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Part I.

Introduction

1. Abstract
Propositional satisfiability is one part of the more general satisfiability testing field. We

introduce recent research results concerning the efficiency of solvers and a theoretical

approach to propositional satisfiability testing. We combine these two efforts to develop

a framework for solving propositional formulas. The framework we developed has two

major goals. The first one is to implement an efficient modular solver based on the given

theoretical model. The second goal is to use this framework as a teaching tool.

2. Introduction
Propositional Satisfiability (referred to as SAT) is the problem of determining whether a

propositional formula can be satisfied or not. Today, satisfiability testing has gained a firm

ground and stands among other acclaimed research fields. Propositional satisfiability,

which we will discuss, is one part of this field.

Although it is known that SAT is NP-complete [Coo71], efficient solvers have established

themselves in specialized domains. There are currently three popular branches which

are used for classification of SAT instances. Depending on whether a problem instance is

derived from either the random, hard-combinatorial, or the application domain, different

solvers may behave differently on each of the categories. We will concentrate on the

application domain and on industrial SAT solvers in general. Concerning the industry,

SAT solvers have established themselves in many areas. It is not uncommon to use

solvers to solve problems in processor verification, planning, and computer encryption

among other fields.

Recent research has introduced two abstract descriptions of the solving process for

modern SAT solvers with the goal to extend it to Satisfiability Modulo

Theories [KG07][NOT06]. We will focus on the model provided by Sava Krstić and Amit

Goel [KG07].

In the first half, we will talk about the history of SAT solving. Our goal is to introduce

state-of-the-art techniques used in modern SAT solvers. In the second half, we define

the abstract transition system and use it to develop and implement a modular Java SAT

solver framework. That solver was then used as a teaching tool in a seminar. Afterwards,

we ran several benchmarks which we will use to analyze the framework. We will discuss

the effectiveness and its use as a teaching tool as a conclusion.
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3. Related Work
The main goal is to implement a state-of-the-art modular SAT solver framework. As

such, we use the extensive knowledge provided by researchers in the field. We start

with the basic recursive algorithm first introduced by Davis and Putnam [DP60] and the

extension by Logemann and Loveland, namely DPLL [DLL62]. We introduce the

non-chronological backtracking and conflict-driven learning proposition for SAT solvers

by [SS96] and [BS97]. We will also mention popular implementations of this proposition

by modern solvers, namely CHAFF [Mos+01] and SATO [ZS96]. Out of the 2 modular

theoretical frameworks provided, we will use the one defined by Krstić and Goel [KG07].

All techniques, which are not mentioned here, will be cited when they are further

described in their appropriate chapter.
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Part II.

History and Current State of SAT

Solvers

4. Preliminaries
In this section, we introduce necessary notations used throughout the work. Definitions

for formulas, assignments and satisfaction are taken from [NOT06].

Let P be a fixed finite set of propositional symbols. If p ∈ P, then p is an atom and p and

¬p are literals. The negation of a literal l, written ¬l, denotes ¬p if l is p, and p if l is ¬p.

A clause is a disjunction of literals l1 ∨ ... ∨ ln. A CNF formula is a conjunction of one or

more clauses C1 ∧ ... ∧ Cn, also written as C1, ..., Cn if there is no ambiguity.

A (partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M for no p. A literal

l is true in M if l ∈ M, is false in M if ¬l ∈ M, and is undefined in M otherwise. A literal is

defined in M if it is either true or false in M. The assignment M is total over P if no literal

of P is undefined in M.

A clause C is true in M if at least one of its literals is in M. It is false or conflicting in M

if all its literals are false in M, and it is undefined in M otherwise. A clause is unit, if all

except one literal l are false in M and that literal l is undefined in M.

A formula F is true in M, or satisfied by M, denoted M |= F , if all its clauses are true in M.

In this case M is a model of F. A formula F is satisfiable if there exists a model of F . A

formula F is satisfiable with (an assignment) M, if there exists a model M ′ of F , such that

M ⊆ M ′. If F has no models then it is unsatisfiable.

5. History
Propositional satisfiability lies at the heart of complexity theory as the first problem to

be classified as NP-complete by Cook in 1971 [Coo71]. Before its classification in terms

of complexity, one of the first algorithms to solve the problem is shown by Davis and

Putnam in 1960. The second phase of the algorithm described in [DP60] was needed to

solve satisfiability of propositional formulas based on resolution. The runtime behavior

was not good enough for real-world applications because of the memory blow-up of the

resolution based approach.

The algorithm had many problems, one of which was memory consumption. This was

solved by Logemann and Loveland by relying on a backtrack-based depth-first tree

search instead of a resolution-based approach [DLL62]. Since then, attempts to
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implement a solver for sufficiently complex problem instances stagnated and

propositional satisfiability became largely an academic exercise.

About 20 years ago, Silva, Sakallah, Bayardo, and Schrag made a breakthrough by

porting the concept of non-chronological backtracking (first proposed in the Constraint

Satisfaction Problem domain [Pro93]) and conflict-driven learning to SAT solvers. These

techniques led not only to more efficient solvers but also sparked interest in

propositional testing again in general. Consequently, efficient solvers are now used in

the industry domain. Examples of such solvers are CHAFF, SATO, and Siege [Rya02].

We begin to describe the features of modern SAT solvers in the following chapters. Our

approach is as follows. First we describe how to engineer SAT solvers, then we describe

the theory around it. We will introduce techniques chronologically and from high-level

improvements to low-level ones. As such, we start with the most basic recursive DPLL

algorithm. We expand it with the high-level concept of non-chronological backtracking,

low-level efficient techniques, heuristics, and other techniques until we get to the point

where we have a modern SAT solver comparable to CHAFF. This will be the foundation

for the theory framework, which we will use to develop our own solver.

6. Depth-First Backtrack-Based SAT Solvers
Boolean satisfiability is classified as a NP-complete problem. It is believed that not all

problem instances can be solved efficiently. However, experience has shown that there

are certain areas where SAT solvers have become efficient enough to solve large

problems. One of these areas is industry application.

We will focus on industrial SAT solvers. Therefore the goal of this chapter is to understand

efficient SAT solvers which will be able to solve real-world industry instances. We begin

with a basic recursive algorithm and improve it along the way until it is comparable to a

modern solver on a high-level basis.

6.1. The Recursive Davis-Putnam-Logemann-Loveland

Algorithm

In this section, we introduce the recursive DPLL algorithm with its deduction rules. As

mentioned before, the first algorithm which solved propositional formulas was part of a

two-phase proof-procedure for first-order logic. We skip this algorithm and start with the

first backtrack-based depth-first tree search which we will use as a basis for

improvement.

DPLL can be seen as an algorithm divided in two phases.
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The first phase, the deduction phase, tries to find variable assignments that have to be

fulfilled in order for the formula to be satisfied. DPLL uses two of such rules: Pure and

Unit. These rules are proven to not modify the satisfiability of the formula, and as such

are used exhaustively, i.e. until no rule can be applied anymore, to avoid unnecessary

branching. We will look into each rule shortly.

The second phase, the split phase, ensures that the algorithm is complete and

terminates. It selects an until now free variable and explores both possible assignments

recursively, depth-first. One can see that — without the first phase — the idea is to

explore all possible assignments of all variables contained in the formula. The

exploration stops if the formula is found to be satisfying in the current branch. If no

satisfying branch exists, the instance is declared unsatisfiable.

The formula presented to the solver is in conjunctive normal form. This normal form has

established itself in automated theorem proving and most solvers accept this format.

However, this is not a limitation because there exist algorithms to transform any

propositional formula into a CNF formula with the same satisfiability in polynomial time.

One such algorithm is the Tseitin transformation [Tse83].

Instead of blindly picking one of the many available versions of DPLL and showing its

pseudo code, we should think about what properties we desire. This is especially

important for when we are about to implement the algorithm, and also in anticipation of

the transition system we are going to introduce in Part III. Therefore, the pseudo code

should fulfill these four properties:

1. Recursive, depth-first, backtrack-based pseudo code

2. Complete and terminating algorithm

3. Separation of syntax (formula itself) and semantics (variable assignments)

4. Abstraction of the deduction phase

The first two points should be fulfilled by every recursive DPLL code. More interestingly,

the separation of syntax and semantics will help us to correctly separate the code base

and helps us to understand the code better. Lastly, abstraction of the deduction phase

is needed, because we will later describe new techniques which we want to easily

incorporate into the solver. The algorithm shown in Listing 1 from [ZM02] fulfills all four

properties. We will not proof correctness and termination, as this is proved for the

transition system in Part III.

Property one follows from Line one, twelve and sixteen. Here, the algorithm calls itself

recursively to explore both assignments of the chosen variable in Line ten, i.e. it

alternates the phase of the chosen variable.

Separation of syntax and semantics is used throughout the whole process. On the one

hand, the algorithm has to be called with two parameters representing the syntax and
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the semantics (Line one). On the other hand, deducing new variable assignments and

choosing a free variable requires both the formula and the current assignments to

function (Line two, Line ten).

Listing 1: Recursive DPLL Algorithm

1 DPLL(formula, assignment){
2 necessary = deduction(formula, assignment);
3 newAsgnmnt = union(necessary, assignment);
4 if (isSatisfied(formula, newAsgnmnt)){
5 return SATISFIABLE;
6 }
7 if (isConflicting(formula, newAsgnmnt)){
8 return CONFLICT;
9 }

10 var = chooseFreeVariable(formula, newAsgnmnt);
11 asgn1 = union(newAsgnmnt, assign(var, 1));
12 if (DPLL(formula, asgn1)==SATISFIABLE){
13 return SATISFIABLE;
14 }else{
15 asgn2 = union(newAsgnmnt, assign(var, 0));
16 return DPLL(formula, asgn2);
17 }
18 }

Lastly, the deduction phase is abstracted in Line two. With the given information (formula,

current assignments) every deduction rule can be implemented, if needed.

We will now look into the two deduction rules used in DPLL more closely, as we will model

them as rules of a transition system in Section 9.1. The correctness of these deduction

functions will be proven later as well1.

6.1.1 Proposition (Pure Rule)

Let F be a formula, M a partial assignment, and p undefined in M. If atom p is contained

in every undefined clause in F either as the literal p (or ¬p respectively), or not at all,

then:

F with current partial assignment M is satisfiable if and only if F with M ∪ p (or M ∪ ¬p

respectively) is satisfiable.

The application of a pure rule removes all occurrences of a literal in a single phase. This

halves the search space and potentially satisfies many clauses at once. By its nature,

this rule does not cause clauses to become conflicting. This powerful effect comes at the

cost of checking the condition of its application because it needs information about all

clauses per literal.

6.1.2 Proposition (Unit Rule, Unit Literal, Antecedent)

Let F be a formula and M a partial assignment. If there exists a clause C = (l1, . . . , lk , l)

such that l1, . . . lk are false in M and l is undefined in M, then:

F with current partial assignment M is satisfiable if and only if F with M ∪ l is satisfiable.

In this case, l is called the unit literal of the clause. The clause C is called the antecedent

of l .
1The original proofs can be found in [DLL62].
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Unit is applicable if there are unsatisfied clauses with exactly one unsatisfied literal. This

is why unit is very cheap, as it only requires knowledge about one clause and not the

whole formula.

6.1.3 Example (Satisfiable Formula, Deduction Rules)

We will now show how the rules can be used. We mark literals and clauses in the

formula red that are false in M and green that are true in M for clarity. It is not specified

how literals are chosen for rule application and branching. We select literals arbitrarily.

Rule Formula Assignment

- (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ∨ x4 ∨ ¬x4) ∧ (¬x4 ∨ ¬x3) ∧ (x2 ∨ x3) ∅
Pure (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ∨ x4 ∨ ¬x4) ∧ (¬x4 ∨ ¬x3) ∧ (x2 ∨ x3) {x1}
Split (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ∨ x4 ∨ ¬x4) ∧ (¬x4 ∨ ¬x3) ∧ (x2 ∨ x3) {x1,¬x3}
Unit (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ∨ x4 ∨ ¬x4) ∧ (¬x4 ∨ ¬x3) ∧ (x2 ∨ x3) {x1,¬x3, x2}
Split (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ∨ x4 ∨ ¬x4) ∧ (¬x4 ∨ ¬x3) ∧ (x2 ∨ x3) {x1,¬x3, x2, x4}

There exists a model M = {x1,¬x3, x2, x4} for F , therefore F is satisfiable.

There are a few problems with this algorithm which stopped its use in industry. We will

address each of these problems in the following chapters:

• Recursive function calls are expensive.

• Classical backtracking is not feasible for industrial instances, the search space is

too large.

• Classical data representations slow down the solver for industrial instances.

• Classical deduction mechanism is too expensive .

6.2. Non-Chronological Backtracking

The main goal of this section is to understand non-chronological backtracking (NCB,

also called backjumping). We show why this was such a breakthrough for SAT solving in

general. We introduce different forms of application of NCB, namely through implication

graphs and resolution and discuss why we will need to rewrite the recursive algorithm

into an iterative one. Lastly, we show why backtracking more than one level in depth is

generally desired and where using NCB will not speed up the solving process.

