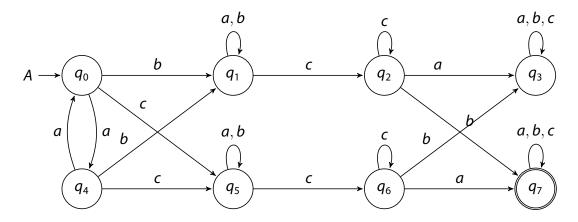
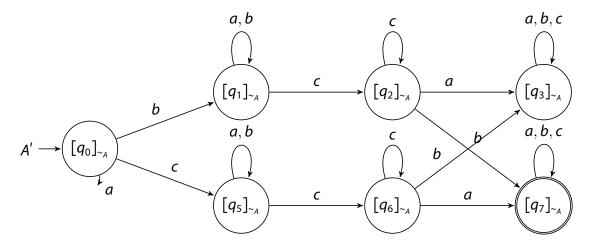
René Maseli Thomas Haas


# Theoretische Informatik 1 Große Übung 4

TU Braunschweig Wintersemester 2022/23

Prof. Dr. Roland Meyer

## 1 Table-Filling-Algorithmus


Gegeben ist der folgende DFA.



Die folgende Tabelle betrachtet ungeordnete Paare aus Zuständen von A. Die Nummern stehen für die Iteration des Algorithmus, in welcher das entsprechende Paar von Zuständen als ungleich festgestellt wurden.

|                       | $q_0$ | $q_1$ | $q_2$ | <b>q</b> <sub>3</sub> | $q_4$ | $q_5$ | $q_6$ | <b>q</b> <sub>7</sub> |
|-----------------------|-------|-------|-------|-----------------------|-------|-------|-------|-----------------------|
| $q_0$                 |       | 3     | 1     | 2                     |       | 2     | 1     | 0                     |
| $q_1$                 |       |       | 1     | 2                     | 2     | 2     | 1     | 0                     |
| $q_2$                 |       |       |       | 1                     | 1     | 1     | 1     | 0                     |
| $q_3$                 |       |       |       |                       | 3     | 2     | 1     | 0                     |
| $q_4$                 |       |       |       |                       |       | 2     | 1     | 0                     |
| $q_5$                 |       |       |       |                       |       |       | 1     | 0                     |
| $q_6$                 |       |       |       |                       |       |       |       | 0                     |
| <b>q</b> <sub>7</sub> |       |       |       |                       |       |       |       |                       |

Bei der vierten Iteration konnten keine neuen Paare unterschieden werden. Die leeren Zellen verraten nun, welche Zustände verschmolzen werden müssen, um einen minimalen DFA für  $\mathcal{L}(A)$  zu erzeugen:



Es sollen alle Äquivalenzklassen der Nerode-Rechtskongruenz von  $\mathcal{L}(A)$  aufgelistet werden. Jede dieser Klassen ist eine Sprache über dem Alphabet  $\{a,b,c\}$  und ist einem der Zustände des minimalen DFA zugewiesen, nämlich den einzigartigen Zustand q mit  $q_0 \stackrel{w}{\to} q$  für jedes Wort w aus der Äquivalenzklasse. Die Klassen indentifizieren sich am Besten mit einem Repräsentanten, z.B. einem kürzesten Wort, das den Zustand ansteuert.

$$[\varepsilon]_{\equiv_{\mathcal{L}(A)}} = a^*$$

$$[b]_{\equiv_{\mathcal{L}(A)}} = a^*b\{a, b\}^*$$

$$[c]_{\equiv_{\mathcal{L}(A)}} = a^*c\{a, b\}^*$$

$$[bc]_{\equiv_{\mathcal{L}(A)}} = a^*b\{a, b\}^*c^+$$

$$[cc]_{\equiv_{\mathcal{L}(A)}} = a^*c\{a, b\}^*c^+$$

$$[bcb]_{\equiv_{\mathcal{L}(A)}} = a^*(b\{a, b\}^*c^+b \cup c\{a, b\}^*c^+a)\{a, b, c\}^*$$

$$[bca]_{\equiv_{\mathcal{L}(A)}} = a^*(b\{a, b\}^*c^+a \cup c\{a, b\}^*c^+b)\{a, b, c\}^*$$

### 2 Pumping-Lemma

Das Pumping-Lemma stellt ein vergleichsweise einfaches notwendiges Kriterium an reguläre Sprachen. Jede reguläre Sprache L besitzt eine Pumping-Konstante  $p_L \in \mathbb{N}$ , sodass für jedes längere Wort  $w \in L$  mit  $|w| \ge p_L$  zerlegbar ist in w = xyz mit  $|xy| \le p_L$  und  $y \ne \varepsilon$ , sodass für alle  $i \in \mathbb{N}$  das gepumpte Wort  $xy^jz \in L$  auch in der Sprache liegt.

