Games with perfect information Exercise sheet 5

Sebastian Muskalla

Out: May 15

Due: May 22

Submit your solutions on Wednesday, May 22, during the lecture.

Exercise 1: Parity games

a) Let $G = (V_{\Box} \cup V_{\bigcirc}, R)$ be a deadlock-free, finite game arena. Let $x, y \in V$ be two positions, $x \neq y$.

- Present a parity game whose winning condition encodes the following property: A play is won by the existential player if it either does not visit *x* infinitely often, or it visits both *x* and *y* infinitely often.
- Present a parity game whose winning condition encodes the following property: A play is won by the existential player if it visits *x* at least once, and later visits *y* infinitely often.
- Present a parity game whose winning condition encodes the following property: A play is won by the existential player if it either does not visit *x* infinitely often, or it visits *x*, but not *y* infinitely often.

Note: You are allowed to modify the game arena *G* if needed.

b) Consider the parity game given by the following graph. For each vertex labeled with x^{i} , the letter x denotes the name of the vertex, the superscript denotes its priority $\Omega(x) = i$.

For each player, identify her winning region and present a uniform positional winning strategy.

Note: We have not discussed the algorithm for solving parity games yet, but you should be able to do this!

Exercise 2: Uniform positional winning strategies

Prove Part b) of Lemma 6.5 from the lecture notes:

Let X be a set of positions such that for each $x \in X$, $c \in \{O, \Box\}$ has a positional strategy $s_{c,x}$ that is winning from x. Then there is a positional strategy s_{c} that is uniformly winning from all positions $x \in X$.

Hint: You can assume that $V = \{v_0, v_1, v_2, ...\}$ is countable. A proof by induction (using Part a) of Lemma 6.5) will not work, since X may be infinite. However, many of the arguments from the proof of Part a) of Lemma 6.5 can be reused.

Exercise 3: It's a trap!

a) Formally prove Part a) of Lemma 6.9 from the lecture notes:

Let $Y \subseteq V$ and $\Leftrightarrow \in \{O, \Box\}$. The complement of the attractor $V \setminus \operatorname{Attr}_{\bigstar}(Y)$ is a trap for player \Leftrightarrow .

b) Construct a game arena and a set Y such that $Attr_{\Sigma}(Y)$ is not a trap for any of the players. Proof that these properties hold.