
Robustness against Power is PSpace-complete

Egor Derevenetc1,2 Roland Meyer1

1University of Kaiserslautern

2Fraunhofer ITWM

WEACON
Kaiserslautern
13.06.2014

1 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

2 / 29



Power Architecture 1/4

Example (Message Passing Program)

Consider the multithreaded program (initially, x = y = 0):

Thread 1: Thread 2:
a : mem[x]← 1 c : r1 ← mem[y]
b : mem[y]← 1 d : r2 ← mem[x]

Assumption: r1 = 1 implies r2 = 1.

Sequential Consistency (SC) [Lamport, 1979]
I Instructions are executed in order.
I Writes to memory are immediately visible to all threads.
⇒ The assumption holds.

Power Architecture by IBM et al. [Sarkar et al., 2011]
I Independent instructions can be executed out of order.
I Writes can be seen by different threads in different order.
⇒ The assumption does not hold.

3 / 29



Power Architecture 1/4

Example (Message Passing Program)

Consider the multithreaded program (initially, x = y = 0):

Thread 1: Thread 2:
a : mem[x]← 1 c : r1 ← mem[y]
b : mem[y]← 1 d : r2 ← mem[x]

Assumption: r1 = 1 implies r2 = 1.

Sequential Consistency (SC) [Lamport, 1979]
I Instructions are executed in order.
I Writes to memory are immediately visible to all threads.
⇒ The assumption holds.

Power Architecture by IBM et al. [Sarkar et al., 2011]
I Independent instructions can be executed out of order.
I Writes can be seen by different threads in different order.
⇒ The assumption does not hold.

3 / 29



Power Architecture 1/4

Example (Message Passing Program)

Consider the multithreaded program (initially, x = y = 0):

Thread 1: Thread 2:
a : mem[x]← 1 c : r1 ← mem[y]
b : mem[y]← 1 d : r2 ← mem[x]

Assumption: r1 = 1 implies r2 = 1.

Sequential Consistency (SC) [Lamport, 1979]
I Instructions are executed in order.
I Writes to memory are immediately visible to all threads.
⇒ The assumption holds.

Power Architecture by IBM et al. [Sarkar et al., 2011]
I Independent instructions can be executed out of order.
I Writes can be seen by different threads in different order.
⇒ The assumption does not hold.

3 / 29



Power Architecture 2/4

How a thread executes an instruction on Power:

I First, it fetches it. Instructions must be fetched in the
program order, one after another.

I Next, it performs the computation prescribed by the
instruction’s semantics. Results of instructions, on which the
current one depends, must be already computed.

I Finally, it commits the instruction. Similarly, all instruction’s
dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

c : r1 ← mem[y]; d : r2 ← mem[x].

Example (Computation of Thread 2)

𝛽 := fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c).

4 / 29



Power Architecture 2/4

How a thread executes an instruction on Power:

I First, it fetches it. Instructions must be fetched in the
program order, one after another.

I Next, it performs the computation prescribed by the
instruction’s semantics. Results of instructions, on which the
current one depends, must be already computed.

I Finally, it commits the instruction. Similarly, all instruction’s
dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

c : r1 ← mem[y]; d : r2 ← mem[x].

Example (Computation of Thread 2)

𝛽 := fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c).

4 / 29



Power Architecture 2/4

How a thread executes an instruction on Power:

I First, it fetches it. Instructions must be fetched in the
program order, one after another.

I Next, it performs the computation prescribed by the
instruction’s semantics. Results of instructions, on which the
current one depends, must be already computed.

I Finally, it commits the instruction. Similarly, all instruction’s
dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

c : r1 ← mem[y]; d : r2 ← mem[x].

Example (Computation of Thread 2)

𝛽 := fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c).

4 / 29



Power Architecture 2/4

How a thread executes an instruction on Power:

I First, it fetches it. Instructions must be fetched in the
program order, one after another.

I Next, it performs the computation prescribed by the
instruction’s semantics. Results of instructions, on which the
current one depends, must be already computed.

I Finally, it commits the instruction. Similarly, all instruction’s
dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

c : r1 ← mem[y]; d : r2 ← mem[x].

Example (Computation of Thread 2)

𝛽 := fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c).

4 / 29



Power Architecture 2/4

How a thread executes an instruction on Power:

I First, it fetches it. Instructions must be fetched in the
program order, one after another.

I Next, it performs the computation prescribed by the
instruction’s semantics. Results of instructions, on which the
current one depends, must be already computed.

I Finally, it commits the instruction. Similarly, all instruction’s
dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

c : r1 ← mem[y]; d : r2 ← mem[x].

Example (Computation of Thread 2)

𝛽 := fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c).

