Games with perfect information Exercise sheet 3

TU Braunschweig

Sebastian Muskalla Summer term 2019

Out: April 24 Due: May 2

There is no lecture on Wednesday, May 1, due to a public holiday.

Submit your solutions to this sheet on Thursday, May 2, during the exercise class.

Exercise 1: 2×2 tic tac toe

Consider a 2×2 -variant of tic tac toe, i.e. tic tac toe played on a 2×2 matrix. We assume that \bigcirc starts. The player that is first able to put 2 of her marks into one row, column or diagonal wins, and the game then stops.

Formalize this game as a reachability game, draw the game arena as a graph, and solve it explicitly using the attractor algorithm.

Exercise 2: Determinacy of games of finite length

Let $\mathcal{G}=(G,win)$ be a game such that each maximal play of \mathcal{G} has finite length. Prove that \mathcal{G} is determined, i.e. every position is winning for exactly one of the players, $V=W_{\mathbb{O}} \cup W_{\mathbb{D}}$.

Hint: Construct a reachability game whose set of positions is Plays.

Exercise 3: Graphs with infinite out-degree

In the section on reachability games, we made the assumption that the out-degree of the game arena is finite. In this exercise, we want to understand this restriction.

Let $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$ denote the positive natural numbers. We consider the infinite graph G = (V, R) given by

$$V = \{start, goal\} \cup \bigcup_{i \in \mathbb{N}^+} Path_i$$
, where for each $i \in \mathbb{N}^+$, we have $Path_i = \{p_1^i, p_2^i, \dots, p_i^i\}$,

$$R = \bigcup_{i \in \mathbb{N}^+} \left\{ \left(start, p_1^i \right) \right\} \cup \bigcup_{i \in \mathbb{N}^+} \left\{ \left(p_i^i, goal \right) \right\} \cup \bigcup_{i \in \mathbb{N}^+} \bigcup_{j=1}^{i-1} \left\{ \left(p_j^i, p_{j+1}^i \right) \right\}.$$

We want to consider a reachability game on G with respect to the winning set $\{goal\}$, i.e. \bigcirc needs to reach the position goal, \square wants to prevent this.

- a) Draw a schematic representation of the graph G, e.g. involving the vertices $\{start, goal\}$ and the positions in $Path_i$ for $i \le 4$.
- b) Assume that all positions are owned by the existential player. For each position $x \in V$, give the minimal $i_x \in \mathbb{N}$ such that $x \in \operatorname{Attr}_{\mathcal{O}}^{i_x}(\{goal\})$, respectively $i_x = \infty$ if no such i_x exists.

Present a winning strategy for the reachability game from the position start.

c) Assume that all positions are owned by the universal player. For each position $x \in V$, give the minimal i_x such that $x \in \text{Attr}_{\bigcirc}^{i_x}(\{goal\})$, respectively $i_x = \infty$ if no such i_x exists.

Which player wins the reachability game from start?