Games with perfect information Exercise sheet 2

Sebastian Muskalla

Out: April 17

Due: April 24

Submit your solutions on Wednesday, April 24, during the lecture. You may submit in groups of two students.

The new date for the exercise classes is Thursday, 15:00 – 16:30, in room IZ 305.

Exercise 1: Tic-tac-toe

Consider the popular game tic-tac-toe,

see e.g. https://en.wikipedia.org/wiki/Tic-tac-toe.

Formalize the game, i.e. formally define a game $\mathcal{G} = (G, win)$ consisting of a game arena G and a winning condition *win* that imitates the behavior of tic-tac-toe.

Assume that player \bigcirc makes the first mark, and the other player wins in the case of a draw.

Hint: You may want to look at Example 3.12 of the lecture notes, which presents such a formalization for Nim.

Exercise 2: Deadlocks

Many works only consider games that are **deadlock-free**, meaning every position $x \in V$ has at least one outgoing arc $(x, y) \in R$ (where self-loops, i.e. x = y, are allowed).

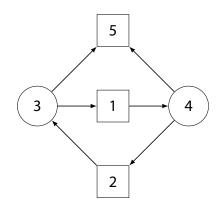
Assume that $\mathcal{G} = (G, win)$ is a game that may contain deadlocks. Furthermore, we assume that the winning condition has the property that any finite play ending in a deadlock is lost by the player owning the last position.

Construct a game $\mathcal{G}' = (G', win')$ that does not contain deadlocks. The new game arena G' should be obtained from G by adding vertices and arcs, in particular each position of the old game is a position of the new game, $V \subseteq V'$.

Your construction should guarantee that each position $x \in V$ of the old game is winning in the new game for the same player for which it was winning in the old game. Argue why it has this property.

Exercise 3: Positional and uniform strategies

If a game arena has finitely many positions, we can explicitly give it as a graph. For this exercise, we consider a game on the following game arena G = (V, R). Positions owned by the universal player \Box are drawn as boxes, positions owned by the existential player \bigcirc as circles. The numbers should denote the names of the vertices, i.e. $V = \{1, ..., 5\}$.



We consider the following winning condition: A maximal play is won by the existential player if and only if the positions 3, 4 and 5 are each visited exactly once.

a) What is the winning region for each of the players?

Present a single strategy s_{\bigcirc} : $Plays_{\bigcirc} \rightarrow V$ that is winning from all positions x in the winning region W_{\bigcirc} of the existential player. Argue shortly why your strategy is indeed winning from these positions.

Note: Such a strategy is called a *uniform* winning strategy.

- b) For each vertex $x \in W_{O}$ in the winning region of the existential player, present a positional strategy for existential player $s_{O,x}$: $\{3,4\} \rightarrow R$ such that $s_{O,x}$ is winning from x.
- c) Prove that there is no uniform positional winning strategy for the existential player, i.e. no single positional strategy that wins from all $x \in W_{\bigcirc}$.
- d) Consider the modified graph that is obtained by adding a vertex 6 owned by \bigcirc and the arcs (6, 3) and (6, 4).

Prove that position 6 is winning for the existential player, but there is no positional winning strategy from 6.