4 / 29



Power Architecture 2/4

How a thread executes an instruction on Power:

I First, it fetches it. Instructions must be fetched in the
program order, one after another.

I Next, it performs the computation prescribed by the
instruction’s semantics. Results of instructions, on which the
current one depends, must be already computed.

I Finally, it commits the instruction. Similarly, all instruction’s
dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

c : r1 ← mem[y]; d : r2 ← mem[x].

Example (Computation of Thread 2)

𝛽 := fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c).

4 / 29



Power Architecture 2/4

How a thread executes an instruction on Power:

I First, it fetches it. Instructions must be fetched in the
program order, one after another.

I Next, it performs the computation prescribed by the
instruction’s semantics. Results of instructions, on which the
current one depends, must be already computed.

I Finally, it commits the instruction. Similarly, all instruction’s
dependencies must be committed earlier.

One thread can execute multiple instructions in parallel.

Example (Thread 2 of Message Passing Program)

c : r1 ← mem[y]; d : r2 ← mem[x].

Example (Computation of Thread 2)

𝛽 := fetch(c) · fetch(d) · load(c) · load(d) · commit(d) · commit(c).

4 / 29



Power Architecture 3/4

How memory works on Power:

I A thread loads the value written by the last store to the same
address propagated to this thread.

I A committed store is immediately propagated to its own
thread and can be later propagated to some other threads.

I Stores to the same address are globally ordered (coherence
order) and can be propagated only in this order.

Example (Thread 1 of Message Passing Program)

a : mem[x]← 1; b : mem[y]← 1.

Example (Computation of Thread 1)

𝛼 := fetch(a) · commit(a) · prop(a, 1) · fetch(b) · commit(b) ·
prop(b, 1) · prop(b, 2).

5 / 29



Power Architecture 3/4

How memory works on Power:

I A thread loads the value written by the last store to the same
address propagated to this thread.

I A committed store is immediately propagated to its own
thread and can be later propagated to some other threads.

I Stores to the same address are globally ordered (coherence
order) and can be propagated only in this order.

Example (Thread 1 of Message Passing Program)

a : mem[x]← 1; b : mem[y]← 1.

Example (Computation of Thread 1)

𝛼 := fetch(a) · commit(a) · prop(a, 1) · fetch(b) · commit(b) ·
prop(b, 1) · prop(b, 2).

5 / 29



Power Architecture 3/4

How memory works on Power:

I A thread loads the value written by the last store to the same
address propagated to this thread.

I A committed store is immediately propagated to its own
thread and can be later propagated to some other threads.

I Stores to the same address are globally ordered (coherence
order) and can be propagated only in this order.

Example (Thread 1 of Message Passing Program)

a : mem[x]← 1; b : mem[y]← 1.

Example (Computation of Thread 1)

𝛼 := fetch(a) · commit(a) · prop(a, 1) · fetch(b) · commit(b) ·
prop(b, 1) · prop(b, 2).

5 / 29



Power Architecture 3/4

How memory works on Power:

I A thread loads the value written by the last store to the same
address propagated to this thread.

I A committed store is immediately propagated to its own
thread and can be later propagated to some other threads.

I Stores to the same address are globally ordered (coherence
order) and can be propagated only in this order.

Example (Thread 1 of Message Passing Program)

a : mem[x]← 1; b : mem[y]← 1.

Example (Computation of Thread 1)

𝛼 := fetch(a) · commit(a) · prop(a, 1) · fetch(b) · commit(b) ·
prop(b, 1) · prop(b, 2).

5 / 29



Power Architecture 3/4

How memory works on Power:

I A thread loads the value written by the last store to the same
address propagated to this thread.

I A committed store is immediately propagated to its own
thread and can be later propagated to some other threads.

I Stores to the same address are globally ordered (coherence
order) and can be propagated only in this order.

Example (Thread 1 of Message Passing Program)

a : mem[x]← 1; b : mem[y]← 1.

Example (Computation of Thread 1)

𝛼 := fetch(a) · commit(a) · prop(a, 1) · fetch(b) · commit(b) ·
prop(b, 1) · prop(b, 2).

5 / 29



Power Architecture 3/4

How memory works on Power:

I A thread loads the value written by the last store to the same
address propagated to this thread.

I A committed store is immediately propagated to its own
thread and can be later propagated to some other threads.

I Stores to the same address are globally ordered (coherence
order) and can be propagated only in this order.

Example (Thread 1 of Message Passing Program)

a : mem[x]← 1; b : mem[y]← 1.

Example (Computation of Thread 1)

𝛼 := fetch(a) · commit(a) · prop(a, 1) · fetch(b) · commit(b) ·
prop(b, 1) · prop(b, 2).

