
Analysis of Automata-theoretic models
of Concurrent Recursive Programs

Thesis submitted

in partial fulfilment of the

Degree of Doctor of Philosophy (Ph.D)

by

Prakash Saivasan

Chennai Mathematical Institute



2

Declaration

The work in this thesis is based on research carried out by me under the supervision and
guidance of Prof. K. Narayan Kumar. No part of this thesis has been submitted elsewhere for
any other degree of qualification.

Prakash Saivasan
Chennai Mathematical Insitute
Plot H1, SIPCOT IT Park
Siruseri, Kelambakkam
Chennai, India
PIN-603103



3

Certification

This is to certify that the thesis entitled "Analysis of Automata-theoretic models of Concurrent
Recursive Programs " submitted by Mr. Prakash Saivasan is a bona fide record of the research
work carried out by him under my supervision and guidance. The content of the thesis in
full or parts have not been submitted to any other institute or university for the award of any
degree or diploma.

K. Narayan Kumar

Thesis Supervisor

Chennai Mathematical Institute
Plot H1, SIPCOT IT Park
Siruseri, Kelambakkam
Chennai, India
PIN-603103



4

This work is dedicated to my late grandfather Mr. V. Gopalaswamy



5

Acknowledgements

I would firstly like to profusely thank my supervisor K. Narayan Kumar. I was indeed very
lucky to have a guide as patient and friendly as him. I would also like to thank Mohammed
Faouzi Atig who was like a second supervisor to me. I throughly enjoyed working with both
of them and it was from them that I have learnt much of what I know. I thank them both
for all the support and encouragement that they showed all along. I would also specifically
like to thank Ahmed Bouajjani for providing the opportunity to work with him and for all
the stimulating research discussions we had. It was indeed a great honour for me to have
worked with him. I would also like to thank Paul Gastin and Parosh Abdulla for the interesting
discussions we had when I visited them and also for supporting my various research visits. I
hope to continue my association and collaboration with all of them for a long time to come.

I would like to thank Madhavan, Suresh, Samir, Jam and KV for teaching me the funda-
mentals. I would like to thank Sripathy and the administrative staff at CMI for making life at
CMI very comfortable. I would also like to thank TCS for supporting me with a scholarship.

I would like to thank my friends Chary, Bakshi, Anbu, Shraddha, Geetha, Pabitra, Santosh
and numerous others with whom I have many pleasant memories to share. I would also like
to thank Aiswarya, Prateek, Muthu and Sreejith with whom I not only had good times but also
the pleasure of discussing computer science. I would also like to thank Kumar and Rajeshwari
for the delicious dinners and many memorable moments.

I would like to thank my ex-collegues Gopi and Prashanth from Hewlett Packard for all
the support and encouragement. I would also like to thank few of my teachers Veda Mohan,
Pramila and R S Milton for inspiring me in their own way.

Lastly I would like to thank my parents, my sister and my grandparents for supporting,
encouraging and standing by me always. I would also like to specially express my adoration
for my niece Samhita so that she can read about it when she is all grown up.



6



Contents

1 Introduction 11

2 Preliminaries 19

3 Shared memory systems 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Shared memory concurrent pushdown System . . . . . . . . . . . . . . . . . . . 24

3.2.1 The Reachability Problem for SCPS . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Stage-bounded Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Stage bounded reachability for Communicating FSS . . . . . . . . . . . . . . . . 31
3.5 Bounded-Stage Reachability of recursive processes . . . . . . . . . . . . . . . . 33

3.5.1 Undecidability of Bounded-Stage Reachability . . . . . . . . . . . . . . . 33
3.5.2 Bounded stage reachability for two pushdown case . . . . . . . . . . . . . 34
3.5.3 Decidability for single pushdown plus counters . . . . . . . . . . . . . . . 35

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Regular abstractions of one counter automata 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Counter automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Simplified counter automata . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Computing upward closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Computing downward closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Revisiting shared memory systems . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Parikh Images of Reversal Bounded PDAs . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.1 Reversal bounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.2 Parikh image under reversal bounds . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Multi-pushdown systems (MPDS) 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Multi-pushdown system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Bounded Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Bounded Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Bounded Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7



8 CONTENTS

5.2.4 Ordered multi-pushdown run . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Linear time model checking under bounded scope 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Hardness for scope-bounded reachability . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Infinite scope-bounded computations . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Model checking LTL on bounded scope executions . . . . . . . . . . . . . . . . . 89

6.4.1 Bounded scope repeated reachability . . . . . . . . . . . . . . . . . . . . . 89
6.4.2 LTL Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Adjacent ordered MPDS 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Adjacent ordered multi-pushdown system . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Reachability on AOMPDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.2 Hardness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 LTL Model Checking on AOMPDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 Applications of AOMPDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4.1 An application to Recursive Queuing Concurrent Programs . . . . . . . . 114
7.4.2 An application to bounded-phase reachability . . . . . . . . . . . . . . . . 115

7.5 Adjacent ordered restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Accelerations on multi-pushdown systems 121
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2.1 Properties of rational languages . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2.2 Context-Bounding as an acceleration problem . . . . . . . . . . . . . . . 123
8.2.3 Accelerating Loops: Case of regular/rational sets . . . . . . . . . . . . . . 125
8.2.4 Constrained Simple Regular Expressions . . . . . . . . . . . . . . . . . . . 131

8.3 Acceleration of Bounded-Context-Switch Sets . . . . . . . . . . . . . . . . . . . . 138
8.3.1 Constrained Rational Languages . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Parity games on MPDS 149
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.1 Some useful results on parity games . . . . . . . . . . . . . . . . . . . . . 151
9.2.2 Parity games on pushdown system . . . . . . . . . . . . . . . . . . . . . . . 154

9.3 Bounded phase parity games on MPDS . . . . . . . . . . . . . . . . . . . . . . . 154
9.4 Decidability of bounded phase parity games . . . . . . . . . . . . . . . . . . . . . 155

9.4.1 Decidability of 1-phase game . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.4.2 Decidability of k phase game . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.5 Lower bounds for bounded phase parity games . . . . . . . . . . . . . . . . . . . 162



CONTENTS 9

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10 Discussion 169



10 CONTENTS



Chapter 1

Introduction

In the digital age of internet, mobile computing and cloud computing, the need for develop-
ing and quickly deploying complex communicating programs have become an order of the
day. With increasing dependency on automated medical equipments, aeroplanes, automo-
bile and financial transactions, the need to check for correctness of programs ( also referred
to as systems) has gained significance. There are various interesting properties against which
one might want to verify such systems. As an example, consider a train that has automated
opening and closing of its doors. One may wish to ensure that the door never opens when
the train is moving or that the door only opens on the side where a platform is available.

The most extensively used method to ensure correctness of programs is testing. However,
while a cleverly constructed set of tests may expose bugs, one cannot obtain a correctness
guarantee through this technique. Furthermore testing often fails to find bugs in the concur-
rent setting where a bug may manifest itself only in the rarest of rare executions (Heisenbugs
[74]). Formal verification is an alternative technique which establishes the correctness of a
program with respect to specifications in a mathematically rigorous manner.

Model checking is a formal verification technique that algorithmically explores all possi-
ble system behaviours to check if a given specification holds [53, 57]. The input to the model-
checking problem is usually a mathematical model of the system (there are techniques that
work directly on the code as well, for e.g. [29, 35, 117]) along with a property expressed in a
suitable logic. Examples of such logic are LTL [123] used for specifying properties that each
run of the program should satisfy, and CTL [108] for reasoning about the structure of the en-
tire collection of runs of the program.

The models used in model checking can either be finite or infinite. While an accurate
modelling of software system usually requires infinite models, hardware systems typically
are finite state. One very simple and interesting property is whether a particular state or a
location in the program can be reached. The problem of checking such a property is called
the reachability problem. Safety properties which say that something bad does not happen
can be reduced to the reachability problem. On the other hand, liveness properties which say
that something good will eventually happen, require examining infinite runs. An important
problem in this setting is the repeated reachability problem, which asks if a particular state or
a program point can be visited infinitely often. A solution to this is often the key to solving

11



12 CHAPTER 1. INTRODUCTION

the model checking problem over infinite behaviours.

A plethora of successful tools for verification of finite state systems have been built e.g.
SPIN [82], SMV model checkers[115]. For finite state systems, checking properties of finite
behaviours can be reduced to elementary graph theoretic properties while that of infinite
behaviours frequently relies on results from the theory of finite state automata over infinite
words (and other structures).

Infinite state systems arising from programs are Turing powerful and hence the verifica-
tion problem is undecidable. The infiniteness arises for a variety of reasons. For e.g.

1. Variables taking values from unbounded or infinite data domain.
2. Recursion: Programs in which procedures can be called recursively can potentially have

an unbounded call stack.
3. Heap: Another source of infiniteness that can occur in a program is due to data structures

that use dynamically allocated store. See for eg. [5, 113, 127, 128]
4. Programs may deal with real time and continuously evolving variables. See for eg. [10, 11,

120].

In the recent years several techniques have been proposed to circumvent this undecidability,
by either considering restricted subclasses of systems (under-approximation) or by relaxing
the possible behaviours of the systems (over-approximations). The results in this thesis are
along these lines.

Concurrency and communication add a different dimension to the problem. Consider
a system with a number of finite state components communicating through shared mem-
ory or rendezvous. Even though the composed system is finite state, the number of states is
exponential in the number of components. This is called the state-explosion problem and
poses the main challenge in the verification of finite state systems. This problem has been
addressed through a variety of techniques such as symbolic model checking [46, 115], Partial
order techniques [145] and so on. When the components are infinite state the verification
problem becomes even undecidable. For example, two recursive programs communicating
with each other through a shared memory or by hand shake can simulate a Turing machine.
Another example, is the case of (even finite state) systems communicating via FIFO channels.
These are Turing powerful as the FIFO channels can easily simulate a tape.