6.2.1. Iterative DPLL

We start by rewriting our recursive algorithm in an iterative manner. This addresses not

only the problem of recursive function calls, but gives us the tools to backtrack more than

one level, which was not easily doable in the recursive version. However, our main goal
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in this section is defining the trail structure, which is needed for the transition system in

Part III.

Each time the recursive algorithm calls itself, the state of the algorithm has to be saved.

We avoid that by applying an order on the assignment and by adding checkpoints for

every decision made. Therefore, each time the algorithm enters a conflicting state, it

can backtrack all literals in the trail until a checkpoint is reached, effectively imitating

the recursive algorithm. With this change, the algorithm becomes in-place. We will now

define the trail structure formally.

6.2.1.1 Definition (Trail M2)

A trail M is a finite sequence. An entry in M can either be a literal l ∈ P or a checkpoint

symbol ♦. Literals in M are ordered : l < l ′ means l occurs before l ′ in M.

Every literal in M is associated with a decision level, starting with 0. Every checkpoint ♦
increases the levels of the following literals by one. A literal d is called decision literal

if it follows directly after a checkpoint ♦. The decision literal after the last checkpoint is

denoted by D.

The literals of level m without the checkpoint symbol are denoted by M〈m〉. The prefix of

M including decision level m is written as M[m] =M〈0〉.♦. ... . ...♦.M〈m〉, where ”.” denotes

concatenation. We write level l = i if l occurs in M〈i〉.

6.2.1.2 Remark (Trail)

From now on, when we talk of M, we mean the Trail structure we introduced in this

section instead of the definition given in the preliminaries.

By using the trail, we can now replace recursive function calls. One way to describe the

iterative algorithm is shown in Listing 2 provided by [ZM02].

Listing 2: Iterative DPLL

1 DPLLi(){
2 status = preprocess();
3 if(status != UNDEFINED) return status;
4 while(true) {
5 decide_next_branch();
6 while(true) {
7 status = deduce();
8 if(status == CONFLICT) {
9 blevel = analyze_conflict();

10 if(blevel == 0) return UNSATISFIABLE;
11 else backtrack(blevel);
12 }
13 else if(status == SATISFIABLE) return SATISFIABLE
14 else break;
15 }
16 }
17 }

The algorithm does not call itself recursively, instead it uses a while loop (Line four) until

the formula is determined to be satisfied or conflicting (Line ten and thirteen). To imitate
2Definition similar to [KG07].
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the recursive DPLL algorithm, we let the preprocess() function (Line two) imitate the

deduce() function and return the current decision level decreased by one in the

analyze_conflict() function (Line nine). We will demonstrate the solving process

via a decision tree in the next example.

6.2.1.3 Example (Iterative DPLL Example, Decision Tree3)

Let F = (¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2).
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Since we deduced a conflict with the last application of the unit rule at the lowest level

(Line seven), we backtrack to the last decision and flip the previous assignment of

literal x5 (Line eleven), thus decreasing the decision level by one. The loop continues

and the formula is found to be satisfied with the current trail.

6.2.2. Implication Graphs

In this section, we introduce the concept of non-chronological backtracking via

implication graphs first used in the solver GRASP [SS96]. The solving process itself can

be seen as a decision tree (see previous Example 6.2.1.3). When we look at the

classical backtracking mechanism, only the last decision is flipped to search for new

solutions when a conflict occurs. Our goal is to determine whether we can undo more

than one decision by analyzing the current conflict state of the formula4.

3Instance taken from [KG07].
4There are many different deduction mechanisms used in SAT solvers. We show how to analyze the

conflict via implication graphs, for which the unit deduction rule is needed.
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Before giving the formal definition, we show an example.

6.2.2.1 Example

Let F = (¬x1∨x2)∧(¬x3∨x4)∧(¬x5∨¬x6)∧(x6∨¬x5∨¬x2) and M = {♦12♦34♦56}. We

draw all literals contained in M as nodes of a graph. We mark the literals of the conflicting

clause red and connect two nodes if one literal is implied by another one.

x
1

x
3

x
5

x
2

x
4

¬x
6

We can see that the decision variable x3 in the tree has no effect on the conflict of the

formula. Even if left out along with its unit implications, the conflict still occurs. We can

derive from this graph that both clauses (¬x1 ∨ ¬x5) and (¬x2 ∨ ¬x5) would prevent this

conflict if they were added to the original formula. In the case of the clause (¬x1 ∨ ¬x5),

assigning either x1 or x5 would lead to the unit implication of the negated other literal, thus

preventing the conflict from happening. Those clauses are called lemmas or backjump

clauses. One goal of NCB is to find these so called lemmas.

The notion of creating a graph out of variable assignments and unit implications is

formalized in the definition of an implication graph.

6.2.2.2 Definition (Implication Graph5)

Let M be a Trail. An implication graph is a labeled directed acyclic graph G(V, E), where

• The nodes V represent assignments to variables. Each v ∈ V is a labeled node

corresponding to a literal l ∈ M annotated with its decision level.

• Each edge represents an implication deriving from a clause that is unit under the

current trail. Accordingly, edges are labeled with the respective antecedent clause

of the unit literal the edge points to.

• The graph may contain a single conflict node, whose incoming edges are labeled

with the corresponding conflict clause.

We will now show how to construct a full implication graph.

5Definition similar to [NOT06].
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6.2.2.3 Remark (Construction of a Full Implication Graph)

Let F be a formula and M the current trail. Additionally, F should be in a conflicting state

with at least one clause Cc conflicting in M.

1. Create a node for every literal l ∈ M. Annotate each literal with its current decision

level.

2. Connect node vi to node v iff C is the antecedent of the literal v and for every literal

vi which is contained in C. We do not connect the unit literal v to itself.

3. Create a conflict node. Connect edges from the conflict literals in Cc to the single

conflict node.

6.2.2.4 Example (Full Implication Graph)

We modify our last Example 6.2.2.1 to suit the definition given earlier.

Let F = (¬x1 ∨ x2)∧ (¬x3 ∨ x4)∧ (¬x5 ∨¬x6)∧ (x6 ∨¬x5 ∨¬x2) and M = {♦12♦34♦56}.

x
1
1 x

3
2 x

5
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x
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x
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¬x
6
3

C
1

C
2 C

3

C
4

C
4

C
4

As mentioned earlier, lemmas prevent future conflicts if added to the formula. To

methodically find such clauses, we need to separate the decision literals leading to the

conflict node.

As described in [SM12], we can cut the graph in two parts6. One part contains at least

all literals with no incoming arrows, the other contains at least the conflict node. One

node can only be included in one part. The negated premises generated from the cut

edges will generate a clause, which prevents the conflict from happening. The following

example shows multiple graphs and multiple possible cut locations. The formula of the

right graph is omitted, because it is not needed.

6It should be noted that the cuts are intended to be used on partial implication graphs, which we will
introduce shortly. For our purposes, we can ignore all literals which do not have a path to the conflict
node. While difficult to illustrate, the power of NCB comes from the fact that a partial implication graph
is usually much smaller than a full one.
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6.2.2.5 Example (Implication Graph Cuts)

We continue our last example on the left side and show a more complex implication

graph on the right side. For the left graph, we can generate the clauses (¬x1 ∨ ¬x5) and

(¬x2 ∨ ¬x5) which both prevent the conflict occurring in clause (x6 ∨ ¬x5 ∨ ¬x2).
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For the right graph, at least three cuts are possible, named cut1, cut2, and cut3
respectively. The following clauses are generated this way:

1. (¬x8 ∨ ¬x4 ∨ x7),

2. (¬x8 ∨ x6 ∨ ¬x5 ∨ x7),

3. (¬x8 ∨ ¬x9 ∨ x7).

We can see that every clause effectively prevents the conflict from happening — every

assignment, which is prevented by a clause, leads to the conflict through unit

implications. The question remains which clause to pick.

We remind ourselves that our algorithm is depth-first. The higher deductions are made

in the decision tree, the better. That is why we need to enforce unit propagation of the

lemma as early as possible while skipping as many levels as possible. We achieve

these goals by enforcing that the lemma contains only one literal assigned at the

current decision level. This has the effect that the clause becomes unit if we backtrack

at least one decision level7. From here on, we can backtrack as long as the backjump

clause remains unit.

This means clause number two is not suited as a backjump clause. As for the other two

clauses, we choose the one closer to the conflict, (¬x8 ∨ ¬x9 ∨ x7). This is to anticipate

the construction of partial implication graphs, which starts from the conflict node.

The only literal ¬x9 in clause (¬x8 ∨ ¬x9 ∨ x7) assigned at the current decision level is

called a unique implication point in the implication graph and can be defined formally.
7We have to at least revert the last decision made. Also, if the backjump clause had more than one literal

assigned at the current level, the clause would cease to be unit, even if we only backtracked one level.
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The UIP is the literal which is flipped after the algorithm has finished backtracking. More

precisely, the literal is assigned because it became unit after backtracking.

6.2.2.6 Definition (Unique Implication Point, UIP8)

A unique implication point is any node (other than the conflict node) in the implication

graph which is on all paths from the decision node to the conflict node of the current

decision level.

It follows immediately that the decision node of the current decision level is already a

UIP.

6.2.2.7 Example (UIP, Paths)

We continue the last Example 6.2.2.4 and mark the UIPs. We can see that there are

two UIPs — literal x4 and literal x9. Only x9 is on all paths from the decision literal to the

conflict node apart from the decision literal itself.
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We now know how to generate backjump clauses using implication graphs and which

literal to flip. The question that remains is how many levels we can backtrack when we

found the lemma and know that it has one UIP.

Our goal is to skip to the farthest decision level which still makes the lemma unit after

backtracking. Selecting the second most recent decision level of the lemma, that is the

next biggest decision level after the current one, ensures maximum decision level skip.

8From [SM12]



6 Depth-First Backtrack-Based SAT Solvers 18

6.2.2.8 Example (Second Most Recent Decision Level)

We will illustrate why selecting the second most recent decision level of the clause

ensures maximum decision level skip. Since we know that only one literal of the backjump

clause is assigned at the current decision level, we have to backtrack at least one level.

We know that the clause ceases to be unit if the next biggest decision level of a literal l

in the clause is also backtracked. Therefore, we know that we can backtrack to the next

biggest decision level in the clause, called the second most recent decision level in the

SAT literature.
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We know how to produce lemmas, we know which literal to flip, and we know how many

levels we can backtrack at once. The remaining problem is that constructing full

implication graphs is not efficient. One method which can improve the efficiency is

constructing partial implication graphs instead.

The main idea of constructing partial implication graphs is to build the graph starting with

the conflict literals and going from the end of the trail backwards. The construction is

continued until the stopping criterion is satisfied. The construction usually stops at the

first UIP, as implemented in CHAFF and in our own solver. As mentioned earlier, there

is always a UIP and therefore the construction always stops.

Although there exist different schemes as when to stop the construction and which

clauses to learn, experiments in [Zha+01] seem to indicate that stopping at the first UIP

is the most efficient on all instances. Other solvers resolve further and learn

intermediate clauses as well.

It should be noted, that we need the antecedent for every unit literal in the trail that we

encounter. Most implementations save the reference to the antecedent clause when the

unit rule is applied.
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6.2.2.9 Remark (Partial Implication Graph Construction)

To construct a partial implication graph do the following steps.

• Create a conflict node.

• Create nodes of the literals in the conflict clause. Connect these nodes to the

conflict node. Add these literals to the list of literals to be expanded.

• Expand this list of nodes with the saved antecedent clauses until a UIP is found.

In the worst case, expand until the decision literal of the current decision level is

found9.

• Separate the graph with a cut to produce a backjump clause.

We will demonstrate constructing a partial implication graph in the following example.

6.2.2.10 Example (Partial Implication Graph Example)

We take a snapshot from the instance aes_32_3_keyfind_1.cnf from the SAT

competition 2014 and construct a partial implication graph for a conflict. We can

observe that we only need a glimpse into the actual state of the algorithm to find a

suitable backjump clause. Explicitly, we only need the conflict clause and the

antecedents C1, C2, and C3 of the trail literals until the construction halts. We also

observe that we jump from level 53 to level 14. Indeed, sometimes non-chronological

backtracking can jump right to the beginning because a decision early on led to an

unsatisfiable sub-tree.
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9This is true if the literals are expanded in the reverse order they appear in the trail, i.e. backwards. There
are other solvers which apply other mechanisms to ensure that this process stops while ignoring the
order in which the literals are expanded.
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6.2.3. Resolution Calculus

Instead of computing partial implication graphs, the same process can be seen as a

derivation in the resolution calculus. This is more efficient than constructing graphs, as

we do not have to model them in the framework.

The main goal remains the same. We still work from the trail end backwards and resolve

antecedents with the current conflict set. The resolution process stops when there is only

one literal left in the current decision level, precisely the first UIP. The following pseudo

code from [ZM02] describes a more general process of the conflict analysis.