5 / 29



Power Architecture 4/4
Example (Message Passing Program)

Initially, x = y = 0.

Thread 1: Thread 2:
a : mem[x]← 1 c : r1 ← mem[y]
b : mem[y]← 1 d : r2 ← mem[x]

Assumption: r1 = 1 implies r2 = 1.

Example (Computation of the Program on Power)

𝜏 := 𝛼 · 𝛽 = fetch(a) · commit(a) · prop(a, 1) · fetch(b) ·
commit(b) · prop(b, 1) · prop(b, 2) · fetch(c) · fetch(d) · load(c) ·
load(d) · commit(d) · commit(c).

I Load c reads value 1 written by b.

I Load d reads the initial value 0, as store a was never
propagated to Thread 2.

⇒ The assumption does not hold.

6 / 29



Robustness

Robustness Problem

Check, whether a given program has the same behaviors under SC
and under Power.

Behavior is the control and data dependencies
between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an
intersection of languages:

ℒ ∩ℛ ?
= ∅.

I Computations violating SC (if any) have a representative in a
normal form.

I Language ℒ consists of all normal-form computations.

I ∩ℛ filters only violating computations.

I Decide ℒ ∩ℛ ?
= ∅.

7 / 29



Robustness

Robustness Problem

Check, whether a given program has the same behaviors under SC
and under Power. Behavior is the control and data dependencies
between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an
intersection of languages:

ℒ ∩ℛ ?
= ∅.

I Computations violating SC (if any) have a representative in a
normal form.

I Language ℒ consists of all normal-form computations.

I ∩ℛ filters only violating computations.

I Decide ℒ ∩ℛ ?
= ∅.

7 / 29



Robustness

Robustness Problem

Check, whether a given program has the same behaviors under SC
and under Power. Behavior is the control and data dependencies
between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an
intersection of languages:

ℒ ∩ℛ ?
= ∅.

I Computations violating SC (if any) have a representative in a
normal form.

I Language ℒ consists of all normal-form computations.

I ∩ℛ filters only violating computations.

I Decide ℒ ∩ℛ ?
= ∅.

7 / 29



Robustness

Robustness Problem

Check, whether a given program has the same behaviors under SC
and under Power. Behavior is the control and data dependencies
between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an
intersection of languages:

ℒ ∩ℛ ?
= ∅.

I Computations violating SC (if any) have a representative in a
normal form.

I Language ℒ consists of all normal-form computations.

I ∩ℛ filters only violating computations.

I Decide ℒ ∩ℛ ?
= ∅.

7 / 29



Robustness

Robustness Problem

Check, whether a given program has the same behaviors under SC
and under Power. Behavior is the control and data dependencies
between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an
intersection of languages:

ℒ ∩ℛ ?
= ∅.

I Computations violating SC (if any) have a representative in a
normal form.

I Language ℒ consists of all normal-form computations.

I ∩ℛ filters only violating computations.

I Decide ℒ ∩ℛ ?
= ∅.

7 / 29



Robustness

Robustness Problem

Check, whether a given program has the same behaviors under SC
and under Power. Behavior is the control and data dependencies
between instructions.

Our Solution

Reduce robustness checking to an emptiness check for an
intersection of languages:

ℒ ∩ℛ ?
= ∅.

I Computations violating SC (if any) have a representative in a
normal form.

I Language ℒ consists of all normal-form computations.

I ∩ℛ filters only violating computations.

I Decide ℒ ∩ℛ ?
= ∅.

7 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

8 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

9 / 29



Characterization of Violating Computations
Lemma ([Shasha and Snir, 1988])

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation 𝜏)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

cf

Happens-before relation is a union of four relations:

I Program order — textual ordering of instructions.
I Coherence order — ordering of stores to the same address.
I Source order — which store is read by which load.
I Conflict order — which stores overwrite the value read by a

load.

10 / 29



Characterization of Violating Computations
Lemma ([Shasha and Snir, 1988])

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation 𝜏)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

cf

Happens-before relation is a union of four relations:

I Program order — textual ordering of instructions.
I Coherence order — ordering of stores to the same address.
I Source order — which store is read by which load.
I Conflict order — which stores overwrite the value read by a

load.

10 / 29



Characterization of Violating Computations
Lemma ([Shasha and Snir, 1988])

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation 𝜏)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po

co

co src

src

cf

Happens-before relation is a union of four relations:

I Program order — textual ordering of instructions.

I Coherence order — ordering of stores to the same address.
I Source order — which store is read by which load.
I Conflict order — which stores overwrite the value read by a

load.