However there are some positive results too. For instance, in the setting of finite state
systems communicating via channels that are lossy the reachability problem becomes decid-
able [7, 8]. The technique used to prove this is based on the theory of well-quasi orders. This
technique has been effectively used in developing analysis techniques for a wide variety of
systems [1, 9, 68, 70, 129]. Another general technique used to extend verification to beyond
finite state systems is that of regular model checking [44, 90, 144]. This technique consists of
representing collections of configurations of the system in a finite manner and manipulating
these representions to reason about the system. Examples of such representations includes
finite state automata, Presburger formulas, semilinear sets and so on. Such techniques have
been used to solve verification problems in pushdown systems [41], processes communi-
cating via FIFO channels [6, 42] and parametrised programs [114]. For a detailed survey on
regular model checking, we refer the readers to [2].



13

Let us take a closer look at the infiniteness caused by recursion. Notice that the state
space in this case remains infinite even if all variables are drawn from a finite data domain.
When all the variables are from a finite data domain the only source of infiniteness is through
recursion. Thus, it has a structure similar to that of a pushdown system and thus can be
modelled as such systems. The theory of pushdown systems is well studied. For instance the
reachability problem, the repeated reachability problems and model checking LTL and CTL
formulas over pushdown systems [41, 83, 143] are all decidable. There are also many tools for
efficiently model checking pushdown systems for e.g. Bebop, Moped [30, 66].

All the results in this thesis are concerned with formal models of programs that consist
of an a priori bounded number of threads or processes that communicate through a shared
memory. These threads/processes may be recursive and hence are themselves of infinite
state space. The natural formal model of the entire system is that of an multi-pushdown
system. Informally, a multi-pushdown system is like a pushdown system except that it is
equipped with multiple stacks. The state of the multi-pushdown system incorporates infor-
mation about the local states of each of the component threads as well as the contents of
the shared memory. There is one stack to model the call stack of each thread. As already
mentioned, even simple problems such as whether a state is reachable, are undecidable for
such systems. Thus, there is no hope of a complete solution. One idea used to circumvent
this problem is under-approximation. The idea is to identify a subset of behaviours and re-
strict the verification only to this subset. An under-approximation is interesting only if the
verification problem when restricted to this subset is decidable and in addition the subset
covers interesting behaviours. There are various under-approximations that are well studied
in literature.

Bounded-context analysis was introduced by [125]. A context-switch occurs when the
automaton switches from accessing one stack to another (or equivalenty when scheduler
switches from one thread to another). Placing an a-priori bound on the number of context-
switches along any run results in decidability of reachability and host of other verification
problems. Such an under approximation technique has proven to be very useful in finding
bugs in real time [118]. It was shown in [95, 105], that checking some of linear time prop-
erties under context-bounded setting can be reduced to checking them on a sequential set-
ting. This lead to using plethora of already available tools for model checking concurrent sys-
tems. Bounded-context technique has also been successfully used in areas outside of multi-
pushdown systems. In [21], a system where multi threaded recursive programs with ability
to dynamically fork new threads were considered. In this paper [21], a variant of bounded-
context restriction was considered. They analysed behaviours of such system in which, for
every process the number of contexts in which it is involved is bounded. In [94], context
bounding was used to obtain a decidable underapproximation of concurrent processes com-
municating via unbounded FIFO channel.

Bounded-phase analysis, which is a generalisation of context switch was introduced in
[97]. A phase can be thought of as a sequence of moves of a multi-pushdown system in which
all pop operations are restricted to a single stack. Now placing an a priori bound on the
number of phases along any run results in decidability for a host of verification problems.
In [45], Ordered multi-pushdown systems were introduced as generalisation of context free



14 CHAPTER 1. INTRODUCTION

grammar and further studied as model for concurrent programs in [16, 14]. In an ordered
multi-pushdown system (OMPDS), there is an inherent ordering on the stacks and in such
systems, only executions involving pop operations from least non-empty stacks are allowed.
In [18, 101, 102], Bounded-scope restriction was studied. In bounded-scope execution, an a
priori bound is placed on the number of times a stack can context-switch before which it has
to become empty.

In this thesis, we extend the work on some of these restrictions: we propose an algorithm
for model checking infinite runs under the bounded-scope restriction. We also propose a
new construction to solve the decidability of parity games under the bounded-phase restric-
tion and establish a matching lower bound. We propose a new restriction called adjacent
ordered restriction and study the model checking problems under this restriction and give
some applications of this model. We also study the analysis of multi-pushdown systems un-
der accelerations i.e. the effect of executing certain sequences of transitions (for e.g. loops)
on the configurations.

The incorporation of both the local states of the components as well as the shared mem-
ory in the state of an multi-pushdown system means that the communication between the
different components is not explicitly represented. This has some disadvantages, for in-
stance, consider the degenerate case, where there are just two threads that do not communi-
cate at all. One should be able to analyse this system, yet they fail to be in any of the classes
mentioned above. We study a more fine grained model where each thread is represented as
a separate pushdown system and all the communication via the shared memory is explicitly
recorded. Even here the two pushdowns can simulate a Turing machine easily. In this set-
ting, we propose a new restriction called stage bounding and study the decidability of model
checking under this restriction. This work relies on the ability to compute certain regular ab-
stractions of pushdown systems and leads us to one other contribution of this thesis: efficient
algorithms for computing abstractions of subclasses of pushdown systems.

We now summarise the contributions of this thesis.

Linear time model checking under bounded scope

Recall that in a bounded-scope execution, an a priori bound is placed on the number of
times a stack can context-switch before which it has to become empty. Reachability prob-
lem for multi-pushdown systems operating under bounded-scope restriction was shown to
be PSPACE-COMPLETE [103]. We first extend the definition of bounded-scope restriction to
infinite executions and prove the following results.

• We show how to obtain an exponential procedure for solving the repeated reachability
problem. The basic idea of our reduction is to reason in a compositional way about thread
interfaces corresponding to the states that are visible at context-switch points. We show
that, when all threads are active infinitely often, the interface of each thread can be de-
fined by a finite-state automaton, and then our problem can be reduced to a repeated state
reachability problem in the composition of these interface automata. In general, to capture
also the case where after some point all threads except one may be stopped, we show that
it suffices to analyse infinite runs of a suitable pushdown system. This gives us an EXPTIME



15

procedure.
• We use the algorithm for repeated reachability to provide an EXPTIME procedure for model

checking an LTL formula on bounded-scope computations of a multi-pushdown system.
Lower bound immediately follows from the fact that model checking LTL formulas against
pushdown system is EXPTIME-COMPLETE.

• We also provide a simple proof of PSPACE hardness for reachability, by reducing the empti-
ness on n-finite state automata to reachability on multi-pushdown system with bounded-
scope restriction.

This is a joint work with M. F. Atig, A. Bouajjani, K. Narayan Kumar and was published in
the proceedings of ATVA 2012 [18].

Adjacent ordered multi-pushdown systems

We introduce a variant of multi-pushdown system called the adjacent ordered multi-
pushdown systems. The restriction imposed by adjacent ordered multi-pushdown system
similar to that in ordered multi-pushdown system, in the sense that it allows pop operations
to happen on the least non-empty stack. Further it allows push operations only on least non-
empty stack or onto stacks immediately adjacent to it. In this model, infinite behaviours may
involve infinitely many contexts involving more than one stack as in the case of bounded-
scope or ordered multi-pushdown system. This model can also transfer the contents of one
stack to another (adjacent) stack. Such a transfer is possible in OMPDS and bounded-phase
restrictions but not in the others.

• We show that reachability an adjacent ordered multi-pushdown system is EXPTIME-
COMPLETE. This is significantly better than 2ETIME complexity required for solving reach-
ability on multi-pushdown with bounded-phase restriction and ordered-multi pushdown
systems.

• We also show that the repeated reachability problem is EXPTIME-COMPLETE. Using the al-
gorithm for repeated reachability, we show how to obtain a procedure for model checking
LTL formulas.

• We also show some applications that illustrate the power of this model.

– We show that reachability in recursive programs communicating via queues, whose con-
nection topology is a forest, can be reduced to reachability on adjacent ordered multi-
pushdown system.

– We also show how to obtain a procedure for solving bounded-phase reachability of a
multi-pushdown system, by showing an exponential time reduction to reachability on
adjacent ordered multi-pushdown system.

This is a joint work with M. F. Atig and K. Narayan Kumar and was published in the pro-
ceedings of DLT 2013 [25]. An extended version was selected and published in a special issue
of IJFCS [26]



16 CHAPTER 1. INTRODUCTION

Acceleration

In the global model checking problem the aim is to compute from (a representation of) the
set of initial configurations (I ) (a representation of) the set of configurations reachable from I
(denoted post∗(I )). Note that our description of global model-checking does not require that
the representations of the initial set I and the reachable set post∗(I ) be the same. However,
if both sets use the same description, then we say that the representation is stable. Stability
is an useful property as it permits us to compose (and hence iterate finitely) the algorithm.

A well known technique used in the verification of infinite state systems is that of loop
accelerations. It is similar in spirit to global model checking but with different applications.
The idea is to consider a loop of transitions (a finite sequence of transitions that lead from a
control state back to the same control state). The aim is to determine the effect of iterating
the loop. That is, to effectively construct a representation of the set of configurations that
may be reached by valid iterations of the loop. Loop accelerations turns out to be very useful
(e.g., [13, 31, 32, 33, 37, 38, 39, 43, 68, 69, 88, 89, 109, 110]) in the analysis of a variety of infinite
state systems.

We propose to use accelerations as an under-approximation technique in the verification
of MPDSs. We take this further by proposing a technique that composes the iterations of
such loops with context bounded runs to obtain a new decidable under-approximation for
MPDSs. Observe that there is no bound on the number of context switches under loop itera-
tions while a context bounded run permits unrestricted recursive behaviours, not permitted
by loop iterations, thus complementing each other.

• We showing that both regular sets as well as rational sets of configurations are stable w.r.t.
bounded-context acceleration.

• We show that under iterations of a loop (a finite sequence of transitions that lead from a
control state back to the same control state), the acceleration of a regular set of transitions
is always rational while that of a rational set need not be rational.

• We then propose a new representation for configurations called n-CSRE inspired by the
CQDDs [43] and the class of bounded semilinear languages [49]. Then, we show that n-
CSREs are indeed stable w.r.t iteration of loops. This result also has the pleasant feature that
the construction is in polynomial time. However, n-CSREs are not stable w.r.t bounded-
context executions.