Listing 3: Resolution

1 analyze_conflict(){
2 cl = find_conflict_clause();
3 while(!stop_criterion_met(cl)){
4 lit = choose_literal(cl);
5 var = variable_of_literal(lit);
6 ante = antecedent(var);
7 cl = resolve(cl,ante,var);
8 }
9 add_clause_to_database(cl);

10 back_dl = second_most_recent_dl(cl);
11 return back_dl;
12 }

To ensure stopping at the first UIP, our stopping criterion (Line three) is that only one

literal of current decision level remains in the clause. Additionally, we let

choose_literal (Line four) pick the literal in the clause which is nearest to the trail

end.

6.2.3.1 Example (Backwards Resolution)

We will revisit the partial implication graph construction in Example 6.2.2.10 and instead

do it with resolution in the following example. A literal in the resolved clause is underlined

if it is in the current decision level. Resolved literals are marked blue. We see that we do

not need the graph structure in our program.
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6.2.3.2 Remark (Termination and Correctness of Clause Learning, Conflict Analysis)

Formal arguments for general correctness and preservation of termination under

non-chronological backtracking can be found in [MS95] [Sil99] [ZMG03]. The theoretical

framework we will later use was provided with its own proofs which will be covered in

Part III.

Non-chronological backtracking is often times more useful in unsatisfiable instances or

instances with large unsatisfiable sub-trees. We can illustrate this in this theoretical

example.

6.2.3.3 Example (Unsatisfiable Exponential Sub-Tree)

We assume decision x3 is responsible for all following conflicts in this graph. Here, the

algorithm descended into an exponentially large unsatisfiable sub-tree early on.

SAT
EXP

UNSAT

x
3

We can see that with chronological backtrack, it would take exponential time to recover

from the bad decision x3. With NCB instead, we would analyze the conflict at an

additional computing cost, but the benefit of escaping the exponentially big unsatisfiable

subtree would instantly pay off.

To further clarify the importance, we will look at a more practical example, as shown

in [Har09]. Consider the clauses C1 ≡ (¬x1 ∨ ¬xn ∨ xn+1) and C2 ≡ (¬x1 ∨ ¬xn ∨ ¬xn+1)

as part of an unsatisfiable formula F. Exploring the trail x1 to xn leads to a conflict forcing

us to backtrack. Since F is unsatisfiable, the solvers backtracks further and each time

the assignments x1 to xn−1 are changed, the case where xn is 1 again is unnecessarily

explored. By analyzing the conflict we can determine that x1 and xn caused a conflict for

either C1 or C2, so adding the conflict clause (¬x1 ∨ ¬xn) eliminates this combination,

and backtracking to the correct decision level prunes a large fraction of the search

space.

Since most interesting instances are unsatisfiable [CA93] [CA96] [Sar99], we can see

why NCB became such an important technique. Moreover, for some group of instances,

NCB will slow down the solving process. Since analyzing the conflict introduces

overhead, instances where the gained information is insignificant will be solved faster

by chronological backtracking. This can be the case for random or hard-combinatorial

instances. We will test this when we analyze our framework in later chapters.
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7. Efficient Techniques
In the following chapters, we will cover efficient data structures, popular heuristics for

underspecified parts of the solver, and miscellaneous improvements that proved

themselves useful for SAT solvers. We limit our selection to techniques which already

have been implemented in our own framework and describe them in more detail. Other

techniques, which are interesting or are a improvement to already existing ones, will be

mentioned either briefly or at the end of this work.

7.1. Efficient Data Structures

In this section we will cover two popular implementations for formula data structures in

SAT solvers. There are many aspects to consider when choosing a data structure, and

the trend is to pick an important feature of the solver and build the structure around

it. Most solvers pick the unit rule (sometimes called Boolean constraint propagation, or

BCP engine) as their main deduction mechanism.

As a reminder, we focus on industrial SAT solvers. Looking at representative instances

of industrial propositional formulas (for example provided by the SAT competition10),

they can be characterized by two main points: (1) They are large compared to formulas

in other categories (> 105 variables, > 106 clauses) and (2) they are said to be

structured11. The first goal is to introduce a simple data structure, one without

information loss and for its simplicity certainly efficient for small instances. After that, we

introduce the 2-watched-literals data structure introduced by CHAFF, which itself is

based on the idea of head-tail-lists proposed by SATO. This structure is heavily tailored

towards the unit deduction mechanism, because other than retrieving unit and conflict

status, all operations are very expensive to compute. We end with a special section

mentioning some unique approaches and ideas, some of them implemented in our

solver.

7.1.1. Counter-Based Formula Representation

Until the introduction of specialized (often lazy, more on that later) data structures,

counters were used to determine the state of each clause. Here, clauses keep counters

to retrieve the state of the clause. Variables have two lists of the clauses that contain

the variable positively and negatively. Every time a variable is set to true, false, or has

its assignment undone, counters from clauses that contain this variable have to be

10http://www.satcompetition.org/
11Most of the time, ’structuredness’ could not be defined in a mathematically precise manner. That is

because given a formula, estimating the hardness is still challenging without solving it first. While
estimating hardness of a formula is still under research, more recent research shows a promising
approach via the graph property community structure [Lia+15].
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updated. The four main operations12 — isUnit(), isConflicting(), isSatisfied() and

isUndefined() — can be defined as follows:

1. isUnit() iff ((unsatisfiedLit == sizeOfClause - 1) && satisfiedLit == 0)

2. isSatisfied() iff satisfiedLit > 0

3. isConflicting() iff (unsatisfiedLit == sizeOfClause)

4. isUndefined() iff !isSatisfied() && !isConflicting()

We will demonstrate how a typical counter-based clause responds to variable

assignments in the next example.

7.1.1.1 Example (Counter-Based Representation)

We depict the clauses of a formula as counter-based clauses. Clause literals are hidden

on purpose, as they are not needed to identify the clause state.

Let F = (¬x2 ∨ x1 ∨ x3) ∧ (x1) ∧ (x3) ∧ (¬x2 ∨ ¬x1) ∧ (¬x2 ∨ x4 ∨ ¬x1 ∨ x3).
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We will now briefly look at the advantages and the disadvantages of this data structure,

which we discussed in [Sch14]. We can see that this structure is very light-weight. For

every clause only three integers have to be saved, two counters and one to save the

size of the clause. If we separate the actual literals from the clause, this data structure

12In most implementations only isUnit() and isConflict ing() is used.
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becomes very cache-friendly13. Since we check the state of a clause via counters, at the

time the clause becomes unit the actual unit literal is not known. It has to be searched

manually. Concerning theoretical performance, the counter-based approach seems bad

runtime wise. If the formula has m clauses and n variables, with each clause having an

average of lits literals, then assigning a value to a variable means lits∗m
n

counters have

to be updated. The same is true for undoing an assignment. Additionally, the unit literal

has to be searched manually after a clause has been found to be unit.

7.1.2. Two-Watched-Literals

Data structures which do not have the full information about the clause state are called

lazy data structures. In some industry fields, clauses can get large enough that non-lazy

data structures become the bottleneck of the algorithm. Therefore, effort was invested

on how to handle big clauses.

Based on the idea used in the solver SATO, the 2-watched-literals scheme is a

specialized data structure for fast unit detection. To know whether the clause is unit or

conflicting, we only need to know the state of two variables. The following example will

clarify this observation.

7.1.2.1 Example (Lazy State)

Let C1 = (x12 ∨ x14 ∨ x3 ∨ x1 ∨ x6 ∨ x5) and C2 = (x1 ∨ x2 ∨ x10 ∨ x9 ∨ x6). We hide all literals

except two in each clause. We now look at the clause state, where M = [x2♦x4x7x8♦x10].

(? ∨ ? ∨ x3 ∨ ? ∨ ? ∨ x5) (x1 ∨ ? ∨ ? ∨ ? ∨ x6)

We can see that both clauses can not be unit or conflicting with the current trail. We also

see that we lose the information about the second clause being satisfied by literal x10.

As seen in the earlier example, 2-watched-literals relies on the fact that only the state of

two literals in a single clause has to be known to determine unit and conflict status14.

These two special literals are called watches and can move in either direction. The

selection of the watches is arbitrary and happens at the time the clause is created.

When these two initial literals are selected, references from the variable the literal

corresponds to are also created.

We now look at how the state of a 2-watched-literals clause is stored, how to assign

variables, and how to select new watches for a clause. The state of a 2-watched-literals

clause is stored as two flags — one flag indicates unit state, the other is used to check if

the clause is conflicting. These flags may change when a new watch is searched and are

reset when a watched literal is backtracked. When the value 1 is assigned to a variable p,

the watched negative literals list is iterated over. For each clause the literal is contained

13The actual literals can then be fetched on demand.
14Only one literal is needed for conflict detection. The second watch is used to detect the last assignment

before the clause becomes unit which is not possible with only one watch.
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in we try to find a new literal l which is not false in the current trail M. There are four

different cases that can occur, illustrated in Example 7.1.2.2. Assigning value 0 follows

similarly.

1. Either an undefined literal or a literal which is true in M is found and is not the other

watch: Set the previous watch to the new literal and connect the new variable to

this clause. The reference from the old variable has to be removed.

2. All literals except the other watch are false in M and the other watch is undefined:

The clause is a now unit clause, l being the unit literal.

3. All literals except the other watch are false in M and the other watch is true in M:

The clause is now satisfied, nothing has to be done.

4. All literals except the other watch are false in M and the other watch is false in M:

The clause is now conflicting.

We see that the watches are not at all times unassigned. This is the case if the clause is

currently unit or conflicting.

7.1.2.2 Example (2-Watched-Literals Variable Assignments)

We illustrate how new watches are searched for every case.
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3. Clause satisfied/undefined 4. Clause conflicting

The following example demonstrates a typical life cycle of a 2-watched-literal clause.
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7.1.2.3 Example (2-Watched-Literals Clause Life Cycle)

We will show how the clause (x3∨x20∨x5∨x31∨x6∨x1) responds to variable assignments

as a 2-watched-literals clause. We select x3 and x6 as initial watches.

(  x
3
  ?  ?  ?  x

6
  ? )

(  ?  ?  x
5
  ?  x

6
  ? )

(  ?  ?  x
5
  ?  x

6
  ? )

(  ?  ?  x
5
  ?  x

6
  ? )

x
3
 assigned false, x

20
 already false

x
20

x
10

 gets assigned, clause is not visited

x
5
 assigned false, other literals already false, 

clause is unit
x

3

x
3

x
20

x
31

x
1

backtrack literals including x
5
, do nothing

x
6
 assigned false, other literals already false,

clause is unit
(  ?  ?  x

5
  ?  x

6
  ? )

x
20

x
3

x
31

x
1

(  ?  ?  x
5
  ?  x

6
  ? )

x
20

x
3

x
31

x
1

x
5
 assigned false, other literals already false,

clause is conflicting

We will again revisit the advantages and disadvantages discussed in [Sch14]. When

assigning a value 1 to a variable, clauses that contain the literal positively will not be

visited at all. This also holds true for assigning value 0 and clauses containing the literal

negatively. Let m be the number of clauses and n the number of variables in the formula.

Since each clause has effectively only two pointers, this means the status of only m
n

clauses needs to be updated. A huge improvement over SATOs head/tails list lies in the

effort of undoing a variable assignment. In the 2-watched-literals scheme no work has

to be done when unassigning a variable. It should be noted that the bigger the average

clause size gets, the more effective this data structure becomes. We rarely need to visit

a clause reference when assigning a variable that is not watched in many clauses. The

disadvantage is the overhead when a new watch is searched. This is why this structure

is only suited to represent big clauses, because a counter-based representation is more

efficient the smaller a clause becomes.

7.1.3. Other Approaches

In this chapter we briefly talk about other approaches which modify already introduced

structures or are of interest to our framework.

Satisfied Clause Hiding When assigning a variable in the counter-based data

structure, a large number of clauses have to be traversed. One option is to

exclude already satisfied clauses from that list to reduce the time used for

assigning variables.

Efficient Small Clauses Special clauses that occur often in industrial instances are

binary and ternary clauses. It is known that the status of such clauses can be
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computed in constant time. One efficient implementation can be found in Ryan’s

thesis [Rya02].

Mixed Data Structures The idea behind lazy data structures and 2-watched-literals

scheme in particular is to reduce clause reference visits when assigning or

backtracking a variable. In general, more computational time has be invested

when such a clause gets actually visited. The effect gets more prominent the

smaller the clause gets. One approach to handle this problem is to instantiate

clause types depending on size. For unary, binary, and ternary clauses one can

use constant data structures. For small clauses, the counter-based approach is a

better choice than the lazy 2-watched-literals structure. And lastly, use lazy data

structures for large clauses.

7.2. Variable Selection Heuristic

We remind ourselves that our goal is to design a complete solver which correctly

determines satisfiability on all instances. Therefore, after the deduction phase it has to

pick a free variable to explore the search space. How the variable is picked, however, is

not specified.

At first glance this might seem not important, but there are two reasons — backed up by

experiments — which indicate this step being among the most important ones. Firstly,

a good decision heuristic (which could also be tailored to the problem) can decide if

the instance is solvable in a reasonable time frame or not. Secondly, inefficient or too

complex decision heuristics may easily become the primary bottleneck for a solver.