10 / 29



Characterization of Violating Computations
Lemma ([Shasha and Snir, 1988])

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation 𝜏)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co

src

src

cf

Happens-before relation is a union of four relations:

I Program order — textual ordering of instructions.
I Coherence order — ordering of stores to the same address.

I Source order — which store is read by which load.
I Conflict order — which stores overwrite the value read by a

load.

10 / 29



Characterization of Violating Computations
Lemma ([Shasha and Snir, 1988])

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation 𝜏)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

cf

Happens-before relation is a union of four relations:

I Program order — textual ordering of instructions.
I Coherence order — ordering of stores to the same address.
I Source order — which store is read by which load.

I Conflict order — which stores overwrite the value read by a
load.

10 / 29



Characterization of Violating Computations
Lemma ([Shasha and Snir, 1988])

A computation violates SC iff it has cyclic happens-before relation.

Example (Happens-Before Relation of Computation 𝜏)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

cf

Happens-before relation is a union of four relations:

I Program order — textual ordering of instructions.
I Coherence order — ordering of stores to the same address.
I Source order — which store is read by which load.
I Conflict order — which stores overwrite the value read by a

load.
10 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

11 / 29



Normal-Form Computations 1/4

Definition

A computation 𝜏 := 𝜏1 · · · 𝜏n is in normal form of degree n, if

I there are no fetch events in 𝜏2 · · · 𝜏n,
I events in each part 𝜏1 . . . 𝜏n occur in the order in which

corresponding fetch events occur in 𝜏1.

Theorem

If a program has computations with cyclic happens-before relation,
it has one in the normal form of degree (number of threads + 3).

Proof Idea.

Take a shortest computation with cyclic happens-before relation
and transform it to the normal form.

12 / 29



Normal-Form Computations 1/4

Definition

A computation 𝜏 := 𝜏1 · · · 𝜏n is in normal form of degree n, if

I there are no fetch events in 𝜏2 · · · 𝜏n,

I events in each part 𝜏1 . . . 𝜏n occur in the order in which
corresponding fetch events occur in 𝜏1.

Theorem

If a program has computations with cyclic happens-before relation,
it has one in the normal form of degree (number of threads + 3).

Proof Idea.

Take a shortest computation with cyclic happens-before relation
and transform it to the normal form.

12 / 29



Normal-Form Computations 1/4

Definition

A computation 𝜏 := 𝜏1 · · · 𝜏n is in normal form of degree n, if

I there are no fetch events in 𝜏2 · · · 𝜏n,
I events in each part 𝜏1 . . . 𝜏n occur in the order in which

corresponding fetch events occur in 𝜏1.

Theorem

If a program has computations with cyclic happens-before relation,
it has one in the normal form of degree (number of threads + 3).

Proof Idea.

Take a shortest computation with cyclic happens-before relation
and transform it to the normal form.

12 / 29



Normal-Form Computations 1/4

Definition

A computation 𝜏 := 𝜏1 · · · 𝜏n is in normal form of degree n, if

I there are no fetch events in 𝜏2 · · · 𝜏n,
I events in each part 𝜏1 . . . 𝜏n occur in the order in which

corresponding fetch events occur in 𝜏1.

Theorem

If a program has computations with cyclic happens-before relation,
it has one in the normal form of degree (number of threads + 3).

Proof Idea.

Take a shortest computation with cyclic happens-before relation
and transform it to the normal form.

12 / 29



Normal-Form Computations 1/4

Definition

A computation 𝜏 := 𝜏1 · · · 𝜏n is in normal form of degree n, if

I there are no fetch events in 𝜏2 · · · 𝜏n,
I events in each part 𝜏1 . . . 𝜏n occur in the order in which

corresponding fetch events occur in 𝜏1.

Theorem

If a program has computations with cyclic happens-before relation,
it has one in the normal form of degree (number of threads + 3).

Proof Idea.

Take a shortest computation with cyclic happens-before relation
and transform it to the normal form.

12 / 29



Normal-Form Computations 2/4

Lemma

Given a non-empty valid computation, there is a thread, such that
deletion of all events belonging to its last fetched instruction
produces a valid computation.

Example

𝜏

′

= fetch(a) · commit(a) · prop(a, 1)

·����fetch(b) ·���
���commit(b) ·

��
���prop(b, 1) ·���

��prop(b, 2)

· fetch(c) · fetch(d) · load(c) · load(d) ·
commit(d) · commit(c).

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity

((((
((((b : mem[y]← 1

c : r1 ← mem[y]

po

po
co

co srcsrc

src

cf

13 / 29



Normal-Form Computations 2/4

Lemma

Given a non-empty valid computation, there is a thread, such that
deletion of all events belonging to its last fetched instruction
produces a valid computation.

