From Symbolic Execution to Concolic Testing

Daniel Paqué

Structure

- Symbolic Execution
- Concolic Testing
- Execution Generated Testing
- Concurrency in Concolic Testing

Motivation

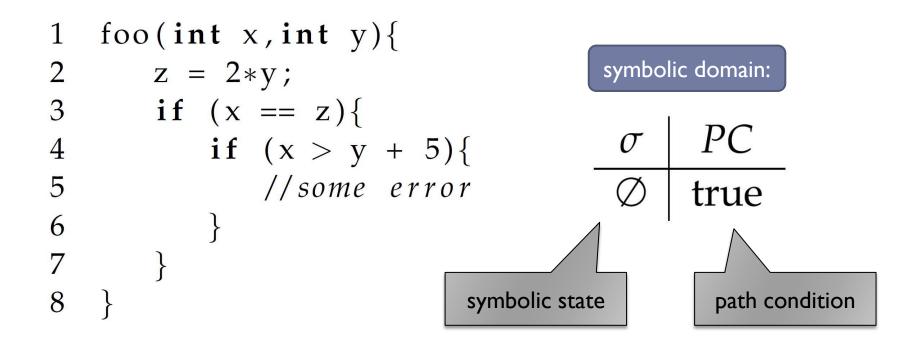
Software Testing "usually accounts for 50% of software development cost"

[Source:"The economic impacts of inadequate infrastructure for software testing", NIST]

- complex and large Software Systems complicate finding small test suites with high coverage
- Symbolic Execution
 - automic test case generation
 - high code coverage

execute the program in symbolic domain

- explore all possible execution paths
- for each path the constraints of the branching points are collected
- generate test input based on the constraints



➡ 1 2	foo(int x, int y){ z = 2*y;	symbolic domain:			
3 4	if $(x == z)$ { if $(x > y + 5)$ {	σ	PC		
5	//some error	$x \mapsto x_0$	true		
6 7	}	$y\mapsto y_0$			
8	}				

1 → 2	foo(int x, int y){ z = 2*y;	symbolic dor	main:
3 4	if $(x = z)$ { if $(x > y + 5)$ {	σ	PC
5 6	<pre>//some error }</pre>	$x \mapsto x_0$	
7	}	$y \mapsto y_0$	true
8	}	$z\mapsto 2y_0$	

D

wmhalic damain

$$symbolic domain:$$

$$1 \quad foo(int x, int y) \{$$

$$2 \quad z = 2*y;$$

$$3 \quad if (x == z) \{$$

$$4 \quad if (x > y + 5) \{$$

$$5 \quad //some \ error$$

$$6 \quad \}$$

$$7 \quad \}$$

$$8 \quad \}$$

$$3 \quad \frac{\sigma}{x \mapsto x_0} \quad \frac{PC}{x \mapsto x_0}$$

$$y \mapsto y_0 \quad (x_0 = 2y_0)$$

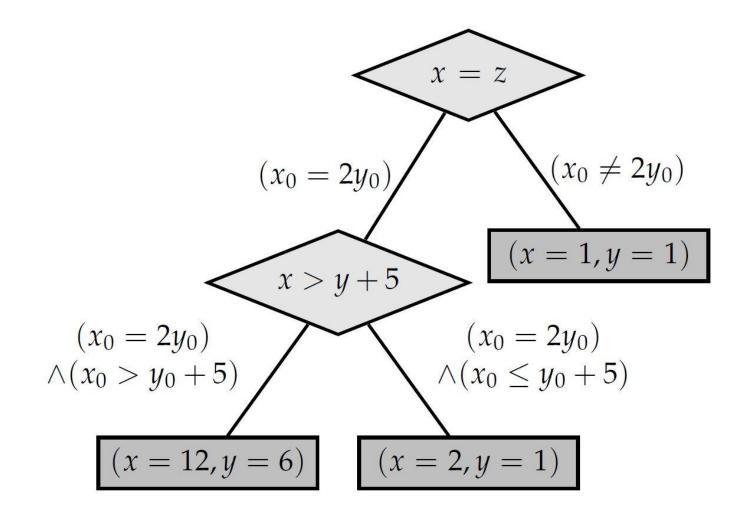
$$z \mapsto 2y_0 \quad \wedge (x_0 \le y_0 + 5)$$

$$3 \quad \frac{\sigma}{x \mapsto x_0} \quad \frac{satisfiable?}{x \mapsto x_0}$$