We will divide the heuristics we cover into accurate and efficient ones. Since branching

selection is not the main focus, we will introduce only some of the many techniques

that exist. All heuristics introduced can be or have already been implemented in the

framework and will be analyzed in the appropriate chapter.

7.2.1. Accurate Variable Selection

The main idea behind accurate heuristics is using information about the whole formula,

sometimes including the current assignment of variables (i.e. they are state-dependent),

to derive an accurate but expensive to compute heuristic. It quickly became apparent that

this type of branch selection is not usable for industry application, because computation

would require large time consumption at every decision level. Naturally and over time,

usage of accurate branching heuristics faded into the background. In the following we

present some of the most used heuristics at the time.

BOHM’s Heuristic Pick the variable that generates the most satisfying clauses while

preferring small clauses over big ones. The goal is to satisfy many clauses with the

next branch. This was the best state-dependent branching heuristic around 1992.
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MOM’s Heuristic Short for Maximum Occurrences in clauses of Minimum Size.

Searches for literals that occur the most often in small clauses. The goal is to find

literals that constraint the formula the most early on. There are many variants for

this type of heuristic. They mostly differ in how to count literal occurrences (either

count positive and negative literals separately or together) and additional priority

functions. An overview for variants of this heuristic can be found in [Sar99].

7.2.2. Efficient Variable Selection

There are two reasons why efficient branching heuristics became popular in recent years.

On the one hand, accurate heuristics did not capture relevant information for industry

instances. On the other hand, solvers became more and more optimized and calculating

the next variable to branch would become the bottleneck if it was too complex. We will

look at two efficient heuristics.

VSIDS Variable State Independent Decaying Sum. A literal counting technique which

keeps scores for each literal. Increases the score of literals whenever a clause is

added. Periodically, all the scores are divided by a constant number. The idea is

that literals which are active in conflicts and in recently learned clauses get

bumped. Additionally, by decaying periodically we retrieve literals which are

currently important in order to satisfy newly learned clauses.

VSIDS has proven its effectiveness over time. One of the most popular heuristic

(including its variants) used until today.

MiniSAT A variant of VSIDS used in the MiniSAT solver. Instead of increasing the

score when a new clause is added, the score is increased whenever a conflict

occurs. Introduced low-level improvements, such as using an arraylist-based heap

structure to retrieve the highest undefined variable. MiniSAT additionally

randomizes variable selection two percent of the time.

7.3. Other Techniques

We will discuss other methods which have proved themselves useful for SAT solvers.

We will cover restarts, clause forget, and preprocessing. These techniques will be

implemented in our solver.

7.3.1. Restarts

The main goal of search restart strategies is to increase robustness of a solver by

ensuring that the solver does not get stuck in a sub-tree for too long. This also means

that unsatisfiable sub-trees are not searched because learned clauses prohibit
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searching them again. One popular mechanic to implement restarts is counting how

many conflicts occur and reseting after a certain threshold has been met. We will

visualize the following three restart methods in Example 7.3.1.1.

Fixed Conflict Counting The solver restarts after a fixed amount of conflict has

occurred. Popular constants include 550 (BerkMin), 700 (zChaff), and 16000

(Siege).

Linear Conflict Counting The solver increases the restart threshold by a fixed amount

every time it restarts.

Geometric Conflict Counting The restart strategy is given two parameters. The first

parameter is used for the first restart. The second parameter is used to multiply

the current conflict threshold, thus increasing it geometrically after a restart is used.

Used for example in MiniSAT with parameters (150, 1.5) .

7.3.1.1 Example (Graphs Restart Curves)

conflict 
counter

Fixed 
Threshold

conflicts

conflict 
counter

Linear 
Threshold

conflicts

conflict 
counter

Linear 
Threshold

conflicts

conflict 
counter

Geometric 
Threshold

conflicts

7.3.1.2 Remark (Aggressive Restarts)

We can see that the solver zChaff uses 700 as a fixed restart parameter. Low fixed

parameters should only be used with clause learning to ensure that the solver does not

get stuck restarting.

7.3.2. Clause Forget

Many learned clauses are accumulated during the runtime of a solver. These clauses

are used for two things. Firstly, they may become an antecedent clause for another unit

literal, ensuring completeness for non-chronological backtracking. Secondly, after a

restart they prevent the search of an unsatisfiable sub-tree. Nevertheless, some clauses

are redundant and less important than other ones.

It would be advantageous if there was some global measure which could identify most

important clauses. Measures could include clause size or resolution steps during

analysis, which may intuitively affect the importance of a clause. Contrary to belief
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(especially the belief that big clauses are more important than small ones), [AS08]

seems to suggest that there is no quality global measure of how to identify important

clauses. This is why fine tuning forget heuristics is difficult.

7.3.3. Preprocessing

Some deduction mechanisms are very expensive, even with non-lazy data structures.

The goal of preprocessing is to apply expensive operations only one time at the start

until all deduction rules are exhausted, sometimes solving the whole instance in the

process. Intuitively, it may appear that preprocessing is always preferable, as most of

the time the instance shrinks compared to the original size. The results are mixed.

Indeed, preprocessing can also slow down the solver, as shown in [LMS01]. As

preprocessing is not actually part the main solving process, we refer to [EB05] for actual

used preprocessing techniques.
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8. Overview
In the last chapters, we discussed many old and new techniques of SAT solvers. Here

we display what we introduced in a time line again for a quick overview. The time line is

annotated with years, started from 1960 and ending in 2015. Marked above the line are

the number of variables for industrial instances, which could be solved at the time.

1

'71'60
'92

2

3

'80 '90 '00 '10

4

5

'62

6

'93 '96

7

8

'97

9

'04

10

11

'06

12

'07
'15

13

1 Davis-Putnam algorithm

2
Davis-Putnam-Logemann-Loveland 
algorithm

3 SAT NP-completeness by Cook

4 MOM heuristic

5 BOHM heuristic

3

6 Non-chronological backtracking in 
CSP domain

7 NCB ported to SAT solver 
GRASP, implication graphs

8 NCB SAT solver rel_sat

9
2-watched-literals, efficient 
resolution, VSIDS. Solver Chaff

10
Efficient small clauses. Solver 
Siege

11 Abstract DPLL

12 SAT transition system

13 VSIDS theoretical research

10 vars 1k vars 10k vars100 vars 100k vars

For thirty years since the initial DPLL algorithm, solvers were not used for any practical

purposes. This is visualized by the big gap between 1962 and 1966 in the time line.

Since the introduction of non-chronological backtracking first used in the solver GRASP,

propositional testing gained attraction in the research field. More solvers were developed

and new techniques were discovered, which led to solvers which could be used in a

practical environment. As the engineering side gets more and more advanced, interest

in the theoretical side is also increasing. Recent research includes why some heuristics

are efficient in certain instance domains and how to define ’hardness’ of a formula without

solving it first.
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Part III.

Modular SAT Framework and Analysis

In this part, we introduce the state transition system proposed by Sava Krstić and Amit

Goel [KG07] which describes the SAT solving process at an abstract level. Based on this

system, we develop our own solver and benchmark it on industry instances provided by

SATLIB. We also use this framework for a seminar and discuss results concerning its

use as a teaching tool.

9. State Transition Systems for SAT
The past of SAT solving is mostly dominated by experimental results and clever

engineering. One of the many problems is that one can not easily estimate the

’hardness’ of a formula without solving it first. Another problem was that the solving

process itself was not described at an abstract level.

Abstract DPLL by [NOT06] and the non-deterministic transition system proposed by

[KG07] try to address the second issue by providing a theoretical foundation for SAT

solvers. This additional abstraction layer between theory and code allows reasoning

about correctness and termination in a formal way. Moreover, it helps developers by

providing a clear guideline to follow and separates high-level techniques from low-level

ones by under-specifying the transition system. We will use the transition system from

[KG07] as a basis. We will also rely on definitions provided by [KG07].

In the following sections, we will introduce the DPLL State and rules to operate on the

state of the non-deterministic system. After that, we introduce DPLL Strategies which

restricts the behavior of the system to essentially mimic actual solver algorithms.

9.1. DPLL, DPLL State, DPLL Rules

A DPLL State and rules, which operate on the state, from the DPLL system. The state

captures all relevant information of the solving process such as formula (syntax),

assignment trail (semantics), and conflict management.

9.1.1 Definition (DPLL State <F,M,C>)

Let P be a finite set of propositional literals. A DPLL state is a triple 〈F , M, C〉. F is a set

of clauses over P, M is a Trail, and C is either a subset of P or the symbol no_cflct. The

initial state is <Finit , M = ∅, C = no_cflct>, where Finit is an arbitrary set of clauses.

The following two sections introduce rules to operate on the DPLL state. One basic rule

set which is able to imitate the recursive DPLL and an extended rule set which describes

modern solvers at a high level.



9 State Transition Systems for SAT 33

9.1.1. Basic DPLL

We will need to model three basic functions for the transition system to function

properly. Selecting variables to branch upon (decide), detecting a conflict, and

backtracking after a conflict has been detected. Additionally, we need to model each

deduction rule independently. For now, we will only model the unit rule. We will

postpone correctness and termination proofs until all rules have been introduced. We

start with the decide rule.

Decide. This rule simulates the split in the recursive algorithm (Line 10, Listing 1) and

the decision (Line 5, Listing 2) in the iterative one. It selects a free literal which can be

added to the trail with a checkpoint. This checkpoint can be used to explore the other

assignment of the literal. The Example 9.1.1.2 shows how the rule is applied.

9.1.1.1 Definition (Decide Rule)

If there exists a free literal l ∈ P, the literal can be added to trail M after insertion of a

checkpoint ♦.

l ∈ P and l ,¬l 6∈ M
M := M +♦ + l

9.1.1.2 Example (Decide Example)

Consider < Finit = {{¬x1, x2}, {x1, x2}}, M = ∅, C =no_cflct>, P = {x1, x2,¬x1,¬x2}

{{¬x1, x2}, {x1, x2}}

{{¬x1, x2}, {x1, x2}}

{{¬x1, x2}, {x1, x2}}

decide x1 = 0

decide x2 = 1

M = ∅

M = [♦¬x1]

M = [♦¬x1♦x2]

¬x1∈P and ¬x1,x1 6∈M
M:=M+♦+¬x1

x2∈P and x2,¬x2 6∈M
M:=M+♦+x2

Unit. This models the unit deduction rule 6.1.2. The last free literal of an undefined clause

can be added to the trail. The Example 9.1.1.4 shows how the unit rule is applied.

9.1.1.3 Definition (Unit Rule)

If there is a clause with only one literal l unassigned and all other literals are negated in

M, l can be added to the trail.

l ∨ l1 ∨ ... ∨ lk ∈ F and ¬l1, ...,¬lk ∈ M and l ,¬l 6∈ M
M := M + l
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9.1.1.4 Example (Unit Example)

Consider < F = {{¬x1, x2}, {x1, x2}}, M = ∅, C =no_cflct>, P = {x1, x2,¬x1,¬x2}

{{¬x1, x2}, {x1, x2}}

{{¬x1, x2}, {x1, x2}}

{{¬x1, x2}, {x1, x2}}

decide x1 = 0

unit x2 = 1

M = ∅

M = [♦¬x1]

M = [♦¬x1x2]

Unit guard not satisfied

x2∨x1∈F and ¬x1∈M and x2,¬x2 6∈M
M:=M+x2

Conflict. We detect conflicts with the conflict rule. This enables other rules which need

a conflict state for their guard, like backtrack. Conflict rule application is shown in

Example 9.1.1.6.

9.1.1.5 Definition (Conflict Rule)

If there is currently no conflict and a clause Cc is conflicting in M, then set C as the set

of conflicting literals of the clause Cc.

C = no_cflct and ¬l1 ∨ ... ∨ ¬lk ∈ F and l1, ..., lk ∈ M
C := {l1, ..., lk}

9.1.1.6 Example (Conflict Example)

Consider < F = {{¬x1, x2}, {x1}}, M = ∅, C = no_cflct >, P = {x1, x2,¬x1,¬x2}

{{¬x1, x2}, {x1}}

{{¬x1, x2}, {x1}}

{{¬x1, x2}, {x1}}

decide x1 = 0
M = ∅, C = no_cflct

M = [♦¬x1], C = no_cflct

M = [♦¬x1], C = [¬x1]

Conflict guard not satisfied

C=no_cflct and x1∈F and ¬x1∈M
C:={¬x1}

Backtrack. Whenever a conflict occurs, we need to backtrack to the last checkpoint.

This rule ensures that the state transition system terminates on all instances together

with the decide and conflict rule, as the whole search space can be explored with these

three rules. An example of the backtrack rule can be seen in Example 9.1.1.8.

9.1.1.7 Definition (Backtrack Rule)

If there is currently a conflict and at least one checkpoint, backtracking is possible.

Backtrack all literals until a checkpoint is reached, remove that checkpoint, and add the

negation of the previous decision level literal to the trail. As a reminder, we denote the

literal after the last checkpoint by D.

