Games with perfect information Exercise sheet 6

Sebastian Muskalla

TU Braunschweig Summer term 2018

Out: May 9 Due: May 16

Submit your solutions on Wednesday, May 16, at the beginning of the lecture.

Please submit in groups of three persons.

Exercise 1: Is it a trap?

- a) Formally prove Part a) of Lemma 6.9 from the lecture notes:
 - Let $Y \subseteq V$ and $\Leftrightarrow \in \{\bigcirc, \square\}$. The complement of the attractor $V \setminus \operatorname{Attr}_{\stackrel{\leftarrow}{\hookrightarrow}}(Y)$ is a trap for player \Leftrightarrow .
- b) Construct a game arena and a set Y such that Attr $_{\Sigma}(Y)$ is not a trap for any of the players. Proof that these properties hold.

Exercise 2: It's a trap!

Formally prove Lemma 6.12 from the lecture notes:

Let $X \subseteq V$ be a trap for player \Leftrightarrow in \mathcal{G} and let $s_{\overline{\diamondsuit}}$ be a strategy for the opponent $\overline{\Leftrightarrow}$ that is winning from some vertex $x \in X$ in the subgame $\mathcal{G}_{\upharpoonright X}$. Then $s_{\overline{\diamondsuit}}$ is also winning from x in the game \mathcal{G} .

Exercise 3: Weak parity games

A **weak parity game** is given by a game arena $G = (V_{\square} \cup V_{\bigcirc}, R)$ and a priority function Ω . Instead of considering the highest priority that *occurs infinitely often* to determine the winner of a play, we consider the highest priority that *occurs at all*.

Formally, for an infinite sequence $p \subseteq A^{\omega}$, we define the **occurrence set**

$$\mathsf{Occ}(p) = \{ a \in A \mid \exists i \in \mathbb{N} : p_i = a \} .$$

The winner of the weak parity game given by G and Ω is determined by the **weak parity winning** condition:

$$\begin{array}{ccc} \textit{win} & : & \textit{Plays}_{\textit{max}} & \rightarrow & \{\bigcirc, \Box\} \\ & & & & \Big[\bigcirc, & \text{if } \max \mathsf{Occ}(\Omega(p)) \text{ is even}, \\ & & & & \Big[\Box, & \text{else, i.e. if } \max \mathsf{Occ}(\Omega(p)) \text{ is odd}. \end{array}$$

a) Present an algorithm that, given a weak parity game on a finite, deadlock-free game arena, computes the winning regions of both players. Briefly argue that your algorithm is correct.

Hint: Attractors!

b) Is the winning condition of weak parity games prefix-independent, i.e. does Lemma ?? hold?

Do uniform positional winning strategies exist?

Algorithm: Zielonka's recursive algorithm

Input: parity game \mathcal{G} given by $G = (V_{\square}, V_{\bigcirc}, R)$ and Ω .

Output: winning regions W_{\square} and W_{\bigcirc} .

Procedure solve(\mathcal{G})

```
1: n = \max_{x \in V} \Omega(x)
   2: if n = 0 then
                    return W_{\bigcirc} = V, W_{\square} = \emptyset
   4: else
                    N = \{x \in V \mid \Omega(x) = n\}
   5:
                     if n even then
   6:
                               \triangle = \bigcirc, \overline{\triangle} = \square
   7:
   8:
                     \Rightarrow = \Box, \overline{\Rightarrow} = \bigcirc
   9:
10:
                     end if
                    A = Attr_{\stackrel{\circ}{\sim}}^{\mathcal{G}}(N)
11:
                     W'_{\bigcirc}, W'_{\square} = solve(\mathcal{G}_{\upharpoonright V \setminus A})
12:
                     if W'_{\overleftrightarrow{\Sigma}} = V \setminus A then
13:
                     return W_{\overleftrightarrow{\Delta}} = V, W_{\overline{\overleftrightarrow{\Delta}}} = \emptyset
14:
15:
                            B = \operatorname{Attr}_{\stackrel{\mathcal{G}}{\swarrow}}^{\mathcal{G}}(W_{\stackrel{\smile}{\swarrow}}^{\prime})
W_{\square}^{\prime\prime}, W_{\bigcirc}^{\prime\prime} = \operatorname{solve}(\mathcal{G}_{\upharpoonright V \setminus B})
...
16:
17:
                               return W_{\overleftrightarrow{\lambda}} = W''_{\overleftrightarrow{\lambda}}, W_{\overrightarrow{\lambda}} = W''_{\overrightarrow{\lambda}} \cup B
18:
19:
                     end if
20: end if
```

Exercise 4: Algorithmics of parity games

Use Zielonka's recursive algorithm to solve the following parity game.