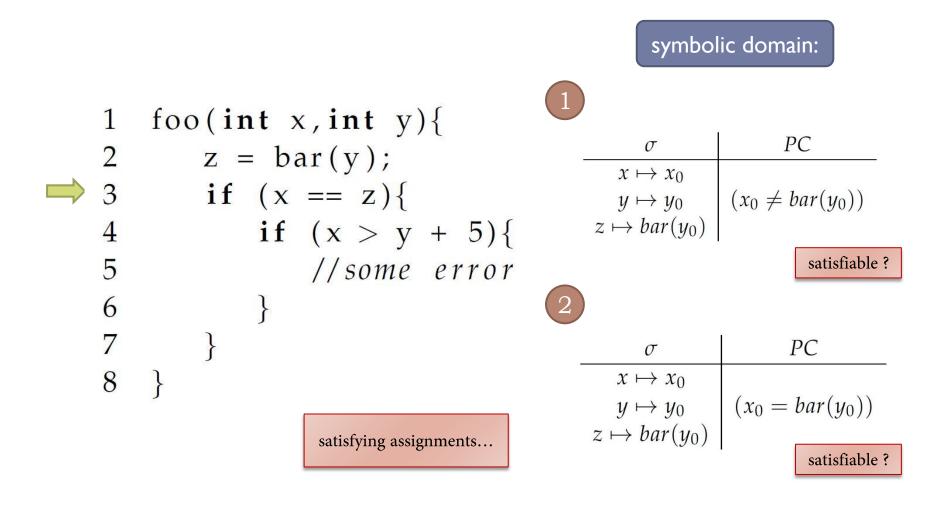
$$y \mapsto y_0 \quad (x_0 = 2y_0)$$

$$z \mapsto 2y_0 \quad \wedge (x_0 \le y_0 + 5)$$

From Symbolic Execution to Concolic Testing 28.11.2014



Limits of Symbolic Execution

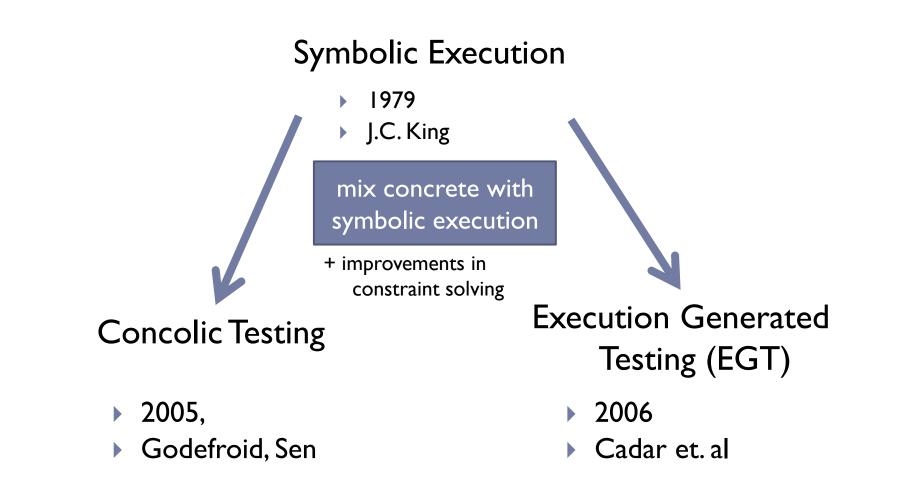


From Symbolic Execution to Concolic Testing 28.11.2014

Solution

Mix Symbolic Execution with Concrete Execution

- Concolic Testing
- Execution Generated Testing