C = {l1, ..., lk} and ♦ ∈ M
C := no_cflct and M := M [level D−1] + ¬D
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9.1.1.8 Example (Backtrack Example)

Consider < F = {{¬x1, x2}, {x1, x2}}, M = ∅, C = no_cflct >, P = {x1, x2,¬x1,¬x2}

{{¬x1, x2}, {x1}}

{{¬x1, x2}, {x1}}

{{¬x1, x2}, {x1}}

{{¬x1, x2}, {x1}}

{{¬x1, x2}, {x1}}

{{¬x1, x2}, {x1}}

decide x1 = 0

unit x2 = 1

backtrack

backtrack

decide x1 = 1

M = ∅, C = no_cflct

M = [♦¬x1], C = no_cflct

M = [♦¬x1x2], C = no_cflct

M = [♦¬x1x2], C = {¬x1}

M = [x1], C = no_cflct

Backtrack guard not satisfied

Backtrack guard not satisfied

Backtrack guard not satisfied

C={¬x1} and ♦∈M
C:=no_cflct and M:=M [1−1]+x1

With these four basic rules we are now able to emulate the recursive DPLL behavior.

The following example illustrates the non-deterministic transition system behavior on a

satisfiable instance. Applicable rules are depicted directly under the state. Literal

selection and rule application order is arbitrary.

9.1.1.9 Example (Satisfiable Instance)

Let F = {{¬x1, x2}, {¬x3, x4}, {¬x5, x6}, {¬x2,¬x5,¬x6}}. We apply rules randomly until

no rule guard is satisfied anymore. At the end, the formula is either satisfied or conflicting.

BD CU decide  backtrack unit  conflict
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We see that without restriction of rule usage the system can do unecessary work, mainly

ignoring the conflict at hand and using other rules instead.

9.1.2. Complete DPLL

To describe modern SAT solvers we need to extend our rule set. Currently, the

backtrack rule allows for only one level to revert. We also need to model the resolution
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step as a rule and enable clause learning which changes the formula in the state. These

rules should not affect the theoretical termination and correction proofs. Additionally, we

need to model clause forget and restarts, which will affect termination. Therefore, the

proofs given at the end are only valid without the forget and restart extension.

ExplainUIP. This rule is part of the analyze_conflict function of the iterative

algorithm, Listing 3. ExplainUIP is applicable as long as there are at least two literals in

the conflict literal set which are in the current decision level. It stops when only one

literal in the conflict set has the current decision level. In the worst case, that literal is

the decision literal.

9.1.2.1 Definition (ExplainUIP Rule)

If there is a conflict with l ∈ C (1) and there is a clause that caused l to become unit

(2) with all other literals in the unit clause assigned before l (3), general resolution is

applicable.

To ensure stopping at the first UIP, all other literals in the conflict set must have the same

or lower decision level (4) and there have to be at least two literals in C at the current

decision level (5).

(1) l ∈ C and (2) l ∨ ¬l1 ∨ ... ∨ ¬lk ∈ F and (3) l1, ..., lk < l

and (4) ∀l ′ ∈ C : l ′ ≤ l and (5) ∃l ′ ∈ C : level l ′ = level l , l ′ 6= l
C := C ∪ {l1, ..., lk}\{l}

Learn. The negated disjunction of the conflict literal set can always be added to the

clause database without modifying the satisfiability of the formula. Initially, the conflict

set is a conflict clause which is already contained in the formula. Through resolution this

conflict set changes and can be added to the formula with this rule.

9.1.2.2 Definition (Learn Rule)

If there is a conflict and the negated disjunction of the conflict literals are not already in

the formula, the negated conflict literal clause can be added to the formula.

C = {l1, ..., lk} and ¬l1 ∨ ... ∨ ¬lk 6∈ F
F := F ∪ {¬l1 ∨ ... ∨ ¬lk}
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Backjump. The resolution process provides a lemma, a UIP, and a backjump level.

Whenever these conditions are provided and the conflict set is not empty, backjump is

applicable. It should be noted that backjumping forces the the lemma to be learned to

be able to apply this rule.

9.1.2.3 Definition (Backjump Rule)

If there is a conflict and there is a literal ¬l among a conflict clause in F with a highest

decision level, backjump is possible.

C = {l , l1, ..., lk} and ¬l ∨ ¬l1 ∨ ... ∨ ¬lk ∈ F and level l > m ≥ level li for (i = 1,..,k)
C := no_cflct and M := M [m] + ¬l

With these rules added to the rule set, excluding the backtrack rule, the following result

holds true. A full proof for this theorem can be found in [KG07].

9.1.2.4 Theorem

All runs of DPLL are finite. If, initialized with the set of clauses Finit , DPLL terminates in

the state 〈F , M, C〉, then: (1) C = no_cflct or C = ∅; (2) If C = ∅ then Finit is unsatisfiable;

(3) If C = no_cflct, then M is a model for Finit .

The Example 9.1.2.5 demonstrates how this rule system operates on a specified input

formula. Applicable rules are depicted directly under the state. Literal selection and rule

application oder is arbitrary.
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9.1.2.5 Example (Complete DPLL Run)

We use the complete rule set exhaustively until no rules can be applied anymore. Every

time a rule is applied the first time, it is explained in detail below the DPLL run.

Let F = {{¬x1, x2}, {¬x3, x4}, {¬x5, x6}, {¬x2,¬x5,¬x6}}
D CU decide  unit  conflict

<F, [], no_c>
D

<F, [♦x
1
], no_c>

D U

1: D
<F, [♦x

1
x

2
], no_c>

D
<F, [♦x

1
x

2
♦x

3
], no_c>

U x
4

<F, [♦x
1
x

2
♦x

3
x

4
], no_c> <F, [♦x

1
x

2
♦x

3
x

4
♦x

5
], no_c>

D
<F, [♦x

1
x

2
♦x

3
x

4
♦x

5
x

6
], no_c>

<F, [♦x
1
x

2
♦x

3
x

4
♦x

5
x

6
], {x

2
,x

5
,x

6
}> <F, [♦x

1
x

2
♦x

3
x

4
♦x

5
x

6
], {x

2
,x

5
}>

3: C

<F', [♦x
1
x

2
♦x

3
x

4
♦x

5
x

6
], no_c>

E  explain L  learn B  backjump

2: U D x
3

D U

D

D x
5

U x
6

U C

*) backjump not possible because two literals are in current decision level

C

4: E

* L B

6: B

5: L

<F', [♦x
1
x

2
¬x

5
], no_c>

B

D

D x
3

<F', [♦x
1
x

2
¬x

5
♦x

3
x

4
], no_c>

D U
<F', [♦x

1
x

2
¬x

5
♦x

3
x

4
], no_c>

D

U x
4

<F', [♦x
1
x

2
¬x

5
♦x

3
x

4
♦¬x

6
], no_c>

D ¬x
6

P={x
1
, x

2
, x

3
, x

4
, x

5
, x

6
, 

¬x
1
, ¬x

2,
 ¬x

3
, ¬x

4
, ¬x

5
, ¬x

6
}

x
1
  P & x∈

1
,¬x

1
  [ ]∉

[ ] := [ ] + ♦ + x
1

1: D

2: U
(x

1
 v x

2
)  F & ¬x∈

1
  [¬x∈

1
] & x

2
,¬x

2
  [¬x∉

1
] 

[¬x
1
] := [¬x

1
]  + x

2

3: C

C := {x
2
,x

5
,x

6
} 

C = no_c & (¬x
2
 v ¬x

5
 v ¬x

6
 ) &  x

2
,x

5
,x

6
[♦x∈

1
x

2
♦x

3
x

4
♦x

5
x

6
] 

C := (C U {x
2
,x

5
}) \ x

6

x
6
  C & (¬x∈

2
 v ¬x

5
 v ¬x

6
 ) in F &  x

2
,x

5
 < x

6
 &   

x
2
,x

5
,x

6
 ≤ x

6
 & x∃

5
  C: level x∈

5
 = level x

6
, x

5
 != x

6
 

4: E

F := F U (¬x
2
 v ¬x

5
)

C = {x
2
,x

5
} & (¬x

2
 v ¬x

5
)  F  ∉

2: U 5: L

C = {x
2
,x

5
} & (¬x

2
 v ¬x

5
)  F level x∈

5
 > 1 ≥ level x

2
  

C = no_c & M := [♦x
1
x

2
]  + ¬x5

6: B

Lastly, we need to define restarts and clause forget. The usage of these rules has to be

restricted in the implementation to guarantee termination.

9.1.2.6 Definition (Forget Rule)

If there is currently no conflict and there exists a clause which is implied by the formula

without it, the clause can be removed.

C = no_cflct and l1 ∨ ... ∨ lk ∈ F and F\{l1 ∨ ... ∨ lk} |= {l1 ∨ ... ∨ lk}
F := F\{l1 ∨ ... ∨ lk}

9.1.2.7 Definition (Restart Rule)

Restart is possible at all times provided there is currently no conflict.

C = no_cflct
M := M [0]
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9.2. DPLL Overview

In summary, the non-deterministic transition system consists of these rules.

Decide l∈P and l ,¬l 6∈M
M:=M+♦+l

Unit l∨l1∨...∨lk∈F and ¬l1,...,¬lk∈M and l ,¬l 6∈M
M:=M+l

Conflict C=no_cflct and ¬l1∨...∨¬lk∈F and l1,...,lk∈M
C:={l1,...,lk}

ExplainUIP l∈C and l∨¬l1∨...∨¬lk∈F and l1,...,lk<l and ∀l′∈C:l′≤l and ∃l′∈C:level l′=level l ,l′ 6=l
C:=C∪{l1,...,lk}\{l}

Learn C={l1,...,lk} and ¬l1∨...∨¬lk 6∈F
F :=F∪{¬l1∨...∨¬lk}

Backjump C={l ,l1,...,lk} and ¬l∨¬l1∨...∨¬lk∈F and level l>m≥level li for (i = 1,..,k)
C:=no_cflct and M:=M [m]+¬l

Forget C=no_cflct and l1∨...∨lk∈F and F\{l1∨...∨lk}|={l1∨...∨lk}
F :=F\{l1∨...∨lk}

Restart C=no_cflct
M:=M [0]

To more precisely model the behaviour of modern solvers, we can restrict the rule usage

by a regular expression, so called strategy. The following regular expression describes

the solver Chaff at a high-level.((
(Conflict ; ExplainUIP∗; [Learn; Backjump]) ||Unit∗

)
; [Decide]∗

)
The additional rules forget and restart can be placed right before decide.
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10. Framework Analysis
In this section, we use our knowledge from previous sections about modern SAT solvers

and the transition system to develop a modular SAT solver framework. Before we develop

the actual solver, we need to think about how input and output is handled.

10.1 Remark (DIMACS Input, Output)

Most solvers accept input according to the DIMACS format15. In short, a file is divided

in three sections. One comment section (line one to line five), one section containing

information about clause count and variable count (line six), and the last section contains

the clauses itself. A literal is written as an integer starting from one. ’0’ marks the end of

a clause. Negation is denoted as ’-’. This format is handed out to solvers which have to

be able to convert it into the internal data structure beforehand.

Listing 4: DIMCAS Format

1 c
2 c comments
3 c instance info
4 c sat/unsat
5 c etc
6 p cnf 5 3
7 1 -5 4 0
8 -1 4 3 4 0
9 -3 -4 0

The output format should be one line stating whether the instance is satisfiable or not

(s SATISFIABLE, S UNSATISFIABLE). If the instance is satisfiable, append a second

line with the variable assignments starting with the letter ’v’. In pure UNSAT tracks, it is

required that the solver is able to produce an UNSAT proof in a special format. More

information about that can be found on the official SAT competition page.

We start with an overview of the solver architecture. It is closely related to [Mar] with

additional separation of modules for code clarity.

15SAT competition provides a tool to check if a file conforms to the DIMACS format at
http://www.satcompetition.org/2013/files/CNFChecker.zip
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Parameter Entry point of the solver framework. Handles parameter inputs and initializes

solver.

CoreDPLL Main module which handles initialization of every component needed. Forms

the core together with the HighlevelStrategy and the RuleSystem Module.

HighlevelStrategy Uses rules defined in the RuleSystem to implement an algorithm.

RuleSystem Every rule should be implemented here separately.

Logger Logs the solving process.

Observer Observers can include heuristics (decision, restart) which can used by the

RuleSystem to guide the rule application. Other uses include GUI or proof logging

for UNSAT proofs.

CoreDPLL manages all input given in form of arguments and initializes all important

modules. CoreDPLL together with the HighlevelStrategy and RuleSystem module

represent the transition system of [KG07].

We first need to make a clear distinction between modules which modify the state of

the system and ones which only have to read it. All packages inside the Core — i.e.

CoreDPLL, HighlevelStratey, and RuleSystem — must be able to modify the internal

state via rules. All other modules only need to be able to read the state and have to get

notified when a rule is applied. We achieve this by making DPLL observable, that is every

module that wants to observe the transition system must implement a SolverListener

interface. This interface contains all rules which are defined in [KG07]. By separating the

modules this way, we achieve a separation of heavy computing functions which makes

the code easier to understand.