Anders ausgedrückt, kann eine Sprache nicht regulär sein, wenn es für jede potenzielle Zustandszahl eines NFAs ein akzeptiertes Wort mit mindestens einem Schleifen-Durchlauf gibt, sodass jede potenzielle erste Schleife, die für dieses Wort durchlaufen werden muss, mindestens ein ungewolltes Wort zuviel akzeptieren lassen würde.

Sei  $L_0 := \{ w \in \{a, b\}^* \mid |w|_a \ge |w|_b \}$ . Es ist zu zeigen, dass  $L_0$  nicht regulär ist.

#### **Beweis**

Sei  $0 < p_L \in \mathbb{N}$ .

Wähle das Wort  $a^{p_L}b^{p_L} \in L_0$ .

Seien  $x, y, z \in \{a, b\}^*$  die Komponenten einer Zerlegung w = x.y.z mit  $|xy| \le p_L$  und  $y \ne \varepsilon$ . So wie das Wort gewählt wurde, gilt immer  $y \in a^+$ . Nun betrachte  $x.y^0.z = a^{p_L - |y|}b^{p_L} \notin L_0$ . Da dies für alle  $p_L$  gilt, ist  $L_0$  nach dem Pumping-Lemma nicht regulär.

Sei  $L_1 := \{ w \in \{a, b\}^* \mid |w|_a \le |w|_b \text{ oder } 2|w|_b \le |w|_a \}$  Es ist zu zeigen, dass  $L_1$  nicht regulär ist.

#### **Beweis**

Sei  $p_L \in \mathbb{N}$ .

Wähle das Wort  $a^{2(p_L+1)}b^{p_L+1} \in L_1$ .

Sei w = x.y.z eine Zerlegung mit  $|xy| \le p_L$  und  $y \ne \varepsilon$ .

So wie das Wort gewählt wurde, gilt immer  $y \in a^+$  und  $|y| \le p$ .

Nun betrachte  $x.y^0.z = a^{2p_L + 2 - |y|}b^{p_L + 1} \notin L_1$ .

Da dies für alle  $p_L$  gilt, ist  $L_0$  nach dem Pumping-Lemma nicht regulär.

Sei  $L_2 := \{ a^n b^m \mid n, m \in \mathbb{N} \text{ und } (n \neq 1 \text{ oder } \exists \ell \in \mathbb{N}: m = \ell^2) \}.$ 

Es kann mit dem Pumping-Lemma nicht (sofort) gezeigt werden, dass  $L_2$  nicht regulär ist: Wähle  $p_L = 3$ .

Sei  $w = a^n b^m$  mit  $n + m \ge p_L$  und n = 1 oder  $m = \ell^2$ .

Falls n=0 oder n=2, wähle eine Zerlegung mit y=b. Anderenfalls ist n=1 oder  $n\geq 3$ . Wähle eine Zerlegung mit y=a.

Weder i = 0 noch  $i \ge 2$  können  $xy^iz \in L_2$  verhindern.

Nach dem Pumping-Lemma kann so keine Aussage über  $L_2$  getroffen werden.

Um trotzdem Regularität widerlegen zu können, kann man das Pumping-Lemma mit Abschluss-Eigenschaften kombinieren: Falls  $L_2$  regulär ist, dann sind es auch e.g.  $\overline{L_2}$ ,  $L_2^{\text{reverse}}$  oder  $L_2 \cap ab^*$ .

#### **Beweis**

Sei  $p_L$  ∈  $\mathbb{N}$ .

Betrachte  $ab^{p_L^2} \in L_2 \cap ab^*$ .

Bei den Zerlegungen unterscheiden wir zwei Fälle:

Falls  $y \in ab^*$ , wähle  $i \neq 1$  beliebig. E.g. folgt einfach  $xy^0z \notin L_2 \cap ab^*$ .

Sonst ist  $y \in b^+$ . Falls  $p_L^2 - |y|$  nicht quadratisch ist, wähle i = 0.

Anderenfalls sei es das Quadrat von  $\ell < p_L$  und es sei  $q = p_L - \ell$ . Es gilt mit der zweiten binomischen Formel  $p_L^2 - |y| = \ell^2 = (p_L - q)^2 = p_L^2 - 2p_Lq + q^2$ . Wähle  $i \ge 2$  beliebig, denn schon in den reellen Zahlen hat das Polynom  $q \mapsto q^2 - 2p_Lq + |y|$  keine dritte Nullstelle.

Nach dem Pumping-Lemma ist  $L_2 \cap ab^*$ , und damit auch  $L_2$  nicht regulär.