• We then introduce a joint generalization of both loop iterations and bounded-context ex-
ecutions called bounded context-switch sets. We show that the class of languages defined
by n-dimensional constrained automata (the most general class considered here and a n-
dimensional version of Parikh automata) is stable w.r.t accelerations via bounded context-
switch sets. Since membership is decidable for this class, we obtain a decidability of reach-
ability under this generous class of behaviours.

This is joint work with M. F. Atig and K. Narayan Kumar and will appear in the proceedings
of TACAS 2016.



17

Systems communicating explicitely via shared memory

We adopt a formal model that consists of a network of processes with a shared store ranging
over a finite domain. Each of these processes can be a pushdown system, an one-counter
system or simply a finite-state system. Each of these processes may perform reads and writes
on the shared store. In [64, 96], the problem of parametrised reachability over such models
were considered and was shown to be decidable. The parametrised reachability problem asks
whether there is a number k such that k identical pushdown systems can co-operate to reach
a given control state. Interestingly, the problem is undecidable for a fixed set of processes.
We study the reachability on such system. We show that two 1-counter systems sharing only
one bit memory are able to simulate any 2-counter machine.

We then restrict the way information flows through the shared memory. The idea we con-
sider is the following: For each computation, consider a decomposition into what we call
stages, where in each stage only one process is unrestricted while all the others are only al-
lowed to read. Then, we only consider computations up to some fixed bound on the number
of stages. Notice that this notion of bounding called the stage-bounding, does not restrict the
way stacks and counters are accessed. It is rather imposing that writes by different processes
to the shared memory cannot interleave in an unbounded manner (while reads are allowed
to interleave unboundedly with any kind of operations from any process). The notion stage-
bounding is somehow inspired by the notion of context-bounding. However, it is clear that
stage-bounding is strictly more general than context-bounding in term of behavior coverage.
This is due to the fact that operations (reads and writes) by different processes can alternate
unboundedly within one single stage.

• For networks of finite-state systems, we prove that the stage-bounded analysis is NP-
complete (while the unbounded analysis is PSPACE-complete as mentioned earlier). So,
stage-bounded analysis in this case has the same complexity as context-bounded analysis,
while it offers more coverage.

• We show that for systems with precisely two pushdown systems the complexity of stage-
bounded analysis is (at least) non-primitive recursive. The decidability in this case is actu-
ally still an open problem.

• We prove that for two pushdown systems and one 1-counter system the state reachability
problem under stage-bounding is undecidable.

• We prove that for networks with at most one pushdown system and any number of 1-
counter systems, stage-bounded analysis is decidable, and we show that it is in NEXPTIME,
while it is PSPACE-hard. We establish this decidability result by a non-trivial reduction to
the state reachability problem for pushdown systems with reversal-bounded counters (i.e.,
counters where the number of ascending and descending phases is bounded) [84]. Such a
reduction uses the ability to compute downard/upward closures of languages of pushdown
systems and one counter systems.

This is a joint work with M. F. Atig, A. Bouajjani, and K. Narayan Kumar and published in
proceedings of FSTTCS 2014 [20].



18 CHAPTER 1. INTRODUCTION

Regular abstractions of one counter automata

We then look at closures on languages of counter automata. A very well known result, the
Higman’s Lemma , states that any upward closed language has only finite number of minimal
elements under the subword relation. As an easy consequence we have that every upward
closed language is regular and consequently every downward closed language is regular as
well. The downward and upward closures of context free languages are effectively regular
and the minimal size of finite state automatas recognising these closures are exponential in
size.

• We show that for the counter systems which are subclass of pushdown systems, the upward
and downward closures can be computed in POLYNOMIAL-TIME and the resulting automata
are POLYNOMIAL in size. The construction for the downward closure is quite involved.

Another abstraction is that of parikh images. The parikh image of a word is a vector that
assigns to each letter a natural number giving the number of times it occurs in the word. A
parikh image of a language is the collection of the parikh image of the words in the language.
A famous theorem of R. Parikh shows that for every context-free language there is a regular
language with the same Parikh Image. Parikh images of context-free/regular languages can
also be represented using existential presburger formulas. Parikh images have been used as
an important regular abstraction in the model checking of infinite state systems [23, 60, 130].

It is known that for context-free languages the size of the smallest NFA that is Parikh
equivalent may be exponential in the size of the PDA or CFG describing the given language.

• Every one counter automaton has a Parikh equivalent NFA which is subexponential in size.
The proof of this result is involved and proceeds by showing a reduction first to Parikh im-
ages of reversal bounded one counter automata and then showing that these can be con-
verted to sub-exponential sized Parikh equivlanet NFA.

This is a joint work with M. F. Atig and K. Narayan Kumar and is part of the paper [67]. The
paper [67] also includes results proved by D. Chistikov, P. Hofman and G. Zetzsche.

Parity games on bounded-phase multi-pushdown systems

We then consider the problem of solving parity games over a multi-pushdown systems with
bounded-phase restriction. The problem of solving parity games on multi-pushdown sys-
tems was first studied by A. Seth in [133]. He showed how to obtain a NON-ELEMENTARY

decision procedure to solve the problem.

• We provide a simple inductive construction to solve this problem. Our procedure is also
has non-elementary complexity.

• We also provide a non-elementary lower bound to the problem by reducing the satisfiability
of formulas in first order logic with order (FO(<)) over natural numbers to this problem.
This answers a question posed by Anil Seth.

This is a joint work with M. F. Atig, A. Bouajjani and K. Narayan Kumar.



Chapter 2

Preliminaries

In this section, we fix some basic definitions and notations that will be used in the entire
thesis. We assume here that the reader is familiar with language and automata theory in
general.

Notations Let N denote the non-negative integers. For every i , j ∈N such that i ≤ j , we use
[i . . . j ] to denote the set {k ∈N | i ≤ k ≤ j }.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σω) the set of all finite (resp. infinite)
words over Σ, and by ε the empty word. Let u be a word over Σ. We use uR to denote the
reverse of the word u. The length of u is denoted by |u|; we assume that |ε| = 0 and |u| =ω if
u ∈Σω. For every j ∈ [1 . . . |u|], we use u[ j ] to denote the j th letter of u and u[i . . . j ] to denote
the sequence starting at i and ending at j . Given any word w ∈Σ∗, we say u =suffix w iff u is a
suffix of w .

Let S be a set of (possibly infinite) words over the alphabet Σ and let w ∈ Σ∗ be a
word. We define w.S = {w.u | u ∈ S}. We define the shuffle over two words induc-
tively as Shuffle(ε,w) = Shuffle(w,ε) = {w} and Shuffle(a.u′,b.v′) = a.(Shuffle(u′,b.v′)∪
b.(Shuffle(a.u′,v′). Given two sets (possibly infinite) of words S1 and S2 (over Σ), we define
shuffle over these sets as Shuffle(S1,S2) = ⋃

u∈S1,v∈S2
Shuffle(u,v). The Shuffle operator

for multiple sets can be extended analogously.

We say that a word w over the alphabet Σ is a subword of a word w ′ if w = a1 . . . an and
there are xi ∈ Σ∗, 1 ≤ i ≤ n + 1 such that if w ′ = x1a1x2a2 . . . xn an xn+1. We write w ¹ w ′ to
indicate this. It is easy to check that the subword relation is a partial order.

The downward closure of a language L ⊆Σ∗ is the language L↓= {w | w ¹ w ′, for some w ′ ∈
L}. Similarly the upward closure of a language L ⊆ Σ∗ is the language L↑= {w | ∃w ′ ∈ L. w ′ ¹
w}. A language L is upward closed if L = L↑ and it is downward closed if L = L↓. Clearly a
language L is upward closed iff its complement L is downward closed.

For any alphabet Σ = {a1, · · · , an}, given a word w ∈ Σ∗, the parikh image of w denoted
Parikh(w) is a vector v ∈ N|Σ|, where v = (|w ↓a1 |, |w ↓a2 |, · · · , |w ↓an |) is a vector that counts
the number of each occurrences of letters from Σ in w . The parikh image of a language
Parikh(L) = {Parikh(w) | w ∈ L}

19



20 CHAPTER 2. PRELIMINARIES

Finite-State Automata A finite-state automaton is a tuple A = (Q,Σ,∆, q0,F ) where: (1) Q is
the finite non-empty set of states, (2) Σ is the input alphabet, (3) ∆⊆ (Q × (Σ∪ {ε})×Q) is the
transition relation, (4) q0 ∈Q is the set of initial states, and (5) F ⊆Q is the set of final states.
The language of finite words accepted (or recognized) by A is denoted by L(A). We may also
interpret the set F as a Büchi acceptance condition, and we denote by Lω(A) the language of
infinite words accepted by A. The size of A is defined by |A| = (|Q|+|Σ|+|∆|). For any transition
τ = (q, a, q ′) ∈ ∆, we let Σ(τ) = a, i.e. the input letter of the transition. Given a sequence of
transition T = τ1.τ2 · · ·τn , we let Σ(T ) =Σ(τ1).Σ(τ2). . . . .Σ(τn)

Pushdown-automata A pushdown automata (PDA) is a tuple A = (Q,Γ,Σ,δ, s,F ) where Q
is the set of states, Γ is the stack alphabet with a special symbol ⊥ to facilitate empty test
on the stack, Σ is the tape alphabet, s ∈ Q is the initial state, F ⊆ Q is set of final states and
δ is the transition relation. The transition set δ is a subset of Q × Op ×Σε ×Q with Op =⋃

a∈Γ\{⊥}{Push(a)∪Pop(a)}∪ {Zero,Int}

The configuration of PDA A is a pair (q,γ) with q ∈ Q and γ ∈ (Γ \ {⊥})∗⊥. The initial
configuration is the pair cini t = (s,⊥). Given any configuration c = (q,γ), we will use State(c) =
q and Stack(c) = γ to retrieve the state and stack part of the configuration. The transition
relation

a→A , ( or
τ→ when we are interested in the transition used) , a ∈ Σ, on the set of

configurations is defined as follows:

1. (q,αγ)
a→A (q ′,γ) if τ= (q,Pop(α), a, q ′) ∈ δ. Pop move.

2. (q,γ)
a→A (q ′,βγ) if τ= (q,Push(β), a, q ′) ∈ δ. Push move.