On the one hand, we have the CoreDPLL which concerns itself with efficient data

structures (formula, trail, efficient rule implementation). On the other hand, heuristics

are able to observe the solving process independently to gather needed information.

This ensures easy identification of bottlenecks.

This framework is build upon clearly defined interfaces for all classes. These

implementations of interfaces are then instanced in their appropriate factories. Thus it is

easy to develop and insert new modules into the framework. We will show some sample

implementations of techniques introduced in previous sections.
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10.1. Example Module Implementations

In this section, we will show how to use the framework to implement different modules

specified by interfaces. We will implement: a simple counter-based data structure, a

decision heuristic, a learn heuristic, a forget heuristic, and a restart heuristic16.

10.1.1. Counter-Based Formula

To create a new formula data structure, the interfaces for Clause, SetOfClauses, and

Variable have to be implemented. There are already abstract formula implementations

for often used functions, which can be used as a starting point. These abstract

implementations are designed to not be a bottleneck, as all important functions

provided have a constant time consumption.

As described in 7.1.1, a counter-based clause keeps counters to indicate its status. They

are initially zero. Additionally, we have to know how big the clause is and need to keep a

reference to the parent formula. The size and the reference are already provided by the

abstract data structure.

Listing 5: Clause Counter-Based Implementation

1 public class ClauseCbs extends ClauseAbs implements CounterBasedClause {
2 private int satisfiedLit = 0;
3 private int unsatisfiedLit = 0;
4

5 ...
6 }

Concerning the state check, we need to explicitly implement the isUnit and

isConflict methods. The functions are simple counter checks.

1 public boolean isConflicting() { return (unsatisfiedLit == literals); }
2

3 public boolean isUnit() { return (unsatisfiedLit == literals - 1)
4 && satisfiedLit == 0; }

To actually find the unit literal, we need to retrieve the complete literal list and search for

the first and only unsatisfied literal. To make every clause cache-friendly (i.e. reduce the

memory footprint as much as possible), the literals are saved separately from the clause

and are identified by a unique identifier (Line 2). This mechanism is also provided by the

abstract implementation.

1 public Integer getUnitLiteral() {
2 for (Integer l : F.getLiterals(id)) {
3 if (F.getVariable(l).getAssignment() == -1) {
4 return l;
5 }
6 }
7 }

16The only module left which is needed for the framework to function correctly is the implementation of the
trail interface and the rule set. Since the trail is quite large and the rule implementations are simple, we
will leave these out.
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To modify the state, we need to implement the counter-modifying functions. Excluding the

case where the satisfied counter is increased, we also need to notify the formula if the

clause becomes unit or conflict as a result. This small notify overhead is compensated

heavily by the fact that, if not notified, the whole formula has to be searched to find the

unit or conflict clauses again.

1 public void incrementSatisfied(){ satisfiedLit += 1; }
2

3 public void incrementUnsatisfied() {
4 unsatisfiedLit += 1;
5 if (isUnit()) F.foundUnitClause(this);
6 if (isConflicting()) F.foundConflictClause(this);
7 }
8

9 public void decrementSatisfied() {
10 satisfiedLit -= 1;
11 if (isUnit()) F.foundUnitClause(this);
12 }
13

14 public void decrementUnsatisfied() {
15 unsatisfiedLit -= 1;
16 if (isUnit()) F.foundUnitClause(this);
17 }

Lastly, we need to think about how connections are handled when a clause is learned

and forgotten. The abstract implementation handles variable connection removal. The

only thing we need to ensure is that a clause is conflicting after it has been learned. A

counter-based clause is conflicting if the unsatisfied literal counter equals the size of the

clause.

1 public void assertConflictingState() {
2 unsatisfiedLit = literals;
3 satisfiedLit = 0;
4 }

With these functions, the clause implementation is complete. We will now implement

the counter-based Variable class. A counter-based variable keeps references to clauses

which it is contained positively and negatively in. Therefore, we need two lists.

Listing 6: Variable Counter-Based Implementation

1 public class VariableCbs extends VariableAbs implements CounterBasedVariable {
2 private final List<CounterBasedClause> containedPositively = new ArrayList<>();
3 private final List<CounterBasedClause> containedNegatively = new ArrayList<>();
4

5 ...
6 }

Next are the state modifying functions. The functions for set true, set false, and undo

assignments have to be implemented. The abstract implementation handles the

assignment side. Additionally, we need to update the states for all clauses in which this

variable is contained. If a variable is set to true, visit every negatively contained clause

and increase the unsatisfied counter (Line two), and every positively contained clause
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and increase the satisfied counter (Line three). If a variable is set to false, switch the

visit order. If an assignment is undone, revert the changes accordingly.

1 public void setTrue() {
2 containedNegatively.forEach(CounterBasedClause::incrementUnsatisfied);
3 containedPositively.forEach(CounterBasedClause::incrementSatisfied);
4

5 setAssignment(1);
6 }
7

8 public void setFalse() {
9 containedPositively.forEach(CounterBasedClause::incrementUnsatisfied);

10 containedNegatively.forEach(CounterBasedClause::incrementSatisfied);
11

12 setAssignment(0);
13 }
14

15 public void undoAssignment() {
16 if (getAssignment() == 1) { // Case 1
17 containedPositively.forEach(CounterBasedClause::decrementSatisfied);
18 containedNegatively.forEach(CounterBasedClause::decrementUnsatisfied);
19 }
20 else if (getAssignment() == 0) { // Case 2
21 containedNegatively.forEach(CounterBasedClause::decrementSatisfied);
22 containedPositively.forEach(CounterBasedClause::decrementUnsatisfied);
23 }
24

25 setAssignment(-1);
26 }

Lastly, we need to implement connect and remove functions to respond to clause

connections. We remove/insert the clauses into the two lists correctly.

1 public void connectToClausePositive(CounterBasedClause cl) {
2 containedPositively.add(cl);
3 }
4

5 public void connectToClauseNegative(CounterBasedClause cl) {
6 containedNegatively.add(cl);
7 }
8

9 public void removeConnections(Integer l, Clause cl) {
10 CounterBasedClause cb = (CounterBasedClause) cl;
11 if(l < 0){
12 containedNegatively.remove(cb);
13 }
14 else{
15 containedPositively.remove(cb);
16 }
17 }

To anticipate mixed data structures, we need to declare an interface for the

counter-based data structure. This interface should have every function not already in

the clause/variable interface. This way, we can create a mixed variable/clause class

which uses these interface functions accordingly.

The last thing we need to implement is the SetOfClauses interface. It mostly concerns

itself with correct input conversion and correct clause learning/forgetting. As this is not

as interesting to implement as the variable and clause interface, the implementation with
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comments can be found in the Appendix A. With these three classes, we have a complete

and compact counter-based implementation.

10.1.2. MiniSAT Decision Heuristic

As a close relative to the VSIDS heuristic, we will implement the heuristic used in

MiniSAT. The behavior of MiniSAT is described in 7.2.2.

As a dynamic decision heuristic, we need to implement the VariableSelection interface

as well as the SolverListener interface. To respond to state changes, we need to add

this heuristic to the observer list. As this heuristic is based on variable scores, we need

to create an additional structure which keeps track of said scores. This is called the

activity class. In short, the activity class keeps counters and provides methods to bump

a variable activity and decay all scores. How to implement this structure can be found in

[Mar], although it is described for C++ and not Java. And lastly, we need to keep these

variables sorted by activity at all times, to enable fast retrieval of unassigned literals with

the highest score. As an initial data structure we take the PriorityQueue implementation

in Java17.

Listing 7: MiniSAT Decision Heuristic Implementation

1 public class MiniSATVar implements SolverListener, VariableSelectionStrategy {
2 private final SetOfClauses F;
3 private ActivitiesVariable activities;
4 private PriorityQueue<Integer> activityQueue;
5

6 public MiniSATVar(Solver solver) {
7 F = solver.getState().F();
8 solver.addObserver(this);
9 }

10

11 ...
12 }

Concerning initialization, the observer interface provides a function to notify when an

initial clause is added and when the formula has loaded completely. We use this to

increase the score of the initial clauses’ variables accordingly (Line three, Line fourteen).

1 private List<Integer> toBump = new ArrayList<>();
2

3 public void onLearnInitial(List<Integer> cl) { toBump.addAll(cl);}
4

5 public void onSetOfClausesLoaded() {
6 int size = F.getFreeVariablesCount();
7 activities = new ActivitiesVariable(size);
8 activityQueue = new PriorityQueue<>(size, new ActComparator(activities));
9 // Initially, all variables are free; add every variable to the activity queue

10 for (Integer i = 0; i < size; i++) {
11 activityQueue.offer(abs(i));
12 }
13

14 bumpVarsInClause(toBump);
15 }

17We will later see why this is a bad decision when analyzing this framework for bottlenecks.
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To retrieve an undefined variable with the highest score, we need to poll the queue until

a free variable is found. This variable is ensured to have the highest score because of

the properties of the priority queue.

1 public Variable getVariable() {
2 Integer var = activityQueue.poll();
3

4 boolean undef = F.isVariableUndefined(var+1);
5 while(!undef){
6 var = activityQueue.poll();
7 undef = F.isVariableUndefined(var+1);
8 }
9

10 return F.getVariable(var+1);
11 }

It should be noted that the variables in the framework start at index 1. This is to model

literals as integers, which enables easy negation checks. That is why we need to shift

the index by +1/-1 in this heuristic.

The last thing we need to decide on is how to respond to state changes. MiniSAT prefers

variables which are in recent conflict and which are involved in resolution steps. It also

periodically decays scores after a conflict occurred. Therefore, we need use respective

observer functions for conflict and resolution. Additionally, we need to re-insert variables

after the corresponding literal gets backtracked.

1 public void onExplain(List<Integer> ante, Integer resLit,
2 List<Integer> resolved) {
3 bumpVarsInClause(resolved);
4 }
5

6 public void onConflict(List<Integer> cl) {
7 activities.decayAll();
8 bumpVarsInClause(cl);
9 }

10

11 public void onBacktrack(Integer l) {
12 if (!activityQueue.contains(abs(l)-1)) {
13 activityQueue.add(abs(l)-1);
14 }
15 }

The function to bump a variable is left. After the variable has its score increased, the

heap has to be updated. Since PriorityQueue does not provide such a functionality, we

need to remove and re-insert the element again (Line nine and ten).

1 private void bumpVarsInClause(List<Integer> cl) {
2 for (Integer lit : cl) bumpVariableActivity(abs(lit));
3 }
4

5 private void bumpVariableActivity(int var) {
6 activities.bump(var-1);
7

8 if(activityQueue.contains(var-1)){
9 activityQueue.remove(var);

10 activityQueue.add(var);
11 }
12 }
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This concludes the implementation of a decision heuristic in this framework. What we

implemented can be seen as an effective heuristic skeleton, because heuristics based

on the VSIDS heuristic can be derived from this with small changes. We can produce

the VSIDS heuristic by increasing scores whenever a clause is added instead of when a

conflict occurs. Since VSIDS selects literals instead of variables, we need to change the

activity class to accommodate literals also.

10.1.3. Other Modules

In this section we will briefly talk about other modules contained in the framework.

Trail The Trail interface has many functions which need to be implemented. Since the

implementation of the trail is not interesting, we decide to leave out the

implementation of it. As this is one of the core modules, this is needed for the

framework to function.

Forget, Restart Sample implementations can be found in Part B and C of the Appendix

respectively.

Preprocess There is currently no preprocessing implemented in the framework.

11. Results
The framework we developed has two major goals. Firstly, we want an implementation of

a solid foundation of a SAT solver framework based on a transition system. It can then be

used to compare different techniques and develop new components. Secondly, we want

to use the framework as a teaching tool to get new students into the propositional testing

field. As the gap of understanding efficient solvers and university teaching widens, it

becomes increasingly more difficult to teach it in a compact manner. We will discuss the

framework fares as a teaching tool, analyze the initial benchmarks, and make conclusion

based on initial hypothesis.

11.1. Seminar Results

One goal of this framework is to teach students modern SAT techniques. The idea is that

students can use a bare bone framework to implement the necessary solver parts and

then pick an area (efficient trail, data structure, heuristics, etc.) to concentrate on. Here,

the framework must ensure that the communication of the modules works correctly and

without introducing hidden bottlenecks for the students.

To make use of this framework, we held a seminar about modern SAT solvers. The

structure was as follows:
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Recursive DPLL. The basis for the seminar was knowledge from a lecture about

propositional logic and first-order predicate calculus. Students already knew how

to apply the Davis-Putnam algorithm on a theoretical level on small instances. At

this point, the notion that one needs to implement a data structure for the

algorithm to function was much less pronounced than it should be. Therefore, the

first step was to let the students implement their own recursive solver based on

the knowledge they already had. This ensured that all participants refreshed their

programming language skills and had their own working solver after the first

phase.

