	Games with perfect information	
Exercise sheet 5		
Sebastian Muskalla		TU Braunschweig

Submit your solutions on Wednesday, May 9, at the beginning of the lecture. Please submit in groups of three persons.

Exercise 1: Encoding winning conditions

Let $G=\left(V_{\square} \cup V_{\circ}, R\right)$ be a deadlock-free, finite game arena. Let $x, y \in V$ be two positions, $x \neq y$.
a) Present a reachability/safety game whose winning condition encodes the following property: A play is won by the universal player if it does not visit both x and y.
b) Present a parity game whose winning condition encodes the following property:

A play is won by the existential player if it visits x at least once, and later visits y infinitely often.
c) Present a parity game whose winning condition encodes the following property:

A play is won by the existential player if it either does not visit x infinitely often, or it visits both x and y infinitely often.
d) Present a parity game whose winning condition encodes the following property:

A play is won by the existential player if it either does not visit x infinitely often, or it visits x, but not y infinitely often.

For each part, reason briefly why your construction is correct.
Note: You are allowed to modify the game arena G if needed.

Exercise 2

Consider the parity game given by the following graph. For each vertex labeled with x^{i}, the letter x denotes the name of the vertex, the superscript denotes its priority $\Omega(x)=i$.

For each player, identify her winning region and present a uniform positional winning strategy. Reason briefly why the strategies are indeed winning.

Exercise 3: Uniform winning strategies I

Prove Part a) of Lemma 6.5 from the lecture notes, including all technical details:
 winning from x resp. x^{\prime}. Then there is a positional strategy $s_{\boldsymbol{y}}$ that is winning from both x and x^{\prime}.

Exercise 4: Uniform winning strategies II

Prove Part b) of Lemma 6.5 from the lecture notes:
Let X be a set of positions such that for each $x \in X, \tilde{\mathcal{L}} \in\{\bigcirc, \square\}$ has a positional strategy $s_{i z}, X$ that is winning from x. Then there is a positional strategy $s_{\boldsymbol{z}}$ that is uniformly winning from all positions $x \in X$.

Hint: A proof by induction will not work, since X may be infinite. Note that we assumed that V is countable, this in particular means that we can write $V=\left\{v_{0}, v_{1}, v_{2}, \ldots\right\}$ for appropriately chosen v_{i}. Many of the arguments from Exercise 3 can be reused.