3. (q,γ)
a→A (q ′,γ) if τ= (q,Int, a, q ′) ∈ δ. Internal move.

4. (q,⊥)
a→A (q ′,⊥) if τ= (q,Zero, a, q ′) ∈ δ. Emptiness test.

We will use −→∗ to denote the reflexive and transitive closure of →. Given a set of con-
figurations C , we use L(A,C ) to denote the set of words w such that (s,⊥) w−−→∗

c, for some
c ∈ C . Given two configurations c1,c2, we use L(A,c1,c2) to denote the set of words w such
that c1

w−−→∗
c2. We will use L(A) to mean

⋃
f ∈F L(A, ( f ,⊥)).

An infinite computation is said to satisfy Büchi acceptance condition if it visits a state in
F infinitely often. We will use c

w→ω . . . to denote the existence of an infinite run starting at
c, which generates w , i.e. a computation of the form c a1−−→c1

a2−−→·· · , where w = a1a2 · · · . We
will use Lω(A) to denote set of all infinite words generated by infinite computations satisfying
Büchi condition i.e. Lω(A) = {w | ∃π= c0

w→ω ∧∃∞i ∈N,State(π(i )) ∈ F }

When size of stack alphabet |Γ| = 1, we will refer to pushdown automata as a counter
automata, further we will simply refer to Push(a),Pop(a), a ∈ Γ as Inc,Dec in the counter
automata. In this case, we will also refer to number of elements in stack as value of the
counter. When ever we are not interested in the input alphabet, we will refer to the push-
down automata as pushdown system ( similarly counter automata as counter system). In
such a pushdown system, we will omit the reference to Σ and let A = (Q,Γ,δ, s,F ), and let the
transition relation be δ⊆Q ×Op×Q. When we are not interested in the set of final states, we
will omit it and simply refer to such pushdown systems as A = (Q,Γ,Σ,δ, s).



21

Multi-counter system An n counter system is a tuple C = (n,Q,δ, q0,F ) where Q is finite
non-empty set of states, q0 ∈Q is the initial state, F ⊆Q is set of final state and δ⊆Q ×op×Q
is transition relation, where op =⋃

i∈[1..n]{Inci ,Deci ,Zeroi }. The configuration of the counter
system C is given by a tuple (q, v1, v2, · · · , vn), where q ∈ Q, v1, v2, · · · , vn ∈ N. The initial
configuration Ci ni t is given by (q0,0n) and set of final configurations is given by C f i nal =
{( f ,u1, · · · ,un) | f ∈ F,u1,u2, · · · ,un ∈ N}. Given two configuration c1 = (q, v1, v2, · · · , vn) and
c2 = (q ′,u1,u2, · · · ,un), we say c1

τ−→c2 iff one of the following holds.

• τ= (q,Inci , q ′) ∈ δ, for some i ∈ [1..n] , ui = vi +1 and for j 6= i , u j = v j

• τ= (q,Deci , q ′) ∈ δ, for some i ∈ [1..n] , ui +1 = vi and for j 6= i , u j = v j

• τ= (q,Zeroi , q ′) ∈ δ, for some i ∈ [1..n] , ui = vi = 0 and for j 6= i , u j = v j

We say a sequence c1τ1c2τ2 · · ·cn is a computation of C iff for all i ∈ [1..n −1], ci
τi−−→ci+1.

We will sometimes refer to such a computation sequence as c1
τ1−−→c2

τ2−−→·· · τn−1−−−→cn . The
reachability problem for n-counter system asks whether there is a valid computation from the
initial configuration to one of the final configurations. It is well known that the reachability
problem for even two counter systems is undecidable. We will let δi

Inc = δ∩Q × {Inci }×Q
and δInc =⋃

i∈[1..n]δ
i
Inc, we will define δi

Dec, δi
Zero, δZero and δDec analogously. We will also let

δi = δi
Zero ∪δi

Inc ∪δi
Dec.

n-tape finite state automata A n-tape finite state automaton over Σ1, . . . ,Σn is defined
as A = (Q,Σ1, . . . ,Σn ,δ, q0,F ) where Q is a finite set of states, q0 is the initial state, F is
the set of final states, and δ ⊆ (Q × (Σ1 ∪ {ε}) × ·· · × (Σn ∪ {ε}) × Q), is the transition re-
lation. A run π of A over a n-dim word w over Σ1, . . . ,Σn is a sequence of transitions
(q0,u1, q1), (q1,u2, q2), . . . , (qn−1,un , qn) ∈ δ such that w = u1u2 · · ·un . The run π is accepting if
qn ∈ F . The language of A, denoted by L(A), is the set of n-dim words w for which there is an
accepting run of A over w . A n-dim language is rational if it is the language of some n-tape
automaton [34]. Observe that 1-tape automata are the standard finite-state automata.

An interesting subclass of rational languages are what are called recognizable or regular
languages. A n-dim language L is regular if it is a finite union of products of n rational 1-dim
languages (i.e. L = ⋃m

j=1 L( j ,1) × ·· · × L( j ,n) for some m ∈ N where L( j ,i ) is an 1-dim rational
language over Σi ). Observe that if n = 1 rational and regular languages are the same. The
language {(ai ,bi ) | i ≥ 0} is an example of a rational language that is not regular.



22 CHAPTER 2. PRELIMINARIES



Chapter 3

Shared memory systems

3.1 Introduction

In this chapter, we will introduce a model called the shared-memory concurrent pushdown
systems. Informally it is a network of processes with a shared store ranging over a finite do-
main. Each of these processes can either be a pushdown system, a counter system or simply a
finite state system. Each of these processes can perform reads and writes to the shared store.
We study the reachability problem in the model. First we will prove that in order to get decid-
ability, restricting only the data domain is not enough. Indeed, we show that two 1-counter
system communicating via an one bit store are able to simulate any 2-counter machine.

We then restrict the way information flows through shared memory. The idea we consider
is the following: For each computation, consider a decomposition into what we call stages,
where in each stage only one process is unrestricted (i.e. allowed to read and write) while all
the others are only allowed to read. Then, we only consider computations up to some fixed
bound on the number of stages. Notice that this notion of bounding, called stage-bounding,
does not restrict the way stacks and counters are accessed. It is rather imposing that writes by
different processes to the shared memory cannot interleave in an unbounded manner (while
reads are allowed to interleave unboundedly with any kind of operations from any process).
The results we establish in this chapter are as follows.

We consider network of finite state systems and show that reachability under stage
bounded restriction in this case is NP-COMPLETE (while in the unbounded case it is PSPACE-
COMPLETE ). So the stage bounded analysis in this case has the same complexity as context-
bounded analysis but offers more coverage. However considering networks with just two
pushdown makes stage-bounded analysis much harder. We show that precisely with two
pushdown systems, the complexity of stage bounded analysis is (at least) non-primitive re-
cursive. The decidability in this case is still an open problem. We prove that for two pushdown
and one counter system, the state reachability problem under stage-bounding restriction is
undecidable. On the other hand, we will prove that for networks with at most one pushdown
system and any number of counter systems, stage bounded analysis is decidable and is in
NEXPTIME while it is PSPACE hard. We establish this decidability result by a non-trivial reduc-
tion to the state reachability problem for pushdown systems with reversal bounded counters.

23



24 CHAPTER 3. SHARED MEMORY SYSTEMS

Several bounding concepts have been considered in the literature in the last few years
such as context-bounding and phase-bounding [98]. Stage-bounded analysis strictly gen-
eralizes context-bounded analysis, while it is incomparable with phase-bounding which is
based on restricting accesses to stacks (i.e., push and pop operations by different processes
in each phase) rather than restricting accesses to the shared memory. Another work based on
restricting the access to stacks is for instance scope bounding [100]. Again, the results there
are incomparable with those we present here.

In [24], acyclic networks of communicating pushdown systems are considered. While
such an acyclic network can encode computations within one stage (since in a stage infor-
mation flows unidirectionally from the writer to all other processes), it has been shown that
switching once between acyclic communication topologies in a network is enough to get un-
decidability [27]. In contrast, our main result show a case where information flow can be
redirected any finite number of times.

In [77, 64], networks of pushdown systems with non-atomic writes are considered.
Atomic read-writes cannot be implemented in that model, which means that only a weak
form of synchronization is possible. It is shown that for a fixed number of processes the
reachability problem is undecidable, while in the parametrized case the problem becomes
decidable [77] and is PSPACE-complete [64]. In contrast, our results hold even for the case
where atomic read-writes are allowed and show a decidable case for a fixed number of pro-
cesses. The parametrized case in the context of our stage-bounded analysis is still open and
cannot be reduced to the problem considered in [77, 64].

3.2 Shared memory concurrent pushdown System

Definition 1. A Shared-memory concurrent pushdown System (SCPS) over a set of memory
values M is a tuple (I,P,m0) where I is a finite set of indices and P = {Pi | i ∈ I} is an I-indexed
collection of pushdown systems Pi = (Qi ,Γi ,OM ,δi , si ). The tape alphabet OM = {!m,?m | m ∈
M} where !m denotes writing the value m to the shared memory while ?m refers to reading the
value m from the shared memory. The value m0 ∈ M is the initial memory value.

A configuration of a SCPS (I,P,m0) over M is a triple (q ,γ,m) where q assigns an element
of Qi to each i ∈ I, m ∈ M is the contents of the shared memory andγ assigns an element of ((Γi \
{⊥})∗ · {⊥}) to each i ∈ I such that (q(i ),γ(i )) is a configuration of Pi . The initial configuration
of the system is the triple (s,⊥⊥⊥,m0) where for each i , (s(i ),⊥⊥⊥(i )) is the initial configuration of
Pi .

The transition relation
op→i , op ∈ OM , i ∈ I,τ ∈ δi , relating configurations of the SCPS is

defined as follows: (q ,γ,m)
op→i (q ′′′,γ′′′,m′′′) iff (q(i ),γ(i ))

op→ (q ′′′(i ),γ′′′(i )), (q( j ),γ( j )) = (q ′′′( j ),
γ′′′( j )) for j 6= i and further one of the following holds

1. op = ?m and m′′′ = m (a read operation)
2. op = !m′′′ (a write operation)

We write
op→ (or simply

op→) for
⊎

i∈I
op→i . This naturally extends to a relation w−−→∗

for w ∈ O∗
M ,

σ ∈ (δ = ∪i∈Iδi )∗. We write (q ,γ,m)−→∗(q ′′′,γ′′′,m′′′) if there is some w ∈ O∗
M such that (q ,γ,

m) w−−→∗
(q ′′′,γ′′′,m′′′).