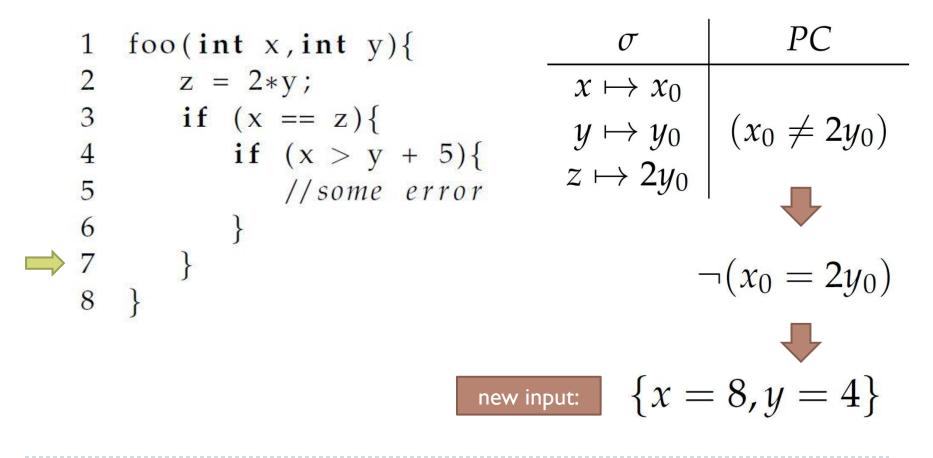


Concolic Testing

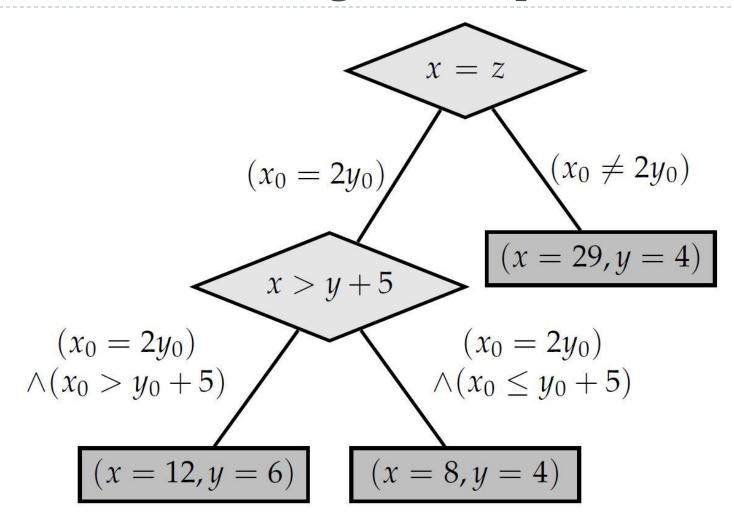
- execute program with concrete values and collect symbolic constraints during execution
- explore paths sequentially instead of forking
 - infer input for next execution
- use concrete values to solve problematic constraints

From Symbolic Execution to Concolic Testing 28.11.2014

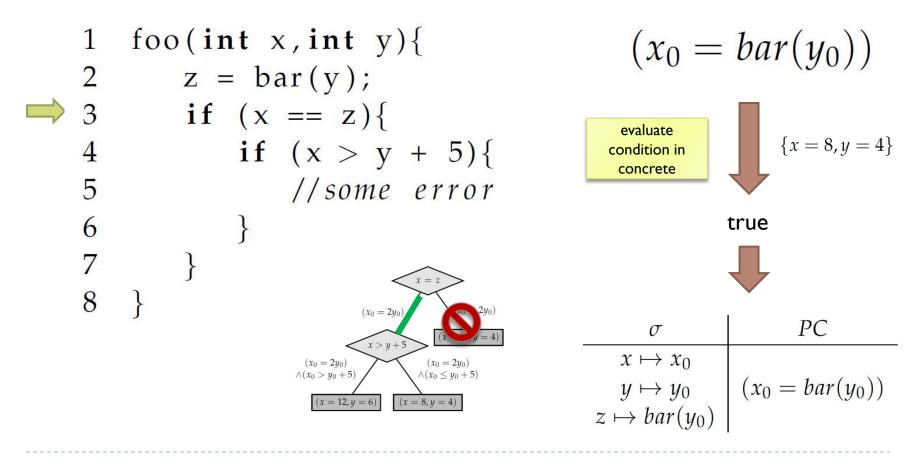
symbolic domain:



