a straightforward encoding of the Gale-Stewart game.

• Vertices V = A×
{
□,#}

.

• Ownership: V□ = A×
{
□
}
, V# = A×

{#}
.

The second component of a position (a,⋆⋆ ) indicates the active player.

• Arcs: R =
{(

(a,⋆⋆ ), (b,⋆⋆ )
) ∣∣ a, b ∈ A,

{
□,#}

=
{
⋆⋆ ,⋆⋆

}}
.

The active player can select an arbitrary action a′ ∈ Awithout any restriction. The play-
ers alternately take turns.

• The problem is that we need an initial position in V. This position contains some action,
but actually we want refuter to select the first action.

Let us select some a0 ∈ A and fix (a0,#) ∈ V# as the initial position of interest. The
second component indicates that refuter starts. The first component will be ignored for
the winning condition.

• A maximal play is an infinite sequence p ∈ Vω. We define a function

projA : V → A
(a,⋆⋆ ) 7→ a

that projects away the second component. We extend it to sequences in the natural
way, i.e. by applying it to every entry of the sequence. We obtain the function

projA : V
ω → Aω .

This allows us to associate to a play p ∈ Vω the sequence projA(p) ∈ Aω. We need to
get rid of the dummy position a0 that is at the beginning of each play. To this end, we
define another function



drop : Aω → Aω

a.s 7→ s

that removes the first entry from an infinite sequence. We can now define the winning
condition by

win : Vω → {
□,#}

p 7→ { # , drop
(
projA(p)

)
∈ B ,

□ , else, i.e. drop
(
projA(p)

)
̸∈ B .

b) The use A∗ to keep track of finite prefixes of the plays. The difficulty is encoding the winning
conditions

• Vertices V = A∗.

• Ownership:

owner : V → {
□,#}

(a,⋆⋆ ) 7→ { # ,
∣∣p∣∣ is even ,

□ , else, i.e.
∣∣p∣∣ is odd .

Prover should pick the even positions (0, 2, 4, . . .). Note that in move i, the prefix of the
play has length i. (Here, it is important that we start to count from 0.)

• Arcs: R =
{(

p, p.a
) ∣∣ p ∈ A∗, a ∈ A

}
.

The active play can prolong the play by an arbitrary action.

• The initial position of interest is the empty play ε ∈ V.

Note that ∣ε∣ = 0, so indeed refuter has the first move.

• A maximal play is an infinite sequence p ∈ Vω. Each entry pi is a finite play in A∗ of
length i. Note that each pi is a prefix of pj for j > i,

p = (ε).(a).(ab).(abc) . . .

To define thewinning conditionweneed to consider the infiniteword that occurs as the
limit of the pi.

The ith action is picked in move i + 1. We define the infinite word lim p ∈ Aω by

(lim p)j = (pj+1)j .

Thismeanswe pick lim p at position j to be the jth entry of the first pi that is long enough
so that (pi)i is defined (and this i is j + 1).

We can finally define



win : Vω → {
□,#}

p 7→ { # , lim p ∈ B ,
□ , else, i.e. lim p ̸∈ B .

Remark: Notation for (sets of) sequences
We recall the notations needed for the next two exercises.

Let V be a set. We denote by V∗ the set of sequences over V of finite length, by Vω the set of
sequences over Vω of infinite length.

Let p′, p′′ ∈ V∗, p ∈ Vω. Finite sequences p′, p′′ can be concatenated, resulting in the finite-
length sequence p′.p′′. A finite sequence p′ can be concatenated with the infinite sequence p,
resulting in the infinite sequence p′.p.

For sets of sequences, we define their concatenation element-wise.
Let K′, K′′ ⊆ V∗ and H ⊆ Vω. We define

K′.K′′ =
{
p′.p′′ ∈ V∗

∣∣ p′ ∈ K′, p′′ ∈ K′′
}
,

K′.H =
{
p′.p ∈ Vω

∣∣ p′ ∈ K′, p ∈ H
}
.

We identify elements x ∈ Vwith the sequence x ∈ V∗ of length one.

For a sequence p′ ∈ V∗, we write p′ to denote the singleton set
{
p′
}
⊆ V∗.

Exercise 2: Reachability games as Gale-Stewart games
Let G be a reachablity game, specified as usual by a game arena G = (V□ ·∪ V#, R) and a winning
setVreach ⊆ V. For simplicity, let us assume thatG is bipartite and theplayer take turns alternately.
Furthermore, we fix the initial position x0 ∈ V#.