3.2. SHARED MEMORY CONCURRENT PUSHDOWN SYSTEM 25

In this chapter, we will call the pushdown systems in an SCPS as a counter if |Γ \ {⊥}| = 1
and refer to it as a finite state system (FSS) if |Γ\ {⊥}| = 0

Remark: Communication via shared memory is unreliable. This is because, the reader may skip some

of the values (lossiness) while reading some values multiple times (stuttering). It is easy to eliminate

stuttering errors, using a unidirectional protocol . The writer, writes a delimiter between every adjacent

pair of values. The reader only reads values separated by such a delimiter. i.e. an unused symbol (say $)

is added to the set of possible memory values. Now, instead of writing a sequence m1,m2, . . . ,mk to the

memory, the writer writes the sequence m1,$,m2,$, . . .mk ,$. The reader also expects a $ between every

alternate value and hence avoids stuttering errors. Eliminating lossiness would require acknowledge-

ments from the reader.

3.2.1 The Reachability Problem for SCPS

Given a SCPS (I,P,m0) and a configuration (q ,γ,m), reachability problem asks whether (s,⊥⊥⊥,
m0)−→∗(q ,γ,m). Unfortunately, this problem is undecidable. Infact it is undecidable even if
we allow the memory to be of size one bit.

Theorem 1. The reachability problem for SCPS is undecidable even when |M | = 2, |I| = 2 and
both the pushdown systems in P are counter systems.

Proof. The idea is to reduce reachability on a two counter system to reachability on SCPS. We
will first describe the proof idea before formalising the same. Fix a 2-counter machine C = (2,
Q,δ, q0,F ). We construct a SCPS A = ([1,2], {P1,P2},0) over memory values [0,1]. We will refer
to P1,P2 as master and slave respectively. The master simulates the control state of A as well
as the value of the counter 1. The job of the slave is to maintain the value of the counter 2.
Quite clearly the master can simulate any move that does not involve counter 2. In order to
simulate the moves on counter 2 the master communicates with the slave through the shared
memory. We show that it is possible for the master to communicate, unambiguously, a value
from the set {1,2,3} to the slave, standing for increment, decrement and test for zero respec-
tively and also obtain a confirmation from the slave if it is able to complete the operation
successfully. First we show how the master may communicate a single value from {1,2,3} and
then extend it to sequences of such values.

Assume that the memory contains the value 0. To communicate the value i ∈ {1,2,3}
the master carries out the sequence of operations (!1?0)i .(?1!0)i on the memory. The slave
guesses the value j being sent and executes a sequence of the form (?1!0) j .(!1?0) j . There are
three possibilities and we analyze each of them:

1. i = j . In this case there is exactly one successful interleaving of the two sequences and
it is of the form (!1m?1s !0s ?0m)i .(!1s ?1m !0m?0s)i (where, the component involved in the
memory operation is marked as a subscript). Further it leaves the memory with the value
0.

2. i < j . In this case, the interleaved runs reaches a deadlock after a sequence of the from
(!1m?1s !0s ?0m)i where both components wait for the other one to write the value 1 to
proceed further.



26 CHAPTER 3. SHARED MEMORY SYSTEMS

3. i > j . In this case, the interleaved runs reaches a deadlock after a sequence of the from
(!1m?1s !0s ?0m)i (!1m !1s + !1s !1m) and both components wait for the other one to write the
value 0 to proceed further.

Since all unsuccessful runs deadlock, it follows that the protocol can be repeated for any se-
quence of values and the system will either deadlock or succeed in communicating the se-
quence correctly to the slave. Finally, handling the confirmation from the slave to the master
is also easy. After guessing the next operation the slave attempts to carry out the operation
and only on success does it enter the protocol described above. We will now give the detailed
construction of P1 = (Q1, {a,⊥},ΣM ,δ1, q0) and P2 = (Q2, {a,⊥},ΣM ,δ2, p0). The process P1 is
described below

• The states of P1 are given by Q1 = Q ∪ (Q × S1) where S1 = {w | ∃i ∈ [1 . . .3],
w is a suffix of (!1?0)i .(?1!0)i }

• The input alphabet is given by ΣM = {?0, !0,?1, !1}
• The initial state of P1 is q0 which is also the initial state of our two counter system
• The transition relation δ1 is defined as below.

a.1 For all q, q ′ ∈ Q, if (q,Zero1, q ′) ∈ δ, then we have (q,Zero,ε, q ′) ∈ δ1. This transition
simulates the zero test on counter-1.

a.2 For all q, q ′ ∈Q, if (q,Inc1, q ′) ∈ δ, then we have (q,Push(a),ε, q ′) ∈ δ1. This transition
simulates the increment on counter-1.

a.3 For all q, q ′ ∈ Q, if (q,Dec1, q ′) ∈ δ, then we have (q,Pop(a),ε, q ′) ∈ δ1. This transition
simulates the decrement on counter-1.

a.4 For all q, q ′ ∈ Q, if (q,Zero2, q ′) ∈ δ,then we have (q,Int, !1, (q ′, (?0).(?1!0))) ∈ δ1. This
transition is added to start communicating with slave process to perform a zero test
on its counter.

a.5 For all q, q ′ ∈ Q, if (q,Inc2, q ′) ∈ δ,then we have (q,Int, !1, (q ′,?0(!1?0)1.(?1!0)2)) ∈ δ1.
This transition is added to start communicating with slave process to perform a incre-
ment move on its counter.

a.6 For all q, q ′ ∈ Q, if (q,Dec2, q ′) ∈ δ,then we have (q,Int, !1, (q ′,?0(!1?0)2.(?1!0)3)) ∈ δ1.
This transition is added to start communicating with slave process to perform a decre-
ment move on its counter.

a.7 For all q ∈ Q, a ∈ ΣM , w ∈ Σ∗
M , we add ((q, a.w),Int, a, (q, w)) ∈ δ1. These transitions

are added to enable series of communication with slave process through the shared
memory operations.

a.8 For all q ∈Q, we add ((q,ε),Int,ε, q) ∈ δ1. These transitions are fired only on successful
completion of communication with slave process (without deadlocking).

The process P2 is described below

• The states of P2 are given by Q2 = {p0} ∪ S2, where S2 = {w | ∃ j ∈ [1 . . .3],
w is a suffix of (?1!0) j .(!1?0) j }

• The initial state of P2 is p0

• The transition relation δ1 is defined as below.
In the following set of transitions, slave guesses the operation that master process wants
it to perform and moves to state that executes the appropriate protocol after performing



3.2. SHARED MEMORY CONCURRENT PUSHDOWN SYSTEM 27

that operation.

b.1 (p0,Zero,?1, ((!0).(!1?0))) ∈ δ2

b.2 (p0,Push(a),?1, (!0(?1!0)1.(!1?0)2)) ∈ δ2

b.3 (p0,Pop(a),?1, (!0(?1!0)2.(!1?0)3)) ∈ δ2

b.4 For all a ∈ΣM , w ∈Σ∗
M , we add ((a.w),Int, a, (w)) ∈ δ2

b.5 We also add (ε,Int,?0, p0) ∈ δ2, this transition is fired on successful completion of com-
munication with master process.

The correctness of such a construction follows from the following lemma which relates
the runs of the SCPS A constructed with the runs of the two counter system C .

Lemma 1. (q0,0,0)−→∗
C (q, v1, v2) iff ((q0, p0), (⊥,⊥),0)−→∗((q, p0), (av1⊥, av2⊥),0).

With Lemma 1 in place, it is easy to see that reachability of a two counter system C reduces
to reachability on SCPS A. This will also complete the proof of Theorem 1. We will now prove
Lemma 1, which is not very difficult to see but some what tedious. For this, we will first
prove the following lemma which states that the protocol followed by the master and the
slave succeeds without deadlocking iff both of them guess a sequence of identical length.

Lemma 2. ((q,?0(!1?0) j−1.(?1!0) j ), (!0(?1!0)k−1.(!1?0)k ), an1⊥, an2⊥),1)−→∗((q,ε),ε), an1⊥,
an2⊥,0), for some x ∈ [0,1] iff j = k.

Proof. We first prove that for case where j = k, we have a successful run. Let µ :ΣM 7→ΣM be
a function such that µ(?x) =!x and µ(!x) =?x for any x ∈ [0,1]. Such a function can easily be
extended to a sequence w ∈ Σ∗

M . We note that µ(?0(!1?0) j−1.(?1!0) j )) = (!0(?1!0) j−1.(!1?0) j ).
We now prove that for any ((q, w1), w2, an1⊥, an2⊥, y), such that w1 = µ(w2) and wi ∈ Si , we
have ((q, w1), w2, an1⊥, an2⊥, y)−→∗((q,ε),ε, an1 , an2 ,0).

Claim 1. For any w1 ∈ S1, w2 ∈ S2 such that w1 = µ(w2), we have ((q, w1), w2, an1⊥, an2⊥,
y)−→∗((q,ε),ε, an1 , an2 ,0)

Proof. We prove this inducting on length of w1 and w2

For base case, we consider w1 =!0 and w2 =?0 (note that the only words of length 1 in
S1 =!0 and S2 =?0). By construction, for all q ∈ Q, we have τ1 = ((q, !0),Int, !0, (q,ε)) ∈ δ1 and
τ2 = (?0,Int, ?0,ε) ∈ δ2. From this it is easy to see that ((q, !0), ?0, an1⊥, an2⊥, y)−→∗((q,ε),ε, an1 ,
an2 ,0), by applying τ1 followed by τ2 transitions.