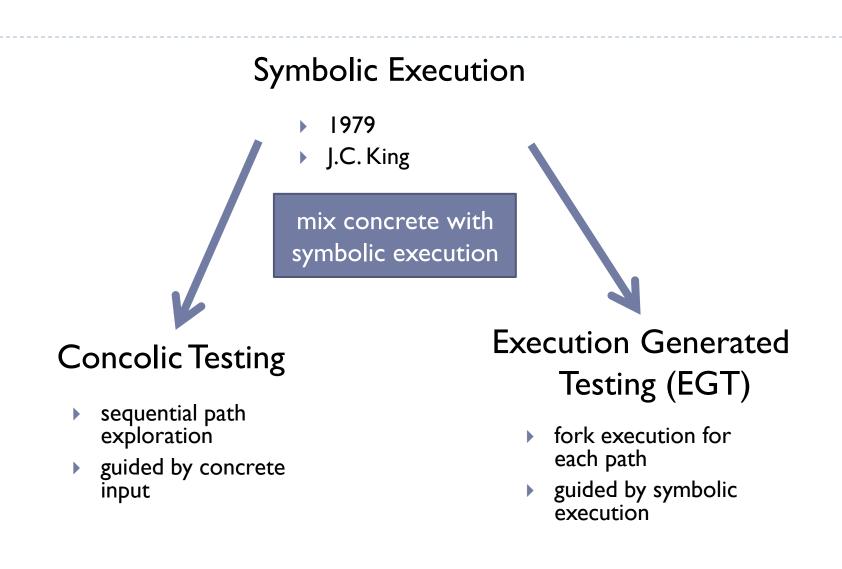
From Symbolic Execution to Concolic Testing 28.11.2014



symbolic domain:



symbolic state:



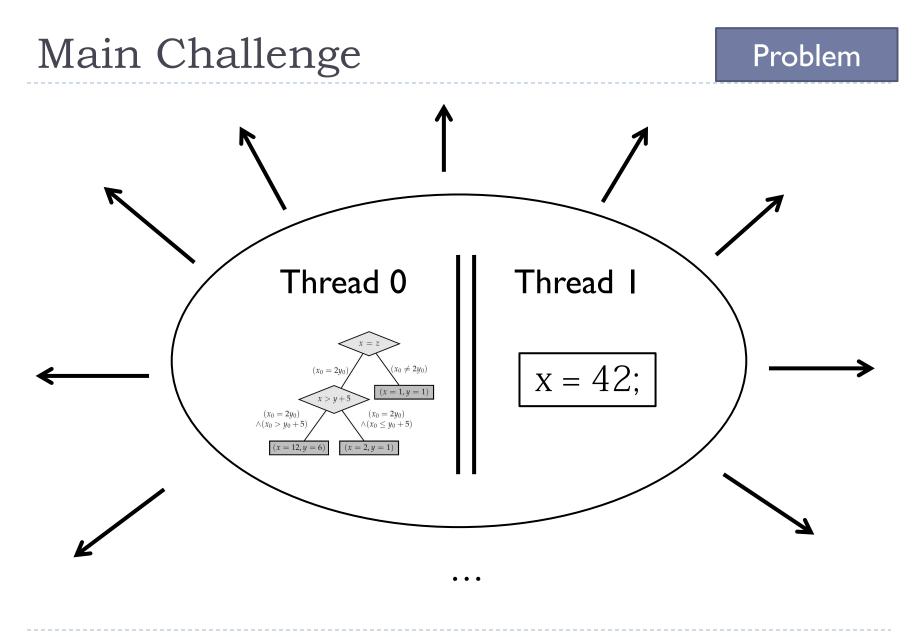
Execution Generated Testing

- further differences to Concolic Testing:
 - EGT dynamically checks if all operands are concrete
 - if so the operation can be executed in concrete
 - elsewise the operation is executed symbolical

1 foo3(int x){
2 y = 2;
3 z =
$$3*y;$$

4 if (x == z){ symbolic
5 //...