Iterative DPLL. The second phase was used to change the recursive algorithm to an

iterative one. The trail structure was introduced together with a basic part of the

framework. The idea was that after the second phase, all important components

would already be understood and extended in the third phase, in which efficient

concepts were introduced. In short, this phase was meant as an introduction to the

framework and as preparation for the theoretical transition system.

Transition System. Lastly, the transition system was defined and explained. The

framework was formally introduced with all its components and interactions. The

task for the students was to implement the most efficient solver in the remaining

time, by selecting which basic function to implement and picking areas to

specialize on.

Report. After the seminar, students were told to write a short summary on what they

have learned and to give feedback on what to improve.

The result was that students implemented two fully functional solvers after six weeks.

One recursive solver, and one modern iterative one. The iterative solvers were then run

on selected instances. We will analyze the result in the next chapter.

11.2. Seminar Benchmarks

For benchmarking, we will use instances provided by SATLIB18. Although these

instances are somewhat dated, they are used as a first step to find out if the solver

behaves as expected. Since this framework is made from scratch, this will also help to

find remaining bottlenecks in the design.

The test specification is as follows. A first generation Intel Core i7 2,97 GHz together with

1GB RAM was used to run the tests. Each instance was solved one time with a timeout

of one hour. Instances were randomly selected with the addition of the hardest ones from

each domain. This quantitative test is used to show how many instances are solved in

general.

18http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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Robustness Tests. Without going into further detail about the standard parameters, the

following table presents the results for benchmarking 124 instances19. Our expectancy

was that it solves most of the problems instances, with industrial benchmarks being

solved efficiently.

Domain Group Instances Solved Total Time (m) Avg. Time (m)

Flat Graph Colouring 8 8 3.5 0.43

DIMACS Benchmarks 44 35 547.9 12.45

Uniform Random 3SAT 18 16 167.4 9.3

SAT Competition Beijing 10 8 121.9 12.9

Morphed Graph Colouring 6 6 0.04 <0.01

Random 3SAT (other) 7 7 0.05 <0.01

Planning 8 7 63.5 7.9

All Interval Series 4 4 0.69 0.17

Quasigroup Instances 9 6 184.5 20.5

Bounded Model Checking 10 6 354.0 35.4

The overall solving time exceeds a day. Given how dated these instances are, the result

is quite modest. Especially the bounded model checking group shows unexpected

results, because our solver should be specialized in solving industrial instances and did

not solve half of them. The same result showed in other groups, too. With minor

differences between instances, the overall high time consumption is a similarity across

all implemented solvers in the seminar.

These results indicate heavy bottlenecks. Before looking into some hypothesis we need

to revisit the implementation and remove most of the hidden bottlenecks. This is done by

using VisualVM which is able to show how much computing time is spent per function.

What follows are fixed bottlenecks in no particular order.

Trail Implemented a new trail module. The old trail had naive implementations of

functions which had a linear runtime in the size of the trail. Most of them now have

constant runtime.

HighlevelStrategy BCP Unit propagation did not stop when a conflict occurred. This

led to unnecessary assignments which had to be backtracked again, too. Unit

application now stops whenever a conflict occurs.

FindUnitClause Previously, the clause database had to be searched to find unit and

conflict clauses. Now the formula is notified whenever a conflict and unit clause is

found preventing the search of the clause database.

Cache-Friendly Clauses Literals are now separated from the clause memory footprint,

which reduces cache misses.
19Selected instances with more info can be found in Appendix D.
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Learn Guard The expensive linear runtime search for the learn guard is now completely

removed. The learn guard is unnecessary if the CHAFF high-level strategy is used,

as mentioned in [KG07].

Java PriorityQueue Java’s PriorityQueue implementation has a linear runtime behavior

for contain checks. We need a constant runtime for the contain function. The heap

structure implemented in [Mar] provides needed runtime constraints.

With these improvements, the benchmarks are done again with the same hardware

specification. Our expectation is that most of the instances are solved before timeout.

The exceptions are large random problems which are not focus of the solver. The

results are as follow. We excluded timeouts in the average time if they occurred in both

runs, which is marked by ’*’.

Domain Group # Solved Total (m) Avg. (s) Old Avg. (s)

Flat Graph Colouring 8 8 0.3 0.25 25.8

DIMACS Benchmarks 44 35 540 1.1* 13.6*

Uniform Random 3SAT 18 16 125 16.8* 177.8*

SAT Competition Beijing 10 9 82 147* 413*

Morphed Graph Colouring 6 6 <0.01 0.014 0.428

Random 3SAT (other) 7 7 0.01 0.12 0.44

Planning 8 8 2.9 21.6 476.3

All Interval Series 4 4 0.03 0.43 10.4

Quasigroup Instances 9 9 62 413 1230

Bounded Model Checking 10 9 133 486* 2104*

We can see that most instances are solved. With the exception of random instances and

hard graph problems (DIMACS Benchmarks, Uniform Random 3SAT) we reached our

goal of solving most instances. We will now look into following hypotheses, which are

believed to be true and backed up by many experiments. Our framework should show

the same results.

1. Non-chronological backtracking solves industry instances significantly faster than

chronological backtracking. Chronological backtracking solves some instances

faster by a considerable amount.

2. A dynamic decision heuristic (MiniSAT) performs better than a static one (SLIS).

3. Restarts reduce deviations from the average solving time.

4. Clause forget improves the solver’s performance on large instances.

We select some instances from Appendix D. An Intel Core i7-2630QM @ 2.0 GHZ is

used where 512MB RAM is allocated for the benchmark process. The tests are run
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50 times. The average time and number of timeouts are then used for the results. The

best and worst try is excluded in the average time. We will use abbreviations for the

parameters used in benchmarks. The abbreviations are described in the following table.

The forget heuristics are described in more detail shortly. Since we currently only have

the counter-based data structure implemented, we will not mention the formula data

structure parameter.

Strategy Decision Heuristic

Chronological backtracking (CB) MiniSAT(MS)

Non-chronological backtracking (NCB) Static Largest Integer Sum (SLIS)

Forget Heuristic Restart Heuristic

Do not forget clauses (fn) Do not restart (RN)

Forget random large clauses (fl) Restart Fixed 700 (RF700)

Forget random small clauses (fsh) Restart Fixed 2000 (RF2000)

Forget random clauses fixed (fs) Restart Geometric (RG)

Forget random clauses size (fsize)

The forget heuristics fl, fsh, and fs forget clauses with a chance of 33% after a fixed

number of clauses have been learned. This constant is set to 1000. The heuristic fsize

instead responds dynamically to the formula by forgetting clauses randomly 33% of the

time whenever the number of the learned clauses gets as big as the number of the initial

clauses.

1. CB vs NCB. The parameters are selected as follows: (CB/NCB), MS, RG, fn. Time is

noted in seconds. Our expectation is that on large industrial instances20 NCB severely

outperforms CB.

Instance #Variables #Clauses SAT NCB T/O CB T/O

bmc-galileo-8 58074 294821 true 525 18 >1000 50

bmc-ibm-1 9685 55870 true 18 0 >1000 50

ssa7552-160 1391 3126 true 0.012 0 0.011 0

ii16c2 924 13803 true 0.29 0 23.12 0

4blocks 758 47820 true 4.5 0 449.5 5

flat200-100 600 2237 true 1.32 0 0.30 0

uuf250-090 250 1065 false 153 0 33 0

uf100-0896 100 430 true 0.037 0 0.018 0

Industrial instances are clearly solved faster by non-chronological backtracking, to the

point where chronological backtracking is not able to solve them (bmc-ibm-1 and

20Large is seen in context to the SATLIB 2002 benchmarks. Here, large means usually around 1000
variables and more than 50000 clauses.
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bmc-galileo-8). The gap lessens for graph instances and other instances, where

analyzing the conflict does not provide important information (ssa7552-169 and

flat200-100). Here, CB is approximately as fast as or faster than NCB. Random

satisfiable and unsatisfiable instances are solved considerably faster with chronological

backtracking (uuf250-090 and uf100-0896).

2. MiniSAT vs SLIS. The parameters are selected as follows: NCB, (MS/SLIS), RG, fn.

Static Largest Integer Sum is a decision heuristic which uses the initial literal count as a

score to select decision literals. It does not respond dynamically to the solving process.

We expect that the dynamic decision heuristic outperforms the static one on most

instances.

Instance MS T/O SLIS T/O

bmc-galileo-8 525 18 985 45

bmc-ibm-1 18 0 858 36

ssa7552-160 0.012 0 0.014 0

ii16c2 0.29 0 1.72 0

4blocks 4.5 0 8.9 0

flat200-100 1.32 0 2.62 0

uuf250-090 153 0 367 0

uf100-0896 0.037 0 0.045 0

We observe that dynamically responding to state changes overall improves the solving

speed. This is especially visible on industry instances (bmc-ibm-1 and

bmc-galileo-8), where a big speedup is achieved.

3. Restarts The parameters are selected as follows: NCB, MS, (RN/RG/RF700/RF2000),

fn. We expect that restarts improve the overall solving time over fifty runs.

Instance RN T/O RF700 T/O RF2000 T/O RG T/O

bmc-galileo-8 600 20 657 20 526 13 525 18

bmc-ibm-1 36 0 19 0 21 0 18 0

ssa7552-160 0.012 0 0.011 0 0.012 0 0.012 0

ii16c2 0.42 0 0.33 0 0.47 0 0.29 0

4blocks 8.9 0 3.9 0 5.0 0 4.5 0

flat200-100 1.56 0 2.34 0 2.47 0 1.32 0

uuf250-090 186 0 193 0 225 0 153 0

uf100-0896 0.045 0 0.042 0 0.047 0 0.037 0

Again, the hypothesis is in accordance with our result. Geometric restarts reduce the

solving time — on average and compared to not using restarts at all — by a
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considerable amount. In the worst case, they do not affect the solving

speed (ssa7552-160).

4. Forget Heuristics The parameters are selected as follows: NCB, MS, RG,

(fn/fs/fsh/fsize). Our expectation is that at least one forget heuristic improves solving

time on large industry instances.

Instance fn fs fl fsh fsize

bmc-galileo-8 525 545 489 498 564

bmc-ibm-1 17.9 18.5 24.9 14.5 21.4

ssa7552-160 0.012 0.011 0.012 0.012 0.012

ii16c2 0.29 0.33 0.32 0.29 0.42

4blocks 4.5 3.9 5.6 6.2 4.3

flat200-100 1.32 2.34 2.24 2.62 2.07

uuf250-090 153 193 189 189 199

uf100-0896 0.037 0.042 0.039 0.044 0.041

We can observe that, on average, forget heuristics seem to slow the solver down. The

only instances which yield a time improvement are large industrial ones (bmc-ibm-1

and bmc-galileo-8). These results reinforce the fact that forget heuristics are hard to

tune.

To conclude the analyzing chapter, we will revisit claims we made throughout this work.

Problems with the recursive algorithm: At the end of Section 6.1 we made four

different claims on why the recursive algorithm was not suited for industry use.

Although this was not in the scope of this work, the recursive solvers implemented

in the seminar showed that they were only able to solve the easiest instances of

the benchmark set. Additionally, groups which implemented the pure rule were

significantly slower than other groups which only implemented the efficient unit

rule. These observations validate the claims that the recursive version is inefficient

and that classical deduction mechanisms — mainly the pure rule — are not suited

for industrial application.

Concerning the efficiency of classical backtracking, we tested it in this

chapter ("1. CB vs NCB"). We came to the conclusion that non-chronological

backtracking is indeed needed to solve large industry instances.

Lastly, we made the claim that classical data structures slow down the solver for

large instances derived from application domains. This claim is left for future work,

because we have to implement the two-watched-literals data structure again after

fixing most of the framework’s bottlenecks.
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Non-chronological backtracking and unsatisfiable instances: At the end of

Chapter 6 (see Example 6.2.3.3) we ended with reasons why NCB is more useful

on unsatisfiable instances. As SATLIB provided mostly satisfiable industrial

instances, we could not test this claim. This is also left to future work.

12. Conclusion and Future Work
We implemented a modular SAT solver framework based on an abstract transition

system proposed by [KG07]. Most of the techniques introduced in Part II are

implemented and benchmarked.

While generally the framework was well received by the participating students, there are

aspects which can be improved. The documentation has to be updated to accommodate

the changes we made in the architecture of the framework. Additionally, unit tests should

be provided for the students to help testing and integrating new modules. All in all, the

feedback has led to a generally cleaner and more efficient framework structure. This

should be helpful for other seminars to come.

The initial benchmarking showed that there was room for improvement, especially

finding unnecessary bottlenecks. We analyzed the framework and removed most

bottlenecks. We now have a solid foundation for a modular SAT solver framework. We

can now concentrate on implementing more modules, as more and more new efficient

techniques get proposed by new solvers. We can also think about how to use the

modularity for its advantage, by determining which modules can be used either before

or during runtime. More research has to be done on this matter.
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Part IV.

Appendix

A. Counter-Based SetOfClauses

Implementation
The abstract SetOfClauses implementation handles conversion from a DIMACS file. As

a result, the initial literals are provided as a simple list during conversion. We need to

instance a new counter-based clause and connect it correctly to the variables in it.