Example

𝜏

′

= fetch(a) · commit(a) · prop(a, 1) ·����fetch(b) ·���
���commit(b) ·

���
��prop(b, 1) ·���

��prop(b, 2) · fetch(c) · fetch(d) · load(c) · load(d) ·
commit(d) · commit(c).

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity ((((
((((b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

src

cf

13 / 29



Normal-Form Computations 2/4

Lemma

Given a non-empty valid computation, there is a thread, such that
deletion of all events belonging to its last fetched instruction
produces a valid computation.

Example

𝜏 ′ = fetch(a) · commit(a) · prop(a, 1)

·����fetch(b) ·���
���commit(b) ·

���
��prop(b, 1) ·���

��prop(b, 2)

· fetch(c) · fetch(d) · load(c) · load(d) ·
commit(d) · commit(c).

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity

((((
((((b : mem[y]← 1

c : r1 ← mem[y]

po

po
co

co src

src

src

cf

13 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏

,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏

, ⇒ violating.

14 / 29



Normal-Form Computations 3/4

1. Let 𝜏 := 𝜏1 · e1 · 𝜏2 · e2 · · · 𝜏n be a shortest computation with
cyclic happens-before relation.

2. Let e1 · · · en−1 be the deleted events.

3. Assume all fetch events are in 𝜏1 · e1 (one can always move
them to the front).

4. Computation 𝜏 ′ := 𝜏1 · 𝜏2 · · · 𝜏n is shorter than 𝜏 ,
⇒ not violating.

5. Let 𝜎 be a sequentially consistent version of 𝜏 ′.

6. Reorder events in the way they follow in 𝜎:

𝜏 ′′ := 𝜎↓𝜏1 · e1 · · ·𝜎↓𝜏n.

Lemma

Computation 𝜏 ′′

I is in normal form,

I has the same happens-before relation as 𝜏 , ⇒ violating.

14 / 29



Normal-Form Computations 4/4

Example

A shortest computation with cyclic happens-before relation:

𝜏

′

= (fetch(c) · fetch(d) · fetch(a)) ·����fetch(b)

· (commit(a) · prop(a, 1)) ·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

The shortened computation:

𝜏 ′ = (fetch(c) · fetch(d) · fetch(a))

·����fetch(b)

· (commit(a) · prop(a, 1))

·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

The shortened computation:

𝜏 ′ = (fetch(c) · fetch(d) · fetch(a))

·����fetch(b)

· (commit(a) · prop(a, 1))

·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

A shortest computation with cyclic happens-before relation:

𝜏

′

= (fetch(c) · fetch(d) · fetch(a)) ·����fetch(b)

· (commit(a) · prop(a, 1)) ·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

A shortest computation with cyclic happens-before relation:

𝜏

′

= (fetch(c) · fetch(d) · fetch(a)) ·����fetch(b)

· (commit(a) · prop(a, 1)) ·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

A shortest computation with cyclic happens-before relation:

𝜏

′

= (fetch(c) · fetch(d) · fetch(a)) ·����fetch(b)

· (commit(a) · prop(a, 1)) ·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

A shortest computation with cyclic happens-before relation:

𝜏

′

= (fetch(c) · fetch(d) · fetch(a)) ·����fetch(b)

· (commit(a) · prop(a, 1)) ·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

A shortest computation with cyclic happens-before relation:

𝜏

′

= (fetch(c) · fetch(d) · fetch(a)) ·����fetch(b)

· (commit(a) · prop(a, 1)) ·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Normal-Form Computations 4/4

Example

A shortest computation with cyclic happens-before relation:

𝜏

′

= (fetch(c) · fetch(d) · fetch(a)) ·����fetch(b)

· (commit(a) · prop(a, 1)) ·���
���commit(b) ·���

��prop(b, 1) ·���
��prop(b, 2)

· (load(c) · load(d) · commit(d) · commit(c))

Matching sequentially consistent computation:

𝜎 = fetch(c) · load(c) · commit(c)

· fetch(d) · load(d) · commit(d)

· fetch(a) · commit(a) · prop(a, 1) · prop(a, 2)

Normal-form computation:

𝜏 ′′ = (fetch(c) · fetch(d) · fetch(a)) · fetch(b)
· (commit(a) · prop(a, 1)) · commit(b) · prop(b, 1) · prop(b, 2)
· (load(c) · commit(c) · load(d) · commit(d))

15 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

16 / 29



Generating Normal-Form Computations 1/2
Challenge

Describe the language ℒ of all normal-form computations of a
given degree.