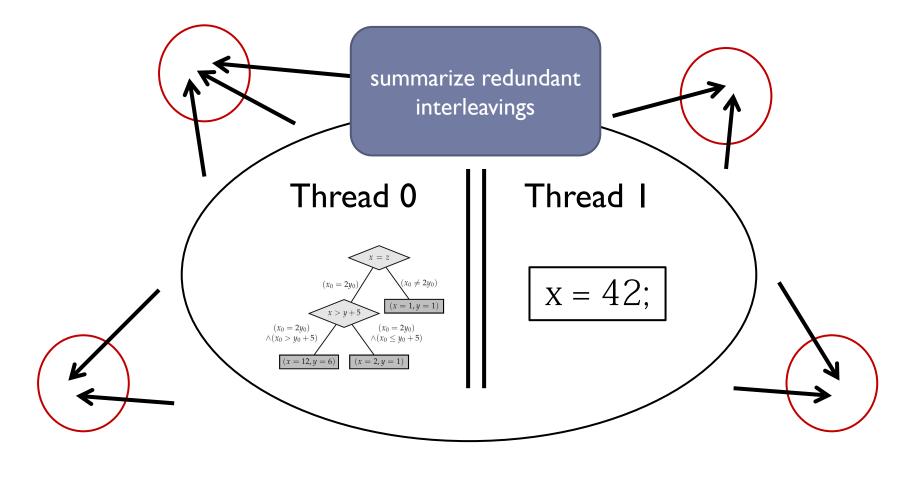
How to deal with concurrent programs?



From Symbolic Execution to Concolic Testing 28.11.2014

Main Challenge

Idea



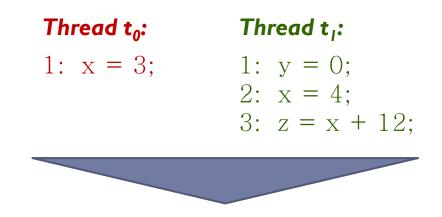
. . .

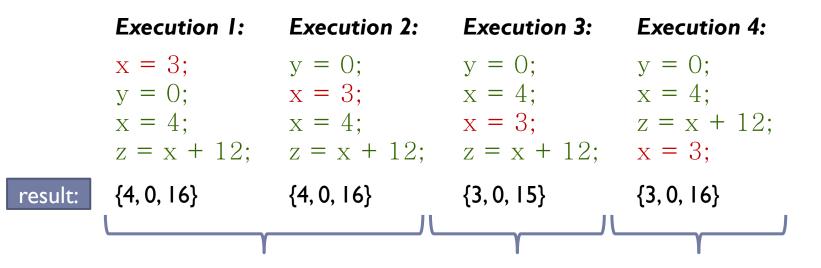
Koushik Sen & Gul Agha: (2006)

,,race-detection and flipping algorithm"

- minimize redundant executions in concurrent programs
- uses vector clocks to identify races

Redundant Executions





Redundant Executions – Race Detection

• two events are in a race if...

- they stem from different threads
- both access the same memory location (without locking)
- the order both events can be permuted by changing the schedule

	Execution 1:	Execution 2:	Execution 3:	Execution 4:
	x = 3;	y = 0;	y = 0;	y = 0;
	y = 0; x = 4; a = x + 12;	x = 3; x = 4; a = x + 12;	x = 4; x = 3; z = x + 12;	x = 4; z = x + 12; y = 2;
result:	z = x + 12; {4,0,16}	z = x + 12; {4,0,16}	z = x + 12; { 3, 0, 15 }	x = 3; {3,0,16}
races:	$(t_0, 1.1) - (t_1, 1.2)$	$(t_0, 1.1) - (t_1, 1.2)$	$(t_1, 1.2) - (t_0, 1.1)$	$(t_1, 1.3) - (t_0, 1.1)$
			$(t_0, 1.1) - (t_1, 1.3)$	

The Race-Detection and Flipping Algorithm

init:

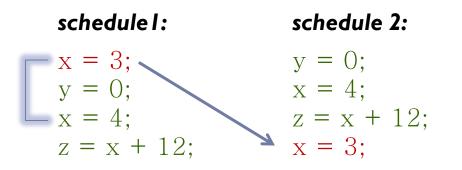
generate a random input and a schedule

loop:

- execute code with the generated input and schedule
- compute the race conditions and symbolic constraints
- generate a new schedule or a new input
- continue until all possible distinct execution paths have been explored (depth-first search strategy)

Generating new inputs/schedules

- new input: concolic testing
- new schedule:
 - pick two events which are in a race
 - delay the first event as much as possible



How to identify races?