The only difference between adding an initial clause and a learned clause is as follows:

An initial clause can be unit at the start (Line five). A learned clause should always be

conflicting (Line ten). We will implement a more general addCl function (Line thirteen)

and use it for adding initial and learned clauses (Line three and eight). Instantiating arrays

is left out because it is trivial.

Listing 8: SetOfClauses Counter-Based Implementation

1 public class SetOfClausesCbs extends SetOfClausesAbs {
2

3 public void addClause(List<Integer> cl) {
4 Clause n = addCl(cl);
5 if (n.isUnit()) foundUnitClause(n);
6 }
7

8 public void addLearnedClause(List<Integer> cl) {
9 Clause n = addCl(cl);

10 n.assertConflictingState();
11 }
12

13 private Clause addCl(List<Integer> cl) {
14 // only for instancing the initial formula
15 ClauseCbs n = new ClauseCbs(solver);
16 for (int l : cl) {
17 VariableCbs var = (VariableCbs) getVariables()[abs(l)];
18

19 if (l < 0) {
20 var.connectToClauseNegative(n);
21 } else {
22 var.connectToClausePositive(n);
23 }
24

25 }
26

27 n.setId(clauses.size());
28 n.literals = cl.size();
29 initialClauses.add(n);
30 clauses.add(cl);
31

32 return n;
33 }
34 ...
35 }
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B. Forget Heuristic Implementation
Since we do not know which global property of clauses can be used to identify important

clauses effectively (see 7.3.2), we decide to forget clauses after a certain amount has

been learned randomly.

As with the decide heuristic, we need to observe the solving process. We forget clauses

(in this case small clauses) if the learned clause count exceeds 100 with a certain

percentage.

Listing 9: Forget Heuristic Implementation

1 public class ForgetRandomShort implements ForgetStrategy,SolverListener {
2 private int learnClauseCount = 0;
3 private final Random r;
4 private final SetOfClauses F;
5

6 public ForgetRandomShort(Solver solver) {
7 F = solver.getState().getF();
8 solver.addObserver(this);
9 r = new Random();

10 }
11

12 public boolean shouldForget() {
13 return learnClauseCount > 100;
14 }
15

16 public ArrayList<Clause> forgetClauses() {
17 learnClauseCount = 0;
18

19 List<Clause> cl = F.getLearnedClauses();
20 ArrayList<Clause> forgot = new ArrayList<>();
21 for (Clause c : cl) {
22 float chance = r.nextFloat();
23 if (c.getLiterals().size() <= 5) {
24 if (chance <= 0.50f) {
25 forgot.add(c);
26 }
27 }
28 }
29 forgot.forEach(F::forgetLearnedClause);
30

31 return forgot;
32 }
33

34

35 public void onLearn(List<Integer> cl) {
36 learnClauseCount++;
37 }
38

39 ...
40

41 }
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C. Restart Heuristic Implementation
We will implement a linear increasing restart heuristic (see 7.3.1).

The main idea behind conflict restart heuristics are keeping a conflict threshold

(’conflictsForNextRestart’, Line four and thirty one) and modifying it by a constant

if needed (’conflictsForNextRestartConst’, Line thirty five). The initial threshold

can be chosen freely (Line thirty one).

Listing 10: Restart Heuristic Implementation

1 public class RestartConflictCountingFixed implements RestartStrategy,
2 SolverListener {
3 //can be set by param class when parsing program arguments
4 public static Integer NEXTRESTART = 10;
5

6 private Integer conflictCount;
7 private Integer conflictsForNextRestart;
8 private Integer conflictsForNextRestartConst;
9

10 public RestartConflictCountingFixed(@NotNull Solver solver) {
11 solver.addObserver(this);
12 conflictCount = 0;
13 conflictsForNextRestart = 0;
14 conflictsForNextRestartConst = 0;
15 calculateConflictForFirstRestart();
16 }
17

18 public boolean shouldRestart() {
19 return conflictCount >= conflictsForNextRestart;
20 }
21

22 public void onRestart() {
23 conflictCount = 0;
24 calculateConflictsForNextRestart();
25 }
26

27 private void calculateConflictForFirstRestart() {
28 conflictsForNextRestartConst = 0;
29 // Berkmin: 550 // Zchaff: 700
30 // Eureka: 2000 // Siege: 20000
31 conflictsForNextRestart = NEXTRESTART;
32 }
33

34 private void calculateConflictsForNextRestart() {
35 conflictsForNextRestart += conflictsForNextRestartConst;
36 }
37

38 public void onConflict(List<Integer> cl) {
39 conflictCount++;
40 }
41

42 ...
43 }
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D. Selected Benchmark Instances
A selection of benchmark instances from SATLIB. These instances were run with the

hardware specification provided in 11.2. Out of 124 instances, 111 could be solved with

a timeout of one hour.
Name SAT? Time (s) Name SAT? Time (s)

All intervall series 4/ais10.cnf TRUE <1 Planning 8/bw_large.a.cnf TRUE <1

All intervall series 4/ais12.cnf TRUE <1 Planning 8/bw_large.b.cnf TRUE <1

All intervall series 4/ais6.cnf TRUE <1 Planning 8/bw_large.c.cnf TRUE 6

All intervall series 4/ais8.cnf TRUE <1 Planning 8/bw_large.d.cnf TRUE 166

AIM 10/sat/aim-100-2_0-yes1-4.cnf TRUE <1 Planning 8/logistics.a.cnf TRUE <1

AIM 10/sat/aim-100-6_0-yes1-2.cnf TRUE <1 Planning 8/logistics.b.cnf TRUE <1

AIM 10/sat/aim-100-6_0-yes1-4.cnf TRUE <1 Planning 8/logistics.c.cnf TRUE <1

AIM 10/sat/aim-200-2_0-yes1-3.cnf TRUE <1 Planning 8/logistics.d.cnf TRUE <1

AIM 10/sat/aim-50-1_6-yes1-3.cnf TRUE <1 Backbone-Minimality 7/BMS_k3_n100_m429_10.cnf TRUE <1

AIM 10/unsat/aim-100-1_6-no-2.cnf FALSE <1 Backbone-Minimality 7/BMS_k3_n100_m429_118.cnf TRUE <1

AIM 10/unsat/aim-100-2_0-no-2.cnf FALSE <1 Backbone-Minimality 7/BMS_k3_n100_m429_229.cnf TRUE <1

AIM 10/unsat/aim-200-1_6-no-1.cnf FALSE <1 Backbone-Minimality 7/BMS_k3_n100_m429_321.cnf TRUE <1

AIM 10/unsat/aim-200-2_0-no-1.cnf FALSE <1 Backbone-Minimality 7/BMS_k3_n100_m429_76.cnf TRUE <1

AIM 10/unsat/aim-200-2_0-no-4.cnf FALSE <1 Backbone-Minimality 7/RTI_k3_n100_m429_106.cnf TRUE <1

BF 3/bf0432-007.cnf FALSE <1 Backbone-Minimality 7/RTI_k3_n100_m429_38.cnf TRUE <1

BF 3/bf1355-075.cnf FALSE <1 SAT Competition Bejing 10/2bitadd_10.cnf TO TO

BF 3/bf2670-001.cnf FALSE <1 SAT Competition Bejing 10/2bitmax_6.cnf TRUE <1

DUBOIS 4/dubois100.cnf FALSE <1 SAT Competition Bejing 10/3bitadd_31.cnf TRUE 1274

DUBOIS 4/dubois20.cnf FALSE <1 SAT Competition Bejing 10/3blocks.cnf TRUE <1

DUBOIS 4/dubois50.cnf FALSE <1 SAT Competition Bejing 10/4blocks.cnf TRUE 35

GCP 3/g125.17.cnf TO TO SAT Competition Bejing 10/4blocksb.cnf TRUE <1

GCP 3/g250.15.cnf TO TO SAT Competition Bejing 10/e0ddr2-10-by-5-1.cnf TRUE 3

GCP 3/g250.29.cnf TO TO SAT Competition Bejing 10/enddr2-10-by-5-8.cnf TRUE 2

HANOI 2/hanoi4.cnf TRUE 11 SAT Competition Bejing 10/ewddr2-10-by-5-1.cnf TRUE 2

HANOI 2/hanoi5.cnf TO TO SAT Competition Bejing 10/ewddr2-10-by-5-8.cnf TRUE 3

IL 3/ii16c2.cnf TRUE <1 Bounded Model Checking 10/bmc-galileo-8.cnf TRUE 1157

IL 3/ii32b3.cnf TRUE <1 Bounded Model Checking 10/bmc-ibm-1.cnf TRUE 7

IL 3/ii8a2.cnf TRUE <1 Bounded Model Checking 10/bmc-ibm-10.cnf TO TO

JNH 4/jnh1.cnf TRUE <1 Bounded Model Checking 10/bmc-ibm-11.cnf TRUE 1122

JNH 4/jnh16.cnf FALSE <1 Bounded Model Checking 10/bmc-ibm-13.cnf TRUE 1511

JNH 4/jnh217.cnf TRUE <1 Bounded Model Checking 10/bmc-ibm-2.cnf TRUE <1

JNH 4/jnh309.cnf FALSE <1 Bounded Model Checking 10/bmc-ibm-3.cnf TRUE 7

LRAN 3/f1000.cnf TO TO Bounded Model Checking 10/bmc-ibm-4.cnf TRUE 566

LRAN 3/f2000.cnf TO TO Bounded Model Checking 10/bmc-ibm-5.cnf TRUE <1

LRAN 3/f600.cnf TO TO Bounded Model Checking 10/bmc-ibm-7.cnf TRUE <1

PARITY 4/par16-3-c.cnf TRUE 3 Sat-encoded Quasigroup instances 9/qg1-07.cnf TRUE <1

PARITY 4/par32-5-c.cnf TO TO Sat-encoded Quasigroup instances 9/qg2-07.cnf TRUE <1

PARITY 4/par8-1.cnf TRUE <1 Sat-encoded Quasigroup instances 9/qg3-08.cnf TRUE <1

PARITY 4/par8-4-c.cnf TRUE <1 Sat-encoded Quasigroup instances 9/qg3-09.cnf FALSE 1379

PHOLE 3/hole10.cnf TO TO Sat-encoded Quasigroup instances 9/qg4-08.cnf FALSE 2

PHOLE 3/hole6.cnf FALSE <1 Sat-encoded Quasigroup instances 9/qg5-12.cnf FALSE 5

PHOLE 3/hole8.cnf FALSE 21 Sat-encoded Quasigroup instances 9/qg5-13.cnf FALSE 2329

PRET 3/pret150_40.cnf FALSE <1 Sat-encoded Quasigroup instances 9/qg6-09.cnf TRUE <1

PRET 3/pret150_75.cnf FALSE <1 Sat-encoded Quasigroup instances 9/qg7-11.cnf FALSE 3

PRET 3/pret60_60.cnf FALSE <1 Uniform Random-3-SAT 18/sat/uf100-01.cnf TRUE <1

SSA 3/ssa0432-003.cnf FALSE <1 Uniform Random-3-SAT 18/sat/uf100-055.cnf TRUE <1

SSA 3/ssa7552-158.cnf TRUE <1 Uniform Random-3-SAT 18/sat/uf100-056.cnf TRUE <1

SSA 3/ssa7552-160.cnf TRUE <1 Uniform Random-3-SAT 18/sat/uf100-066.cnf TRUE <1

Flat graph colouring 8/flat100-2.cnf TRUE <1 Uniform Random-3-SAT 18/sat/uf100-0671.cnf TRUE <1

Flat graph colouring 8/flat175-15.cnf TRUE <1 Uniform Random-3-SAT 18/sat/uf100-0672.cnf TRUE <1

Flat graph colouring 8/flat175-2.cnf TRUE <1 Uniform Random-3-SAT 18/sat/uf100-0679.cnf TRUE <1

Flat graph colouring 8/flat200-1.cnf TRUE <1 Uniform Random-3-SAT 18/sat/uf100-0892.cnf TRUE <1

Flat graph colouring 8/flat200-100.cnf TRUE 1 Uniform Random-3-SAT 18/sat/uf100-0894.cnf TRUE <1

Flat graph colouring 8/flat30-52.cnf TRUE <1 Uniform Random-3-SAT 18/sat/uf100-0896.cnf TRUE <1

Flat graph colouring 8/flat30-68.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf100-06.cnf FALSE <1

Flat graph colouring 8/flat75-53.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf125-087.cnf FALSE <1

morphed graph colouring 6/sw100-2.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf200-06.cnf FALSE 48

morphed graph colouring 6/sw100-26.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf250-0100.cnf TO TO

morphed graph colouring 6/sw100-27.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf250-08.cnf TO TO

morphed graph colouring 6/sw100-47.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf250-090.cnf FALSE 221

morphed graph colouring 6/sw100-7.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf75-02.cnf FALSE <1

morphed graph colouring 6/sw100-82.cnf TRUE <1 Uniform Random-3-SAT 18/unsat/uuf75-046.cnf FALSE <1
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