We need a language class that

I includes ℒ,
I is closed under intersection with regular languages (ℒ ∩ℛ),
I has decidable emptiness problem (ℒ ∩ℛ ?

= ∅).

Properties of ℒ

I Number of concurrently executed instructions is unbounded
⇒ not regular.

I Can include computations like (fetch)n · (load)n · (commit)n

⇒ not even context-free.

17 / 29



Generating Normal-Form Computations 1/2
Challenge

Describe the language ℒ of all normal-form computations of a
given degree.

We need a language class that

I includes ℒ,
I is closed under intersection with regular languages (ℒ ∩ℛ),
I has decidable emptiness problem (ℒ ∩ℛ ?

= ∅).

Properties of ℒ

I Number of concurrently executed instructions is unbounded
⇒ not regular.

I Can include computations like (fetch)n · (load)n · (commit)n

⇒ not even context-free.

17 / 29



Generating Normal-Form Computations 1/2
Challenge

Describe the language ℒ of all normal-form computations of a
given degree.

We need a language class that

I includes ℒ,
I is closed under intersection with regular languages (ℒ ∩ℛ),
I has decidable emptiness problem (ℒ ∩ℛ ?

= ∅).

Properties of ℒ

I Number of concurrently executed instructions is unbounded
⇒ not regular.

I Can include computations like (fetch)n · (load)n · (commit)n

⇒ not even context-free.

17 / 29



Generating Normal-Form Computations 1/2
Challenge

Describe the language ℒ of all normal-form computations of a
given degree.

We need a language class that

I includes ℒ,
I is closed under intersection with regular languages (ℒ ∩ℛ),
I has decidable emptiness problem (ℒ ∩ℛ ?

= ∅).

Properties of ℒ

I Number of concurrently executed instructions is unbounded
⇒ not regular.

I Can include computations like (fetch)n · (load)n · (commit)n

⇒ not even context-free.

17 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ =

fetch(c) · fetch(d) · fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

·

load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ =

fetch(c) · fetch(d) · fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

·

load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ =

fetch(c) · fetch(d) · fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

·

load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c)

· fetch(d) · fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

·

load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c)

· fetch(d) · fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

· load(c)

· commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c)

· fetch(d) · fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c)

· load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d)

· fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c)

· load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d)

· fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c) · load(d)

· commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d)

· fetch(a) · fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d) · fetch(a)

· fetch(b)

·

commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d) · fetch(a)

· fetch(b)

· commit(a)

· prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d) · fetch(a)

· fetch(b)

· commit(a) · prop(a, 1)

· commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d) · fetch(a) · fetch(b)
· commit(a) · prop(a, 1)

· commit(b) · prop(b, 1) · prop(b, 2)

· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d) · fetch(a) · fetch(b)
· commit(a) · prop(a, 1) · commit(b)

· prop(b, 1) · prop(b, 2)

· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d) · fetch(a) · fetch(b)
· commit(a) · prop(a, 1) · commit(b) · prop(b, 1)

· prop(b, 2)

· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Generating Normal-Form computations 2/2

Solution

Define ℒ as a language of a multiheaded automaton.

Definition (Multiheaded Automaton)

An n-headed automaton is an extension of NFA generating n parts
of a computation simultaneously, one by each head.

Example (Generating 𝜏 ′′ with a 3-headed Automaton)

𝜏 ′′ = fetch(c) · fetch(d) · fetch(a) · fetch(b)
· commit(a) · prop(a, 1) · commit(b) · prop(b, 1) · prop(b, 2)
· load(c) · commit(c) · load(d) · commit(d)

18 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

19 / 29



Checking Cyclicity of Happens-Before Relation

Example (Happens-Before Relation of 𝜏 ′′)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

cf

Solution

I The multiheaded automaton in each thread picks two
instructions in program order.

I Finite automata check edges between picked instructions from
different threads.

20 / 29



Checking Cyclicity of Happens-Before Relation

Example (Happens-Before Relation of 𝜏 ′′)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

cf

Solution

I The multiheaded automaton in each thread picks two
instructions in program order.

I Finite automata check edges between picked instructions from
different threads.

20 / 29



Checking Cyclicity of Happens-Before Relation

Example (Happens-Before Relation of 𝜏 ′′)

Thread 1 Thread 2

initx a : mem[x]← 1 d : r2 ← mem[x]

inity b : mem[y]← 1 c : r1 ← mem[y]

po po
co

co src

src

cf

Solution

I The multiheaded automaton in each thread picks two
instructions in program order.

I Finite automata check edges between picked instructions from
different threads.

20 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

21 / 29



Complexity

Theorem

Assuming finite memory, robustness is PSpace-complete.