From Symbolic Execution to Concolic Testing 28.11.2014

How to identify races?

vector clocks

- $V: \{Threads\} \mapsto \mathbb{N}$
- can be compared (\leq)
- *max* is componentwise
- $V \neq V'$ if neither $\leq "$ nor $\geq "$

- each thread t gets it's own vector clock V_t - each memory location gets another two

Vector Clocks - Example

- two threads t_0 , t_1
- one memory location x

	V_{t_0}		V_{t_1}		V_x^a		V_x^w	
	t_0	t_1	t_0	t_1	t_0	t_1	t_0	t_1
init ₀	0	0	0	0	0	0	0	0
fork ₁	1	0	0	1	0	0	0	0
$\boxed{(t_0, rd, x)_2}$	2	0	0	1	2	0	0	0
$(t_1, rd, x)_3$	2	0	0	2	2	2	0	0
$=(t_1, wr, x)_4$	2	0	2	3	2	3	2	3
$\lfloor (t_0, rd, x)_5$	3	3	2	3	3	3	2	3

- Whenever a thread t with vector clock V_t generates an event e, the following algorithm is executed:
 - 1. If *e* is not a fork event or a new thread event, then $V_t(t) = V_t(t) + 1$
 - 2. If *e* is a read of a shared memory location *m* then $V_t = max\{V_t, V_m^w\}$ and $V_m^a = max\{V_m^a, V_t\}$
 - 3. If *e* is a write, lock or unlock of a shared memory location *m* then $V_m^w = V_m^a = V_t = max\{V_m^a, V_t\}$
 - 4. If *e* is a fork event and if *t'* is the newly created thread then $V_{t'} = V_t$, $V_t(t) = V_t(t) + 1$ and $V_{t'} = V_{t'} + 1$

Vector Clocks – Example

1. If *e* is not a fork event or a new thread event, then $V_t(t) = V_t(t) + 1$

	V_{t_0}		V_{t_1}		V_x^a		V_x^w	
	t_0	t_1	t_0	t_1	t_0	t_1	t_0	t_1
init ₀	0	0	0	0	0	0	0	0
fork ₁	1	0	0	1	0	0	0	0
$(t_0, rd, x)_2$	2	0	0	1	2	0	0	0
$(t_1, rd, x)_3$	2	0	0	2	2	2	0	0
$(t_1, wr, x)_4$	2	0	2	3	2	3	2	3
$(t_0, rd, x)_5$	3	3	2	3	3	3	2	3

Vector Clocks – Example

1. If *e* is not a fork event or a new thread event, then $V_t(t) = V_t(t) + 1$

	V_{t_0}		V_{t_1}		V_x^a		V^w_x	
	t_0	t_1	t ₀	t_1	t_0	t_1	t_0	t_1
init ₀	0	0	0	0	0	0	0	0
fork ₁	1	0	0	1	0	0	0	0
$(t_0, rd, x)_2$	2	0	0	1	2	0	0	0
$(t_1, rd, x)_3$	2	0	0	2	2	2	0	0
$(t_1, wr, x)_4$	2	0	2	3	2	3	2	3
$(t_0, rd, x)_5$	3	3	2	3	3	3	2	3

From Symbolic Execution to Concolic Testing 28.11.2014

2. If <i>e</i> is a read of a shared memory location <i>m</i> then									
$V_t = max\{V_t, V_m^w\}$ and $V_m^a = max\{V_m^a, V_t\}$									
	V_{t_0}		V_{t_1}		V_x^a		V_x^w		
	t_0	t_1	t_0	t_1	t_0	t_1	t_0	t_1	
init ₀	0	0	0	0	0	0	0	0	
fork ₁	1	0	0	1	0	0	0	0	
$(t_0, rd, x)_2$	2	0 -	0	1	2	0	0	0	
$(t_1, rd, x)_3$	2	0	0	2	2	2	0	0	
$(t_1, wr, x)_4$	2	0	2	3	2	3	2	3	
$(t_0, rd, x)_5$	3	3	2	3	3	3	2	3	

3. If *e* is a write, lock or unlock of a shared memory location *m* then $V_m^w = V_m^a = V_t = max\{V_m^a, V_t\}$

	V_{t_0}		V_{t_1}		V_x^a		V_x^w	
	t_0	t_1	t ₀	t_1	t_0	t_1	t_0	t_1
init ₀	0	0	0	0	0	0	0	0
fork ₁	1	0	0	1	0	0	0	0
$(t_0, rd, x)_2$	2	0	0	1	2	0	0	0
$(t_1, rd, x)_3$	2	0	0	2	2	2	0	0
$(t_1, wr, x)_4$	2	0	2	3	2	3	2	3
$(t_0, rd, x)_5$	3	3	2	3	3	3	2	3