Case where |w1| = |w2| > 1, w.log we will assume that w1 =?x.w ′
1 and w2 =!x.w ′

2 for x ∈ [0,
1] ( the other case is similar). Clearly ((q, ?x.w ′

1), (!x.w ′
2), an1⊥, an2⊥, y)−→((q, ?x.w ′

1), (w ′
2),

an1⊥, an2⊥, x) since ((!x.w ′
2),Int, !x, (w ′

2)) ∈ δ2. We also have ((q, ?x.w ′
1), (p0, w ′

2), an1⊥, an2⊥,
x)−→((q, w ′

1), (p0, w ′
2), an1⊥, an2⊥, x), since we have ((q, ?xw ′

1),Int, ?x, (q, w ′
1)) ∈ δ1 and the

current memory value is x. Note that w ′
i ∈ Si and |w ′

1| = |w ′
2| < |w1| = |w2|. Hence we can

apply induction hypothesis to get the required run.

We will prove that for cases where j 6= i all possible runs deadlock. Since there are finitely
many ( six cases ) cases to consider, we will analyse each of these cases individually to show
that in each case all possible runs necessarily deadlocks.



28 CHAPTER 3. SHARED MEMORY SYSTEMS

• Case when j = 1, k = 3, we have c = ((q,?0(!1?0).(?1!0)1), (!0(?1!0)2.(!1?0)3), an1⊥, an2⊥),
1). Note that the only possible move enabled here is for P2 to write the value 0
onto memory, since P1 is waiting to read value 0 from memory. Hence we have
c = ((q,?0(!1?0).(?1!0)1), (!0(?1!0)2.(!1?0)3), an1⊥, an2⊥),1) → c1 = ((q,?0(!1?0).(?1!0)1),
((?1!0)2.(!1?0)3), an1⊥, an2⊥),0). Now note that in c1, the only possible move is for P1 to
read the memory value 0 and proceed ( since P2 is waiting on a value 1 ). Hence we have
c1 → c2 = ((q, (!1?0).(?1!0)1), ((?1!0)2.(!1?0)3), an1⊥, an2⊥),0). Now note that the memory
value is 0 and P2 is waiting on value 1. Hence the only possible way to proceed is for P1 to
write a 1, proceeding thus, we get the run c → c1 → c2−→∗((q, (?1!0)1), ((?1!0).(!1?0)3), an1⊥,
an2⊥),0). Now note that both P1 and P2 are waiting on a value 1 and hence they can never
proceed further.

• Case where j = 1,k = 2 and j = 2,k = 3 are similar to the case above.

For the case where k < j , we have the following cases to consider

• Case when k = 1, j = 3 we have c = ((q,?0(!1?0)2.(?1!0)3), !0(!1?0)), an1⊥, an2⊥),1). Notice
that P1 is waiting on reading the value 0 and the current memory value is 1, hence the
only way the run can proceed is by P2 writing a 0 and then P1 reading it. Hence we have
c−→∗c1 = ((q, (!1?0)2.(?1!0)3), (!1?0)), an1⊥, an2⊥),1). Now there are two possible ways to
proceed, either P1 writes a 1 and goes onto waiting on 0, followed by P2 writing a 1 and
going onto wait on value 0 or the other way around. In both cases, both the processes wait
on value 0 and hence deadlocks.

• Case where k = 2, j = 3 and k = 1, j = 2 are similar to the case above.

This completes the proof of Lemma 2

Proof of Lemma 1

Proof. (⇒)
We will prove this by induction on length of the computation. Base case involving zero

length computation is trivial since ((q0, p0), (⊥,⊥),0)−→∗((q0, p0), (⊥,⊥),0).
Suppose we have a run (q0,0,0)−→∗

C (q1, v ′
1, v ′

2) τ−→(q, v1, v2). If τ is any operation on
counter-1, then the proof is trivial since by construction, we added for every transition in
C of the form (q,op1, q ′) ∈ δ where op1 ∈ {Inc1,Zero1,Dec1}, a transition of the form (q,op,
ε, q ′) ∈ δ1 where op ∈ {Push(a),Pop(a),Zero} that can simulate such a move. We will con-
sider τ= (q1,Zero2, q), rest of the cases are similar. Note that since τ succeeds, we have that
v ′

2 = v2 = 0 and v1 = v ′
1.

By induction we have a run π′ = ((q0, p0), (⊥,⊥),0)−→∗((q1, p0), (av1⊥,⊥),0). By construc-
tion, since we have τ ∈ δ, we have the transition (q1,Int, !1, (q, (?0).(?1.!0))) ∈ δ1, (see a.1). We
also have the transition (p0,Int,ε, (!0.(!1.?0))) ∈ δ2, (see b.1). Hence we can extend the run π′

as follows.

((q1, p0), (av1⊥,⊥),0)−→(((q,?0.(?1!0)), p0), (av1⊥,⊥),1) →
(((q,?0(?1!0)), (!0.(!1?0))), (av1⊥,⊥),0).



3.2. SHARED MEMORY CONCURRENT PUSHDOWN SYSTEM 29

From Lemma 2, we can extend such a run to

((q1, p0), (av1⊥,⊥),0)−→(((q,?0.(?1!0)), p0), (av1⊥,⊥),1) →
((q,?0(?1!0)), (!0.(!1?0)), (av1⊥,⊥),0)−→∗((q,ε),ε, av1⊥,⊥,0).

Now, using the transitions from a.8 and b.5 we can complete the run.
(⇐)
Let T = {((q, p0), av1⊥, av2⊥,0) | q ∈Q, v1, v2 ∈N}, note that T that does not involve inter-

mediate states of the form (q, w) in P1 or w in P2 for some w ∈ S1 ∪S2 and q ∈ Q. For this
direction, we will induct on number of time a configuration from set T is seen in the run. Let
us consider the computation

π= ((q0, p0), (⊥,⊥),0)−→∗((q, p0), (av1⊥, av2⊥),0)

For base case, if number of times a configuration from T seen in π is 1, clearly q = q0 and v1 =
v2 = 0 i.e. it is a run of length zero. For induction case, let us consider that the number of times
a configuration seen in the run is greater than 0. Suppose number of times a configuration
from T seen is > 1, then the run can be broken up as

π= c0 = ((q0, p0), (⊥,⊥),0)−→∗c1 = ((q1, p0), (av1
1⊥, av1

2⊥),0)−→∗ · · ·
−→∗cm = ((qm , p0), (avm

1 ⊥, avm
2 ⊥),0)−→∗c = ((q, p0), (av1⊥, av2⊥),0).

Where c0,c1, · · ·cm ,c are all the configurations from T in π.
By induction, we have the runσ= (q0,0,0)−→∗

C (qm , vm
1 , vm

2 ). If the subcomputation ((qm ,
p0), (avm

1 ⊥, avm
2 ⊥),0)−→∗((q, p0), (av1⊥, av2⊥),0), does not involve transitions of P2, then each

such a transition is of type (q,op,ε, q ′) for some op ∈ {Zero,Push(a),Pop(a)} and it can be
simulated by an equivalent transition in the counter system.

Now assume that the π′ involves P2 transitions. Then clearly, the subcomputation ((qm ,
p0), (avm

1 ⊥, avm
2 ⊥),0)−→∗((q, p0), (av1⊥, av2⊥),0) can be expanded as

π′ = c1 = ((qm , p0), (avm
1 ⊥, avm

2 ⊥),0) →
(((q1,?0(!1?0) j−1.(?1!0) j ), p0, (av ′

1⊥, av ′
2⊥),1) →

c2 = (((q1,?0(!1?0) j−1.(?1!0) j ), (!0(?1!0)k−1.(!1?0)k ))), (av ′
1⊥, av ′

2⊥),1)−→∗

c3 = ((q2,ε),ε, (av ′′
1 ⊥, av ′′

2 ⊥),0)−→∗c4 = ((q, p0), (av1⊥, av2⊥),0)

We make the following observations about the computation π′.

• In c1−→∗c4, c1 and c4 are the only configurations from T .
• In c1−→∗c2, involves only transitions form (a.4 or a.5 or a.6) and (b.1 or b.2 or b.3). Hence,

we have vm
1 = v ′

1.
• From lemma-2, we know that k = j
• c2−→∗c3 only involve transitions of the form a.7, b.4, from this we get q1 = q2, v ′′

2 = v ′
2 and

v ′′
1 = v ′

1 since these transitions do not involve stack manipulation.



30 CHAPTER 3. SHARED MEMORY SYSTEMS

• In c3−→∗c4, the transitions a.8 and b.5 are used. Since c1,c4 are only transitions from T ,
there is no transitions of the form (b.1, b.2 and b.3), from this we can conclude that v ′′

2 = v2.

Now we can rewrite π′ as follows.

π′ = c1 = ((qm , p0), (avm
1 ⊥, avm

2 ⊥),0)−→∗

c2 = (((q1,?0(!1?0) j−1.(?1!0) j ), (!0(?1!0) j−1.(!1?0) j ))), (av ′
1⊥, av2⊥),1)−→∗

c3 = ((q1,ε),ε, (av ′
1⊥, av2⊥),0)−→∗c4 = ((q, p0), (av1⊥, av2⊥),0)

We will only consider the case where j = 1 (the other cases are similar) and show how to
extend σ. Now π′ can be written as

π′ = c1 = ((qm , p0), (avm
1 ⊥, avm

2 ⊥),0)−→∗

c2 = (((q1,?0(?1!0)), (!0(!1?0)))), (av ′
1⊥, av2⊥),1)−→∗

c3 = ((q1,ε),ε, (av ′
1⊥, av2⊥),0)−→∗c4 = ((q, p0), (av1⊥, av2⊥),0)

We have two cases to consider, depending on whether b.5 was executed before a.8 or not in
c3−→∗c4. We will assume that b.5 was executed first, then a.8 is executed immediately after.
Then, we have q1 = q and the following form for the subcomputation.

π′ = c1 = ((qm , p0), (avm
1 ⊥, avm

2 ⊥),0)−→∗

c2 = (((q,?0.(?1!0)), (!0.(!1?0)))), (avm
1 ⊥, av2⊥),1)−→∗

c3 = (((q,ε),ε), (avm
1 ⊥, av2⊥),0) → c4 = (((q,ε), p0), (avm

1 ⊥, av2⊥),0)−→
((q, p0), (avm

1 ⊥, av2⊥),0)

Firstly, τ1 = (qm ,Int, !1, (q, (?0).(?1!0))) ∈ δ1 and τ2 = (p0,Zero,?1, (!0).(!1?0)) ∈ δ2 transi-
tions were used in c1−→∗c2. Since τ1 was used in such a sub compuation, we know that there
is a transition of the form (qm ,Zero2, q) ∈ δ and from execution of τ2, from this we can con-
clude that vm

2 = v2 = 0. From this we get the required run (q0,0,0)−→∗(qm , vm
1 ,0)−→(q, v1,0).