Proof.

I Upper bound: ℒ ∩ℛ ?
= ∅.

I Lower bound: SC state reachability [Kozen, 1977].

22 / 29



Complexity

Theorem

Assuming finite memory, robustness is PSpace-complete.

Proof.

I Upper bound: ℒ ∩ℛ ?
= ∅.

I Lower bound: SC state reachability [Kozen, 1977].

22 / 29



Complexity

Theorem

Assuming finite memory, robustness is PSpace-complete.

Proof.

I Upper bound: ℒ ∩ℛ ?
= ∅.

I Lower bound: SC state reachability [Kozen, 1977].

22 / 29



Introduction

Power Architecture

Robustness

Deciding Robustness

Characterization of Violating Computations

Normal-Form Computations

Generating Normal-Form Computations

Checking Cyclicity of Happens-Before Relation

Complexity

Conclusion

Related Work

Summary

23 / 29



Related Work

I Robustness
I Characterization: [Shasha and Snir, 1988].
I Monitoring algorithms:

I [Burckhardt and Musuvathi, 2008] (TSO-only, broken),
I [Burnim et al., 2011] (TSO, PSO).

I Static overapproximation and fence insertion:
[Alglave and Maranget, 2011] (TSO, Power).

I Decidability
I [Bouajjani et al., 2011] (TSO, PSpace-completeness),
I [Bouajjani et al., 2013] (TSO, reduction to SC reachability,

fence insertion).

I State reachability
I PSpace for SC [Kozen, 1977],
I Non-primitive recursive for TSO [Atig et al., 2010].

I Power models:
I [Sarkar et al., 2011] (operational),
I [Mador-Haim et al., 2012] (axiomatic),
I [Alglave et al., 2013] (overview, newer axiomatic),
I [Maranget et al., ] (tutorial, with ARM).

24 / 29



Related Work
I Robustness

I Characterization: [Shasha and Snir, 1988].
I Monitoring algorithms:

I [Burckhardt and Musuvathi, 2008] (TSO-only, broken),
I [Burnim et al., 2011] (TSO, PSO).

I Static overapproximation and fence insertion:
[Alglave and Maranget, 2011] (TSO, Power).

I Decidability
I [Bouajjani et al., 2011] (TSO, PSpace-completeness),
I [Bouajjani et al., 2013] (TSO, reduction to SC reachability,

fence insertion).

I State reachability
I PSpace for SC [Kozen, 1977],
I Non-primitive recursive for TSO [Atig et al., 2010].

I Power models:
I [Sarkar et al., 2011] (operational),
I [Mador-Haim et al., 2012] (axiomatic),
I [Alglave et al., 2013] (overview, newer axiomatic),
I [Maranget et al., ] (tutorial, with ARM).

24 / 29



Related Work
I Robustness

I Characterization: [Shasha and Snir, 1988].
I Monitoring algorithms:

I [Burckhardt and Musuvathi, 2008] (TSO-only, broken),
I [Burnim et al., 2011] (TSO, PSO).

I Static overapproximation and fence insertion:
[Alglave and Maranget, 2011] (TSO, Power).

I Decidability
I [Bouajjani et al., 2011] (TSO, PSpace-completeness),
I [Bouajjani et al., 2013] (TSO, reduction to SC reachability,

fence insertion).

I State reachability
I PSpace for SC [Kozen, 1977],
I Non-primitive recursive for TSO [Atig et al., 2010].

I Power models:
I [Sarkar et al., 2011] (operational),
I [Mador-Haim et al., 2012] (axiomatic),
I [Alglave et al., 2013] (overview, newer axiomatic),
I [Maranget et al., ] (tutorial, with ARM).

24 / 29



Related Work
I Robustness

I Characterization: [Shasha and Snir, 1988].
I Monitoring algorithms:

I [Burckhardt and Musuvathi, 2008] (TSO-only, broken),
I [Burnim et al., 2011] (TSO, PSO).

I Static overapproximation and fence insertion:
[Alglave and Maranget, 2011] (TSO, Power).

I Decidability
I [Bouajjani et al., 2011] (TSO, PSpace-completeness),
I [Bouajjani et al., 2013] (TSO, reduction to SC reachability,

fence insertion).

I State reachability
I PSpace for SC [Kozen, 1977],
I Non-primitive recursive for TSO [Atig et al., 2010].

I Power models:
I [Sarkar et al., 2011] (operational),
I [Mador-Haim et al., 2012] (axiomatic),
I [Alglave et al., 2013] (overview, newer axiomatic),
I [Maranget et al., ] (tutorial, with ARM).

24 / 29



Summary

Reduction of Robustness to Language Emptiness

I Look only for normal-form violating computations.

