	Games with perfect information Exercise sheet 2	
Sebastian Muskalla		TU Braunschweig
Out April 11		Dummer term 2018 April 18

Submit your solutions on Wednesday, April 18, during the lecture.
Please submit in groups of three persons.

Exercise 1: Tic-tac-toe

Consider the popular game tic-tac-toe, see e.g. https://en.wikipedia.org/wiki/Tic-tac-toe.

Formalize the game, i.e. formally define a game $\mathcal{G}=(G$, win) consisting of a game arena and a winning condition that imitates the behavior of tic-tac-toe.

Assume that player \bigcirc makes the first mark, and the other player wins in the case of a draw.

Exercise 2: Positional and uniform strategies

If a game arena has finitely many positions, we can explicitly give it as a graph. For this exercise, we consider a game on the following game arena $G=(V, R)$. Positions owned by the universal player \square are drawn as boxes, positions owned by the existantial player \bigcirc as circles. The numbers should denote the names of the vertices, i.e. $V=\{1, \ldots, 5\}$.

We consider the following winning condition: A maximal play is won by the existential player if and only if the positions 3,4 and 5 are each visited exactly once.
a) What is the winning region for each of the players?

Present a single strategy $s_{\bigcirc}:$ Plays $_{\circ} \rightarrow V$ that is winning from all positions x in the winning region W_{\circ} of the existential player. Argue shortly why your strategy is indeed winning from these positions.

Note: Such a strategy is called a uniform winning strategy.
b) For each vertex $x \in W_{\bigcirc}$ in the winning region of the existential player, present a positional strategy for existential player $s_{\mathrm{O}, x}:\{3,4\} \rightarrow R$ such that $s_{\mathrm{O}, x}$ is winning from x.
c) Prove that there is no uniform positional winning strategy for the existential player, i.e. no single positional strategy that wins from all $x \in W_{\circ}$.
d) Consider the modified graph that is obtained by adding a vertex 6 owned by \bigcirc and the arcs $(6,3)$ and $(6,4)$.
Prove that position 6 is winning for the existential player, but there is no positional winning strategy from 6.

Exercise 3: Multiplayer games

Assume that three-player games are defined analogously to two-player games, i.e. they are played on a directed graph with an ownership function owner: $V \rightarrow\{1,2,3\}$, and their winning condition is a function win: Plays $_{\text {max }} \rightarrow\{1,2,3\}$. (Winning) strategies are defined similar to twoplayer games.

For every three-player game $\mathcal{G}_{3 p}=\left(G_{3 p}\right.$, win $\left._{3 p}\right)$, where $G_{3 p}=\left(V_{1} \cup V_{2} \cup V_{3}, R\right)$ and each player $i \in\{1, \ldots, 3\}$, show how to construct a two-player game $\mathcal{G}_{i}=\left(G_{i}\right.$, win $\left._{i}\right)$ with $G_{i}=\left(V_{\square} \cup V_{\odot}, R\right)$ such that:

- The underlying directed graph is the same, i.e. $V_{1} \uplus V_{2} \uplus V_{3}=V_{\square} \cup V_{\circ}$.
- Each node $x \in V_{1} \uplus V_{2} \uplus V_{3}$ is winning for player i in the game $\mathcal{G}_{3 p}$ if and only if it is winning for player \bigcirc in the game \mathcal{G}_{i}.

Prove that your constructed game \mathcal{G}_{2} has the desired properties.

Exercise 4: Deadlocks

Many books in the literate only consider games that are deadlock-free, meaning every position $x \in V$ has at least one outgoing $\operatorname{arc}(x, y) \in R$ (where self-loops, i.e. $x=y$, are allowed).

Assume that $\mathcal{G}=(G$, win $)$ is a game that may contain deadlocks. Furthermore, we assume that the winning condition has the property that any finite play ending in a deadlock is lost by the player owning the last position.

Construct a game $\mathcal{G}^{\prime}=\left(G^{\prime}\right.$, win' $)$ that does not contain deadlocks. The new game arena G^{\prime} should be obtained from G by adding vertices and arcs, in particular each position of the old game is a position of the new game, $V \subseteq V^{\prime}$.

Your construction should guarantee that each position $x \in V$ of the old game is winning in the new game for the same player for which it was winning in the old game. Argue why it has this property.

