Games with perfect information Exercise sheet 6

Sebastian Muskalla

TU Braunschweig Summer term 2019

Out: May 22

Due: May 29

Submit your solutions on Wednesday, May 29, during the lecture.

Exercise 1: Weak parity games

A weak parity game is given by a game arena $G = (V_{\Box} \cup V_{O}, R)$ and a priority function Ω . Instead of considering the highest priority that *occurs infinitely often* to determine the winner of a play, we consider the highest priority that *occurs at all*.

Formally, for a set A and an infinite sequence $p \subseteq A^{\omega}$ over A, we define the **occurrence set**

 $Occ(p) = \{a \in A \mid \exists i \in \mathbb{N} : p_i = a\}.$

The winner of the weak parity game given by G and Ω is determined by the **weak parity winning** condition:

 $\begin{array}{rcl} \textit{win} & : & \textit{Plays}_{max} & \rightarrow & \{\bigcirc, \Box\} \\ & & p & \mapsto & \begin{cases} \bigcirc, & \text{if } \max \operatorname{Occ}(\Omega(p)) \text{ is even}, \\ \Box, & \text{else, i.e. if } \max \operatorname{Occ}(\Omega(p)) \text{ is odd}. \end{cases}$

a) Present an algorithm that, given a weak parity game on a finite, deadlock-free game arena, computes the winning regions of both players. Briefly argue that your algorithm is correct.

Hint: Attractors!

b) Is the winning condition of weak parity games prefix-independent, i.e. does Lemma 6.5 from the lecture notes hold?

Do uniform positional winning strategies exist?

Algorithm: Zielonka's recursive algorithm

Input: parity game \mathcal{G} given by $G = (V_{\Box}, V_{O}, R)$ and Ω . **Output:** winning regions W_{\Box} and W_{\odot} . **Procedure** solve(G) 1: $n \leftarrow \max_{x \in V} \Omega(x)$ 2: **if** *n* = 0 **then** return $W_{\rm O} = V, W_{\rm D} = \emptyset$ 3: 4: else $N = \{x \in V \mid \Omega(x) = n\}$ 5: if *n* even then 6: $\Delta \leftarrow O, \overline{\Delta} \leftarrow \Box$ 7: else 8: ☆←□,☆←○ 9: 10: end if $A \leftarrow \operatorname{Attr}^{\mathcal{G}}_{\mathcal{C}}(N)$ 11: $W'_{\bigcirc}, W'_{\square} \leftarrow solve(\mathcal{G}_{\upharpoonright V \setminus A})$ 12: if $W'_{\preceq} = V \setminus A$ then 13: return $W_{\overleftrightarrow} \leftarrow V, W_{\overline{\overleftrightarrow}} \leftarrow \emptyset$ 14: 15: else $B \leftarrow \operatorname{Attr}_{\overrightarrow{\Delta}}^{\mathcal{G}}(W'_{\overrightarrow{\Delta}})$ $W''_{\Box}, W''_{\bigcirc} \leftarrow solve(\mathcal{G}_{\upharpoonright V \setminus B})$ 16: 17: $\operatorname{return} W_{\preceq} = W''_{\preceq}, W'_{\overrightarrow{\simeq}} = W''_{\overrightarrow{\simeq}} \cup B$ 18: 19: end if 20: end if

Exercise 2: Algorithmics of parity games

Use the algorithm algorithm to solve the following game. x^i means that position x has priority i.