Our goal is to create an equivalent Gale-Stewart game G
(
V, B

)
, where B is of the shape

B = (B□ ∪ Breach) \ (B# ∪ B¬x0) .

a) We define
B# =

∪
x∈V#,
y∈V□,
(x,y) ̸∈R

{
p ∈ Vω

∣∣∣ p ∈ Vodd.x.y.Vω
}
.

Here, V odd ⊆ V∗ should denote the set of all finite sequences over V of odd length.



Argue that an infinite play p ∈ Vω of G
(
V, B

)
is in B# if and only if refuter makes a move that

is illegal, i.e. not corresponding to an arc in the graph. This means that there is a prefix of the
play of the shape p′ = p′′.x in which refuter y such that (x, y) ̸∈ R.

b) Define the set B¬x0 of plays that are not starting in x0.

c) Define the set B□ of all plays in which prover makes an illegal move.

d) Define the set Breach of all plays in which at least one position in the set Vreach occurs.

Proof:

a) Assume p̃ ∈ Vω is an infinite play.

• If p̃ ∈ B#, we have that there are x ∈ V#, y ∈ V□ with (x, y) ̸∈ R such that

p̃ ∈
{
p ∈ Vω

∣∣∣ p ∈ Vodd.x.y.Vω
}
.

Thismeanswe canwrite p̃ = p′.x.y.p′′where p′ is a finite play of odd length and p′′ ∈ Vω

is an infinite suffix.

Note that since refuter starts and theplayers alternately take turns, refuterpicks theeven
positions of p̃. This also means that she has to pick whenever the finite play is of even
length. Since p′.x is of even length, this means the move (x, y) was picked by refuter.

As we have (x, y) ̸∈ R, this is not a valid move.

• Assume p̃ contains a illegal move made by refuter. As mentioned above, refuter always
moves after even prefixes. We may write p̃ as

p̃ = p′.x′.y′.p′′

where p′.x′ is the even-length prefix (and thus p′ is of odd length), and x′.y′ is the illegal
move (i.e. (x′, y′) ̸∈ R).

We get
p̃ ∈

{
p ∈ Vω

∣∣∣ p ∈ Vodd.x′.y′.Vω
}
⊆ B# .

b) We define
B¬x0 = (V \

{
x0
}
).Vω =

{
p ∈ Vω

∣∣ p0 ̸= x0
}

as the set of all plays whose first entry is not x0 (and the rest is arbitrary).

c) Similar to B# given in the exercise, we define

B□ =
∪

x∈V□,
y∈V#,
(x,y) ̸∈R

{
p ∈ Vω

∣∣ p ∈ Veven.x.y.Vω
}
.



Here, it is important that prover moves after odd prefixes p′.x. Correctness can be proven as
in Part a).

d) We define
Breach = V∗.Vreach.V

ω =
{
p ∈ Vω

∣∣ ∃i ∈ N : pi ∈ Vreach
}

as the set of all plays that consist of a finite prefix, a position in Vreach and an arbitrary infinite
suffix.

Exercise 3: Open sets
Let A be a set. We call a set B ⊆ Aω of infinite sequences over A open if it is of the shape

B = K.Aω

for some set K ⊆ A∗ of finite sequences over A. (This essentially means that a set B is open if the
membership of a play p ∈ Aω in B is determined by a finite prefix of B.)

a) Prove that the empty set � ⊆ Aω and Aω itself are open.

b) Prove that if B and B′ are open, then also their union B ∪ B′ is open.

c) Prove that if B and B′ are open, then also their intersection B ∩ B′ is open.

Proof:

a) • Wemay see the empty set� ⊆ A∗ as a set of finite sequences. If we concatenate it with
anything, we obtain the empty set:

�.H = � .

This allows us to write � = �.Aω.

• There are many representations of Aω as open set. A few examples:

Aω =
{
ε
}
.Aω = A.Aω = A∗.Aω .

To argue for correctness e.g. of the first representation, note that prepending ε does not
change an infinite sequence.

b) Assume that B, B′ are open. This means there are K, K′ ⊆ V∗ such that

B = K.Aω B′ = K′.Aω .



We claim their union B ∪ B′ is open, as it can be written as

B ∪ B′ = (K ∪ K′).Aω .