I Use multiheaded automata to generate normal-form
computations.

I Check cyclicity of happens-before by regular intersection.

Robustness against Power is PSpace-complete

I Upper bound: reduction to language emptiness.

I Lower bound: sequentially consistent state reachability.

First decidability result for Power!

Thank you for your attention.
Questions?

derevenetc@cs.uni-kl.de

25 / 29

mailto:derevenetc@cs.uni-kl.de


Summary

Reduction of Robustness to Language Emptiness

I Look only for normal-form violating computations.

I Use multiheaded automata to generate normal-form
computations.

I Check cyclicity of happens-before by regular intersection.

Robustness against Power is PSpace-complete

I Upper bound: reduction to language emptiness.

I Lower bound: sequentially consistent state reachability.

First decidability result for Power!

Thank you for your attention.
Questions?

derevenetc@cs.uni-kl.de

25 / 29

mailto:derevenetc@cs.uni-kl.de


Summary

Reduction of Robustness to Language Emptiness

I Look only for normal-form violating computations.

I Use multiheaded automata to generate normal-form
computations.

I Check cyclicity of happens-before by regular intersection.

Robustness against Power is PSpace-complete

I Upper bound: reduction to language emptiness.

I Lower bound: sequentially consistent state reachability.

First decidability result for Power!

Thank you for your attention.
Questions?

derevenetc@cs.uni-kl.de

25 / 29

mailto:derevenetc@cs.uni-kl.de


Summary

Reduction of Robustness to Language Emptiness

I Look only for normal-form violating computations.

I Use multiheaded automata to generate normal-form
computations.

I Check cyclicity of happens-before by regular intersection.

Robustness against Power is PSpace-complete

I Upper bound: reduction to language emptiness.

I Lower bound: sequentially consistent state reachability.

First decidability result for Power!

Thank you for your attention.
Questions?

derevenetc@cs.uni-kl.de
25 / 29

mailto:derevenetc@cs.uni-kl.de


References I

Alglave, J. and Maranget, L. (2011).
Stability in weak memory models.
In CAV, volume 6806 of LNCS, pages 50–66. Springer.

Alglave, J., Maranget, L., and Tautschnig, M. (2013).
Herding cats.
CoRR, abs/1308.6810.

Atig, M. F., Bouajjani, A., Burckhardt, S., and Musuvathi, M.
(2010).
On the verification problem for weak memory models.
In POPL, pages 7–18. ACM.

Bouajjani, A., Derevenetc, E., and Meyer, R. (2013).
Checking and enforcing robustness against TSO.
In ESOP, LNCS, pages 533–553. Springer.

26 / 29



References II

Bouajjani, A., Meyer, R., and Möhlmann, E. (2011).
Deciding robustness against Total Store Ordering.
In ICALP, volume 6756 of LNCS, pages 428–440. Springer.

Burckhardt, S. and Musuvathi, M. (2008).
Effective program verification for relaxed memory models.
In CAV, volume 5123 of LNCS, pages 107–120. Springer.

Burnim, J., Stergiou, C., and Sen, K. (2011).
Sound and complete monitoring of sequential consistency for
relaxed memory models.
In TACAS, volume 6605 of LNCS, pages 11–25. Springer.

Kozen, D. (1977).
Lower bounds for natural proof systems.
In FOCS, pages 254–266. IEEE.

27 / 29



References III

Lamport, L. (1979).
How to make a multiprocessor computer that correctly
executes multiprocess programs.
IEEE Transactions on Computers, 28(9):690–691.

Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K.,
Alglave, J., Owens, S., Alur, R., Martin, M. M. K., Sewell, P.,
and Williams, D. (2012).
An axiomatic memory model for power multiprocessors.
In CAV, pages 495–512. Springer.

Maranget, L., Sarkar, S., and Sewell, P.
A tutorial introduction to the ARM and POWER relaxed
memory models.
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/

test7.pdf.
Draft.

28 / 29

https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf


References IV

Sarkar, S., Sewell, P., Alglave, J., Maranget, L., and Williams,
D. (2011).
Understanding POWER multiprocessors.
In PLDI, pages 175–186. ACM.

Shasha, D. and Snir, M. (1988).
Efficient and correct execution of parallel programs that share
memory.
ACM TOPLAS, 10(2):282–312.

29 / 29


	Introduction
	Power Architecture
	Robustness

	Deciding Robustness
	Characterization of Violating Computations
	Normal-Form Computations
	Generating Normal-Form Computations
	Checking Cyclicity of Happens-Before Relation
	Complexity

	Conclusion
	Related Work
	Summary

	Appendix