Vector Clocks - Example

3. If *e* is a write, lock or unlock of a shared memory location *m* then $V_m^w = V_m^a = V_t = max\{V_m^a, V_t\}$

	V_{t_0}		V_{t_1}		V_x^a		V_x^w	
	t_0	t_1	t ₀	t_1	t_0	t_1	t_0	t_1
init ₀	0	0	0	0	0	0	0	0
fork ₁	1	0	0	1	0	0	0	0
$(t_0, rd, x)_2$	2	0	0	1	2	0	0	0
$(t_1, rd, x)_3$	2	0	0	2	2	2	0	0
$(t_1, wr, x)_4$	2	0	2	3	2	3	2	3
$(t_0, rd, x)_5$	3	3	2	3	3	3	2	3

THEOREM 1. *Two events e and e' are race related if following holds:*

- 1. $V\{e\} \neq V\{prev(e')\}$ given that prev(e') exists, and
- 2. $V{next(e)} \neq V{e'}$ given that next(e) exists, and
- 3. $V\{e\} \le V\{e'\}$, and
- 4. $VS_e \neq VS_{e'}$

Questions?

From Symbolic Execution to Concolic Testing 28.11.2014

Precise Definitions (just in case)

Any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ are *race related* (denoted by e < e') iff: 1. $e \ product e'$, and 2. $e <_m e'$ and there exists no e_1 such that $e_1 \neq e, e_1 \neq e', e \leq e_1$ and $e_1 \leq e'$

- $(t_i, l_i, a_i) \rightarrow$ (thread, label, type of access)
 - $e \oplus e' \rightarrow$ sequentially not related
 - $e <_m e' \rightarrow$ access on the same memory location
 - $e \preccurlyeq e_1$ > causally related

In an execution path $\tau \in Ex(P)$, any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ appearing in τ are *sequentially related* (denoted by $e \triangleleft e'$) iff:

1.
$$e = e'$$
, or

- 2. $t_i = t_j$ and *e* appears before e' in τ , or
- 3. $t_i \neq t_j, t_i$ created the thread t_j , and e appears before e'' in τ , where e'' is the fork event on t_i creating the thread t_j , or
- 4. there exists an event e'' in such that $e \triangleleft e''$ and $e'' \triangleleft e'$

We say $e \uparrow e'$ iff $e \not\lhd e'$ and $e' \not\lhd e$.

In an execution path $\tau \in Ex(P)$, any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ appearing in τ are *shared-memory access precedence related* (denoted by $e <_m e'$) iff:

- 1. *e* appears before e' in τ , and
- 2. *e* and *e*′ both access the same memory location m, and
- 3. one of them is an update (not a read) of m.

In an execution path $\tau \in Ex(P)$, any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ appearing in τ are *causally related* (denoted by $e \preccurlyeq e'$) iff:

- 1. $e \triangleleft e'$, or
- 2. $e <_m e'$ for some shared-memory location m, or
- 3. there exists an event e'' in such that $e \preccurlyeq e''$ and $e'' \preccurlyeq e'$

The causal relation is a partial-order relation. We say that $e \parallel e'$ iff $e \not\preccurlyeq e'$ and $e' \not\preccurlyeq e$.

Any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ are *race related* (denoted by $e \le e'$) iff:

- 1. $e \oplus e'$, and
- 2. if *e* is lock event and e'' is the corresponding unlock event, then $e'' <_m e'$ and there exists no e_1 such that $e_1 \neq e'', e_1 \neq e'$, $e'' \preccurlyeq e_1$ and $e_1 \preccurlyeq e'$, and
- 3. if *e* is read or write event, then $e <_m e'$ and there exists no e_1 such that $e_1 \neq e$, $e_1 \neq e', e \preccurlyeq e_1$ and $e_1 \preccurlyeq e'$

Race-Detection and Flipping Algorithm Detailled Example

Thread *t*₀

 $1 \quad x = 3;$

Thread t_1 (with *z* as input)