Assume p = B ∪ B′. We may write it as p = p′.p′′ with p′ in K or in K′, proving p ∈ (K ∪ K′).Aω.
The other direction is similar.

c) Assume that B, B′ are open. This means there are K, K′ ⊆ V∗ such that

B = K.Aω B′ = K′.Aω .

We claim their intersection B ∩ B′ is open.

One might think that, similar to Part b), one can show B ∩ B′ = (K ∩ K′).Aω. We get that one
inclusion, namely B ∩ B′ ⊇ (K ∩ K′).Aω, holds, but the other one does not. If p ∈ B ∩ B′, we
get decompositions p = pfin.pinf and p′fin.p

′′
inf. We even know that pfin is a prefix of p

′
fin or the

other way around, but since they may differ in length, they are not necessarily equal.

We need to consider finite sequences that are in one of the sets and have a prefix that is in
the other set. We define

K∩ = K(1)∩ ∪ K(1)∩ =
{
pfin ∈ K

∣∣ pfin = p1.p2 with p1 ∈ K′, p2 ∈ V∗
}

∪
{
pfin ∈ K′

∣∣ pfin = p1.p2 with p1 ∈ K, p2 ∈ V∗
}
,

i.e. we take all sequences in K that can be prolonged to a sequence in K′ and the other way
around.

We can now formally prove
B ∩ B′ = K∩.Aω .

• Assume p̃ ∈ K∩.Aω. We decompose p̃ = p̃fin.p̃inf with p̃fin ∈ K∩.

We consider the case p̃fin ∈ K(1)∩ , the other case is analogous.

Since K(1)∩ =
{
pfin ∈ K

∣∣ pfin = p1.p2 with p1 ∈ K′, p2 ∈ V∗
}
is a subset of K, we obtain

p̃fin ∈ K, p̃ ∈ B.

It remains to prove p̃ ∈ B′. Wemaywrite p̃fin = p̃1.p̃2, where p̃1 ∈ K′. This gives us a new
decompositions p̃ = p̃1.(p̃2.p̃inf) with p̃1 ∈ K′, p̃2.p̃fin ∈ Aω, proving p̃ ∈ B′.

• Assume p̃ ∈ (B∩ B′). We get that there are decompositions p̃ = p̃fin.p̃inf and p̃ = p̃′fin.p̃
′′
inf

with p̃fin ∈ K, p̃′fin ∈ K′.

If p̃fin and p̃′fin are of the same length, they have to be equal, and we have p̃fin ∈ K ∩ K′.
Since K ∩ K′ is a subset of K∩ (we chose p2 to be ε in the definition of K(1)∩ ), this proves
p̃ ∈ K∩.Aω.

Otherwise, one of the two finite prefixes is shorter, let us say wlog. p̃fin. (The other case
is analogous.) This allows us to write p̃′fin = p̃fin.p̃2 for some p̃2v, as p̃fin is a prefix of p̃

′
fin.



Since p̃′fin ∈ K′ and p̃fin ∈ K, this proves p̃fin′ ∈ K(2)∩ ⊆ K∩.

We conclude p̃ = p̃′fin.p̃
′
inf ∈ K∩.Aω.

Remark
The Parts a) - c) of Exercise 3 almost prove that the notion of being open as defined here defines
a topology on Aω.

It remains to prove that arbitrary unions of open sets are open. This is also true, and the proof is
a straightforward extension of the proof given for Part b). Consider an arbitrary union of open
sets, i.e.

B =
∪
i∈I

Bi ,

where I is some index set. For each i ∈ I , we know thatwe canwrite Bi = Ki.Aω for some Ki ⊆ A∗.

We obtain

B =
∪
i∈I

Bi =

∪
i∈I

Ki

.Aω .

Note that the proof for Part b) cannot be extended to show that open sets are closed under ar-
bitrary (or even just countable) intersections: We could define a set K∩ similar as above, but the
proof of

∩
i∈I Bi = K∩.Aω will fail. In our proof, we have considered the longer one of the pre-

fixes pfin, p
′
fin. If we have infinitely many of these prefixes, their length may grow unboundedly.

Consequently, it is not possible to pick the “longest” one.

Remark
The sets B#, B¬x0 , B□, Breach from the Exercise 2 are open.

For B¬x0 and Breach, this is already clear by the way we presented the sets.

For B# and B□, we need the remark abovewhich shows that unions of open sets are again open.