In the other case, once ((q ′,ε),Int,ε, q ′) ∈ δ1 is executed, process P1 can start executing
transitions not involving any operations on counter-2 before process P2 returns back to p0 by
executing (ε,Int,?0, p0) ∈ δ2. In this case, π′ is of the form

π′ = ((qm , p0), (avm
1 ⊥, avm

2 ⊥),0)−→∗

(((q ′,?0(?1!0)), (!0(!1?0)))), (avm
1 ⊥, av2⊥),1)−→∗(((q ′,ε),ε), (avm

1 ⊥, av2⊥),0) →
(q ′,ε, (avm

1 ⊥, av2⊥),0)−→∗(q ′′,ε, (av1⊥, av2⊥),0) → (q, p0, (av1⊥, av2⊥),0)

Firstly note that if the master process were to start any communication with slave process
before the slave goes back to p0 state, the computation will dead lock (since the transition that
takes slave process from state ε to p0 requires the memory value to be 0).



3.3. STAGE-BOUNDED COMPUTATIONS 31

From this we have that any sub-run of the form (q ′,ε, (avm
1 ⊥, av2⊥),0)−→∗(q ′′,ε, (av ′

1⊥,
av2⊥),0), can involve only transitions that operate on counter-1. Clearly such transitions can
be simulated by equivalent transitions in the counter system, leading to a run of the form (q ′,
vm

1 , v2)−→∗(q ′′, v1, v2). As in previous case, from execution of τ1 and τ2, we have vm
2 = v2 = 0.

From this we have the required run (q0,0,0)−→∗(q ′, vm
1 ,0)−→∗(q ′′, v1,0)−→∗(q, v1,0). This com-

plete the proof of Lemma 1

With this, the proof of Theorem 1 is complete.

3.3 Stage-bounded Computations

We introduce hereafter the concept of stage-bounding. We divide a run into segments, called
stages, where in each stage at most one component is allowed to write on the shared memory
while there is no restriction on the number of readers. We emphasize that there is no restric-
tion placed on the number of writes or the number of context switches between the different
components nor is there any restriction on the accesses to stacks during a stage. We then
place an a-priori bound on the number of stages in the run. Formally

Definition 2. Let ρ = c0
op1→p1 c1

op2→p2 . . .cn−1
opn→ pn cn be a run of the SCPS (I,P,m). We say that

ρ is a p-run if for all 1 ≤ i ≤ n, whenever opi ∈WM (whereWM = {!m | m ∈ M}), we have pi = p.
That is, all the write transitions are contributed by the same process p.

We say that ρ is a 1-stage run if it is a p-run for some p ∈ I and a run ρ is a k-stage run
if we may write ρ = c0

w1−−→∗
c1

w2−−→∗
. . .ck−1

wk−−−→∗
ck such that each ci−1

wi−−→∗
ci (1 ≤ i ≤ k) is a

1-stage run.

Stage-bounded Reachability Problem: Given a SCPS (I,P,m0), an integer k and a configuration
(q ,γ,m) determine whether there is a k-stage run (s,⊥⊥⊥,m0)−→∗(q ,γ,m).

3.4 Stage bounded reachability for Communicating FSS

In this section, we show that stage-bounding is relevant even when all components of the
SCPS are finite-state. In this case stage bounded reachability problem is indeed easier than
the unrestricted reachability problem.

Theorem 2. The reachability problem for an SCPS where every component is a FSS ( finite state
system ) is PSPACE-COMPLETE while the stage bounded reachability problem for SCPS where
every component is a FSS is NP-COMPLETE.

Proof. When there is no bound on the number of stages, it is easy to see that an SCPS with n
FSS components is equivalent to the product (intersection) of n FSS and hence the reacha-
bility problem is PSPACE-COMPLETE. The details are given below.

The PSPACE algorithm for reachability can easily be obtained by reducing it to language
intersection of n finite state automata. For this purpose, we will construct a finite state au-
tomata Ai corresponding to each FSS Pi in our SCPS. The finite state automata Ai that we



32 CHAPTER 3. SHARED MEMORY SYSTEMS

construct ( corresponding to process Pi ), has as its input alphabet the memory values tagged
with the process index (i.e. M × I). The state space of such a FSA is given by Qi ∪Qi × M ,
where Qi is the state space of Pi . The states of the form (q,m) ∈ Qi ×M will be used during
the write moves to simulate stuttering. The constructed finite state automaton simulates a
write move of Pi , of the form (q, !m, q ′) through a transition of the form (q, (m, i ), (q ′,m)).
From states of the form (q,m), we have transitions of the form ((q,m), (m, i ), (q,m)) and ((q,
m),ε, q). These moves allow stuttering of write moves. Any read move of Pi , of the form (q,
?m, q ′) is simulated by transitions of the form {q}×(M×I\{i })×{q ′}. Here the read move is sim-
ulated by reading memory value tagged with any index other than itself. So far all transitions
added, simulate moves of FSS. However, we need also moves that mimic moves of other pro-
cesses. For this, we upward close the finite state automata w.r.t. memory values tagged with
index other than itself (M × I \ {i }). For this, we have for every q ∈Qi , transitions of the form
{q}× (M × I \ {i })× {q}. Note that in transitions of Ai , transitions labeled by letters of the form
M × {i }, correspond to simulating a write of FSS Pi . Whereas transitions labeled by letters of
the form M × I \ {i } can either simulate a read move or can mimic a move of another process.
So far our construction religiously simulates every move except for own reads, i.e. memory
values read by a process, that was written by itself. But notice that such transitions can easily
be eliminated from the SCPS by storing the memory values written in the state space. With
this observation, the construction is complete. Note that for reachability on SCPS, we are
interested in checking whether a particular configuration for each FSS is reachable. A run in
such an FSA is accepting if the configuration we are interested in for the corresponding FSS
is reached. With such a construction in place, it is easy to see that

⋂
i∈I L(Ai ) 6= ; iff there is a

run in SCPS that reaches required state in each FSS.

For the hardness we reduce the emptiness of the intersection of n finite state automata
(FSA) to this problem. We use n FSSs. The first one guesses a word in the intersection and
apart from simulating the first FSA on this word, it also transfers this word, letter by letter,
reliably to the other FSSs using the shared memory. This can be done easily using acknowl-
edgements since there is no bound on the number of stages. The other n −1 FSSs simulate
one FSA each and hence the emptiness of the intersection reduces to the reachability prob-
lem.

To solve the stage bounded reachability problem, we show that it suffices to consider runs
where in each stage every one of the readers participates in at most |Ai | transitions, where Ai

is the i th automaton. We then use this to show that in addition we may restrict to runs where
in each stage the writer participates in at most O((

∑
i |Ai |)2) transitions.

Let Ai be the i th FSS. Let ρ be the sequence of transitions in some k stage run from c0 to

ck and let ρ = ρ1ρ2 . . .ρk where each ρi constitutes a single stage and ci−1
ρi−−→∗

ci . We show
that we may find a different k stage run ρ′ = ρ′

1ρ
′
2 . . .ρ′

k , with each ρ′
j constituting a single

stage, such that c0
ρ′

1−−→
∗

c1
ρ′

2−−→
∗

. . .
ρ′

k−−→
∗

ck and the length of each ρ′
j is polynomial in

∑
i |Ai |

and |M |. As a first step towards this we show that in any ρ j , we can bound the number of
transitions of any reader i to |Ai |. This is because, if there are two occurrences of the same
transition τ for some reader i in ρ j then we may safely delete all the transitions of i in ρ j

between the first and second occurrences, including the first but not the last and obtain a ρ′
j



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 33

such that c j−1
ρ′

j−−→
∗

c j . Thus, the total number of transitions by all the readers in any ρ j can
be bounded by

∑
i |Ai |.

Now, suppose there are two occurrences of a transition τ of the writer w in ρ j (the tran-
sition by itself need not necessarily be a write transition) and suppose there are no (read)
transitions involving other FSSs (readers) in between. Then we may remove from ρ j all tran-
sitions of the writer starting with first occurrence τ and upto but not including the second

occurrence and obtain a ρ′
j such that c j−1

ρ′
j−−→

∗
c j . This along with the bound on the total

number of read transitions means that the number of transitions of the writer in ρ j needs to
be at most |Aw |.(∑i |Ai |), where Aw is the writer, and hence quadratic in the sum of the sizes
of the FSSs.

Thus we may restrict the length of k stage runs to be at most k.(
∑

i .|Ai |)2 without sacri-
ficing any reachable states and the stage bounded reachability problem is in NP.

3.5 Bounded-Stage Reachability of recursive processes

Bounded stage reachability problem is not decidable even when only 2 pushdown and 1
counter processes are involved.

3.5.1 Undecidability of Bounded-Stage Reachability

Unfortunately, stage bounding does not lead to decidability in the general case. We can in-
deed prove that SCPS with two pushdown systems and one 1-counter system are able to en-
code the computation of any Turing machine.

Theorem 3. The 3-stage reachability problem for SCPS consisting of two pushdown systems
and one counter system is undecidable.

Proof. We will reduce the halting problem for Turing machines to the stage-bounded reach-
ability problem in a SCPS with two pushdown systems and one counter. We refer to the two
pushdowns as the generator and the replayer. If somehow a writer and a reader could follow
a protocol that ensures that every letter that is written is read exactly once then the unde-
cidability would follow quite easily without the counter. However, doing this using shared
memory in a stage bounded manner is tricky and details are as follows. In what follows we
assume that stuttering errors are eliminated using a suitable delimiter.

The simulation of a (potential) accepting run of the TM is carried out in 4 steps which use
3 stages in all. We fix a suitable encoding of the configurations as a word over some alphabet
Γ and assume that this alphabet does not contain the symbol #. In the first step, the generator
writes down a (initial) configuration C1 of the TM in its stack followed by the # symbol. While
doing so, it uses the shared memory to send a value, say ], to the counter for each letter in
C1. The counter counts the number of such values. Since stuttering has been eliminated, the
value of the counter c1 is ≤ |C1| at the end of this step.

