	Theoretical Computer Science 1	
René Maseli Prof. Dr. Roland Meyer	Exercise 1	TU Braunschweig

Release: 09.11.2021
Due: 18.11.2021, 23:59

Hand in your solutions per e-mail to your tutor until Thursday, 19.11.2021 23:59 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Exercise 1: [12 points]

Let (\mathbb{N}, \leq) be a lattice, where \leq is a binary relation over \mathbb{N} defined as follows: For $x, y \in \mathbb{N}$ the pair $x \leq y$ holds if and only if $x=0$ or $y=1$ or $x=y \in \mathbb{N} \backslash\{0,1\}$.

- [1 point] Draw a Hasse-diagram of (\mathbb{N}, \leq) for the numbers up to 9 .
- [1 point] State T und \perp of this lattice.
- [7 points] State the values of the following joins and meets:
- \perp பT
- \perp п
- T ப 5
- $6 п 7$
- \perp ப4
- $\bigsqcup\{n \in \mathbb{N} \mid n$ is even $\}$
- [2 points] Is the height of this lattice finite? Is it bounded?
- [2 points] Give a Hasse-diagram for a lattice which has finite but non-bounded height.

Exercise 2: [9 points]

Let $M_{1} \subseteq \mathbb{N}$ and $M_{2} \subseteq \mathbb{N}$ be two finite sets and $M=M_{1} \times M_{2}$ the set of all pairs (a, b) with $a \in M_{1}$ and $b \in M_{2}$. Let \leq be a relation on M, defined as follows:

$$
\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right) \quad \text { if and only if } \quad a_{1} \geqslant a_{2} \text { and } b_{1} \geqslant b_{2}
$$

where \leqslant is the common "less or equals" relation on natural numbers.

- [3 points] Show that \leq is reflexive, transitive and antisymmetrical.

By definition, (M, \leq) is then a partial order.

- [4 points] Show that the join $\bigsqcup M^{\prime}$ and the meet $\sqcap M^{\prime}$ exist for each subset $M^{\prime} \subseteq M$.

By definition, (M, \leq) is then a complete lattice.

- [1 point] State T, \perp for this lattice.
- [1 point] Does (M, \leq) stay complete, if $M_{1} \subseteq \mathbb{N}$ is infinite?

Exercise 3: Product Lattice [8 points]

a) [4 points] Let $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$ be complete lattices. The product lattice is defined as ($D_{1} \times D_{2}, \leq$), where \leq is the product ordering on tuples with $\left(d_{1}, d_{2}\right) \leq\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$ if and only if $d_{1} \leq_{1} d_{1}^{\prime}$ and $d_{2} \leq_{2} d_{2}^{\prime}$.

Show that the product lattice is indeed a complete lattice.
b) [4 points] Prove the following; The product lattice $\left(D_{1} \times D_{2}, \leq\right)$ satisfies ACC if and only if $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$ both satisfy ACC.

Exercise 4: Distributivity [6 points]

Let (D, \leqslant) be a lattice and $x, y \in D$ be two arbitrary elements.
a) [3 points] Show that if $f: D \rightarrow D$ is monotone, then $f(x \sqcup y) \geqslant f(x) \sqcup f(y)$ holds.
b) [3 points] $f: D \rightarrow D$ is called distributive, if $f(x \sqcup y)=f(x) \sqcup f(y)$ for all $x, y \in D$.

Show that if f is distributive then f is also monotone.

