	Games with perfect information	
Sebastian Muskalla	Exercise sheet 6	TU Braunschweig

Out: May 9
Due: May 16

Submit your solutions on Wednesday, May 16, at the beginning of the lecture.
Please submit in groups of three persons.

Exercise 1: Is it a trap?

a) Formally prove Part a) of Lemma 6.9 from the lecture notes:

Let $Y \subseteq V$ and $\rightsquigarrow \in\{O, \square\}$. The complement of the attractor $V \backslash \operatorname{Attr}_{\widehat{\aleph}}(Y)$ is a trap for player $\hat{\aleph}$.
b) Construct a game arena and a set Y such that $\operatorname{Attr}_{\vec{s}}(Y)$ is not a trap for any of the players. Proof that these properties hold.

Exercise 2: It's a trap!

Formally prove Lemma 6.12 from the lecture notes:
Let $X \subseteq V$ be a trap for player $\hat{\xi}$ in \mathcal{G} and let $s_{\bar{\zeta}}$ be a strategy for the opponent $\overline{\hat{\xi}}$ that is winning from some vertex $x \in X$ in the subgame $\mathcal{G}_{\uparrow x}$. Then $s_{\overline{\mathcal{H}}}$ is also winning from x in the game \mathcal{G}.

Exercise 3: Weak parity games

A weak parity game is given by a game arena $G=\left(V_{\square} \cup V_{O}, R\right)$ and a priority function Ω. Instead of considering the highest priority that occurs infinitely often to determine the winner of a play, we consider the highest priority that occurs at all.

Formally, for an infinite sequence $p \subseteq A^{\omega}$, we define the occurrence set

$$
\operatorname{Occ}(p)=\left\{a \in A \mid \exists i \in \mathbb{N}: p_{i}=a\right\} .
$$

The winner of the weak parity game given by G and Ω is determined by the weak parity winning condition:

$$
\begin{aligned}
\text { win }: \text { Plays }_{\max } & \rightarrow\{O, \square\} \\
p & \mapsto \begin{cases}O, & \text { if } \max \operatorname{Occ}(\Omega(p)) \text { is even, } \\
\square, & \text { else, i.e. if } \max \operatorname{Occ}(\Omega(p)) \text { is odd. }\end{cases}
\end{aligned}
$$

a) Present an algorithm that, given a weak parity game on a finite, deadlock-free game arena, computes the winning regions of both players. Briefly argue that your algorithm is correct.

Hint: Attractors!

b) Is the winning condition of weak parity games prefix-independent, i.e. does Lemma ?? hold? Do uniform positional winning strategies exist?

Algorithm: Zielonka's recursive algorithm

Input: parity game \mathcal{G} given by $G=\left(V_{\square}, V_{\mathrm{O}}, R\right)$ and Ω.
Output: winning regions W_{\square} and W_{\circ}.
Procedure solve (\mathcal{G})
: $n=\max _{x \in V} \Omega(x)$
if $n=0$ then
return $W_{\bigcirc}=V, W_{\square}=\varnothing$
else
$N=\{x \in V \mid \Omega(x)=n\}$
if n even then $\vec{z}=O, \overline{\vec{j}}=$
else
$\dot{\aleph}=\square, \overline{\vec{\xi}}=0$
end if
$A=\operatorname{Attr}_{\substack{\mathcal{T}}}^{\mathcal{G}}(N)$
$W_{\mathrm{O}}^{\prime}, W_{\square}^{\prime}=\operatorname{solve}\left(\mathcal{G}_{\text {MVA }}\right)$
if $W_{\grave{\zeta}}^{\prime}=V \backslash A$ then
return $W_{\widehat{\aleph}}=V, W_{\overline{\hat{\zeta}}}=\varnothing$
else
$B=\operatorname{Attr} \frac{\mathcal{T}}{\overline{\mathcal{T}}}\left(W_{\bar{\zeta}}^{\prime}\right)$
$W_{\square}^{\prime \prime}, W_{O}^{\prime \prime}=\operatorname{solve}\left(\mathcal{G}_{\mid V_{B}}\right)$
return $W_{\grave{\aleph}}=W_{\vec{\aleph}}^{\prime \prime}, W_{\overline{\grave{\zeta}}}=W_{\overline{\vec{\zeta}}}^{\prime \prime} \cup B$
end if
end if

Exercise 4: Algorithmics of parity games

Use Zielonka's recursive algorithm to solve the following parity game.