In step 2, the generator guesses a sequence of configurations C2,C3,. . . Cn ending in an ac-
cepting configuration, writes them down, separated by #s, in its stack. It also writes the same



34 CHAPTER 3. SHARED MEMORY SYSTEMS

sequence to the memory, as it is generated, which in turn is read by the replayer and copied
on to its stack. At the end of step 2, the contents of the generator’s stack is x =C R

n #C R
n−1#. . .C R

1
while that of the replayer is y = DR

m#DR
m−1#. . .DR

1 , m ≤ n −1 and y is a subword of x. It in-
dicates the end of this stage by writing some suitable value to the memory which signals the
end of this stage to the replayer and the counter. In all we have used one stage so far.

In step 3, the counter sends its value c1 to the generator using the shared memory by
writing c1 copies of some fixed value ending with some special value to indicate the comple-
tion of this sequence. The generator removes one non-# symbol from his stack for each such
value. At the end of this sequence of operations if the top of stack is not a # the generator will
reject this run. Thus, a successful completion of this step will mean that |Cn | ≤ c1 and thus,
|Cn | ≤ |C1|. At the end of this step, the contents of the generator’s stack is C R

n−1#C R
n−2#. . .C R

1
and the counter is empty. This constitutes the second stage.

In the last step, the replayer removes the contents of its stack one element at a time and
writes the removed value to the shared memory for the generator to read. It writes a special
end marker at the end of the sequence and enters an accepting state. The sequence read by
the generator would therefore be of the form z = E R

p #E R
p−1#. . .E R

1 (followed by the end marker)

where p ≤ m ≤ n − 1. Clearly z is a subword of y . The generator, as it reads E R
p removes

symbols from its stack verifying that Cn−1 may be reached in one step from the configuration
Ep (we write Ep−→∗Cn−1 to indicate this), entering a reject state if either this is false or if they
are not of the same length. It then repeats this procedure for Ep−1 and Cn−2 and so on. It
enters an accepting state only if it empties its stack at the end of the entire sequence.

Observe that if the generator reaches its accepting state then p has to be n −1, |En−1| =
|Cn−1|, . . ., |E1| = |C1| and En−1−→∗Cn−1, . . ., E1−→∗C1. Further, since z is a subword of y , y is a
subword of C R

n #C R
n−1#. . .C R

2 and p = n −1, we have Ei ¹ Di ¹Ci+1 for all 1 ≤ i ≤ n −1. Thus,

|C1| = |E1| ≤ |C2| = |E2| ≤ . . . ≤ |Cn−1| = En−1 ≤ |Cn |

But |Cn | ≤ |C1| and thus,

|C1| = |E1| = |C2| = |E2| . . . = |Cn−1| = |En−1| = |Cn |

Therefore E1 =C2, E2 =C3, . . ., En−1 =Cn and the result follows.

3.5.2 Bounded stage reachability for two pushdown case

We already showed that the stage bounded reachability problem for systems with at least
two pushdowns and one counter is undecidable. One can ask what happens if we were to
restrict ourselves to just two pushdown case. The problem currently remains open. Even if
this problem is decidable its complexity cannot be primitive recursive.

The regular post embedding problem is the following: LetΣ andΓbe two alphabets. Given
two functions f :Σ→ Γ+ and g :Σ→ Γ+, extended homomorphically toΣ+, and a regular lan-
guage R ⊆Σ+, does there exist a w ∈ R such that f (w) ¹ g (w)? As shown in [52], this problem
is decidable but cannot be solved by any algorithm with primitive recursive complexity. We
reduce the regular post embedding problem to the stage-bounded reachability problem for
SCPS with two pushdowns to obtain the following Theorem.



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 35

Theorem 4. The 2-stage bounded reachability problem for SCPS with two pushdowns cannot
be solved by any algorithm whose complexity is primitive recursive.

Proof. The reduction is indeed quite simple. Once again, we refer to the two pushdowns as
the generator and replayer. The generator guesses a word w from R, stores f (w) in its stack
and while doing so writes g (w) letter by letter on the shared memory. As always, we assume
stuttering errors are eliminated using delimiters. The replayer reads these values and stores
them in its stack. At the end of this first stage the contents of the two stacks are f (w) and w ′

with w ′ ¹ g (w).
In the second stage, the replayer transfers the contents of its stack to the shared memory,

one letter at a time, and the generator pops it stack verifying that it agrees with the letters
read from the shared memory. It enters the accepting state only if it empties its stack exactly
that the end of this stage. Notice that the values read by the generator w ′′ is a subword of w ′

and thus an accepting run verifies that f (w) = w ′′ ¹ w ′ ¹ g (w).
Conversely, if f (w) ¹ g (w) there is an accepting run where exactly the letters that do not

belong to the embedding of f (w) in g (w) are lost i.e. missed by the reader (the replayer in
the first stage and the generator in the second stage) in at least one of the two stages.

3.5.3 Decidability for single pushdown plus counters

The problem is decidable if we restrict ourselves to certain subclasses. The following Theo-
rem describes this class and is the main result of this chapter.

Theorem 5. The stage bounded reachability problem for SCPS with at most one pushdown
system is in NEXPTIME.

Basically, we show that each counter system can be simulated by an exponential sized
bounded-reversal counter system thus reducing the problem to reachability in a pushdown
automaton1 (PDA) with reversal bounded counters (which is known to be in NP).

The proof of this Theorem is quite involved and most of what follows in this chapter is
devoted to the same. The proof proceeds in a sequence of steps and in each step we provide
an informal description of the ideas before providing the formal details The first step is ap-
plicable to any SCPS. In this step, we eliminate the shared memory, decouple the different
pushdown systems as a collection of pushdown automata (PDA) and reduce the reachability
problem for the SCPS to the emptiness of the intersection of these PDAs. This problem, in
general, is undecidable, but we will be able to restrict ourselves to the case where the PDAs
are of a restricted variety.

In a shared memory system, the sequence of values written by the writer in a stage is not
transmitted with precision to the reader as the reader may miss some values while reading
others multiple times and this is what permits the decoupling.

We fix an SCPS S = (I,P,m0) over the set of memory values M where P = {Pi | i ∈ I} is an
I indexed collection of pushdown systems Pi = (Qi ,Γi ,OM ,δi , si ), for the rest of this section.
For the moment, consider one stage runs where p ∈ I identifies the writer. Suppose we are

1We plan to use "automata" instead of systems when they are used as language generators and to avoid ambi-
guity with the components of the SCPS.



36 CHAPTER 3. SHARED MEMORY SYSTEMS

interested in the existence of one stage runs starting at the configuration ((si )i∈I, (ρi )i∈I,m)
and ending at some configuration ((qi )i∈I, (γi )i∈I,m′′′). Now, consider the languages Li , i ∈ I
(recognising values of memory reads of a reader process), defined as, if i 6= p then

Li = {m1m2 . . . mn | ?m1?m2 . . .?mn ∈ L(Pi , (si ,ρi ), (qi ,γi ))}

and Lp (recognising values of memory writes of a writer process) given by

{m.m1.m2 . . . mn .m′′′ | ?m∗!m1?m1
∗!m2 . . . !mn ?mn

∗!m′′′?m′′′∗ ∈ L(Pp , (sp ,ρp ), (qp ,γp ))}

Then, the existence of an one stage run from ((si )i∈I, (ρi )i∈I,m) to ((qi )i∈I, (γi )i∈I,m′′′) (with w
as the writer) is equivalent to the non-emptiness of

St (Lp ) ↓ ∩ ⋂
i 6=p

Li ↑

Moreover, the languages St (Lp ) ↓ and Li ↑ can easily be realized as the languages of PDAs
Ap and Ai constructed from the PDSs Pp and Pi respectively. These automata maintain the
stack and control state of the PDS they simulate as well.

We will first show the construction for a single stage setting and then extend it to multiple
stages. We will fix our SCPS as S = (I,P,m0) over the memory domain M . In the single stage
setting that we consider, we will index the writer process using p and the reader processes by
r1, · · · ,rn . We will show the construction of pushdowns systems Ap and Ar1 · · · Arn , such that
checking existence one stage run can be reduced to intersection on these systems.

Construction of pushdown automata Ap corresponding to writer process

Ap = (Pp ,Γ, M ,δ′p , s0
p ) where

• Pp =Qp ×M , where Qp is states of the process Pp in S

• s0
p = (q0

p ,m0), where q0
p is the initial state of process Pp in S.

• The transition relation δ′p is defined as below. Along with the transition description, we will
also provide a mapping g : δ′p 7→ δp ∪ {ε}, where δp is the transitions of process Pp in S.

a.1 For any memory read transition of the form τ = (q,op,?m, q ′) ∈ δp where op ∈
∪a∈Γ{Push(a),Pop(a)}∪{Zero,Int}, we add the transition τ′ = ((q,m),op,ε, (q ′,m)) ∈ δ′p ,
we will let g (τ′) = τ.

a.2 For any memory write transition of the form τ = (q,op, !m, q ′) ∈ δp where op ∈
∪a∈Γ{Push(a),Pop(a)}∪ {Zero,Int}, we add for all m′′′ ∈ M , the transitions τ′ = ((q,m′′′),
op,ε, (q ′,m)) ∈ δ′p , and τ′ = ((q,m′′′),op,m, (q ′,m)) ∈ δ′p (such a pair allows memory
writes to be nondeterministically made visible or not, hence ensuring downward clo-
sure), we let g (τ′) = τ.

a.3 We add also add for all q ∈Qp , m ∈ M , the transition τ= ((q,m),Int,m, (q,m)) ∈ δ′p , this
allows stuttering of the memory value, we let g (τ) = ε

Note that by construction, if w ∈ L(Ap ,c) for some configuration c, then any w ′ that is a
subword of w is also in this language (i.e. language of this pushdown automata is downward
closed ).



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 37

Construction of pushdown automata Ari corresponding to reader process Pri

Ari = (Pri ,Γ, M ,δ′ri
, s0

ri
) where

• Pri =Qri ×M , where Qri is states of the process Pri in S

• s0
ri
= (q0

ri
,m0), where q0

ri
is the initial state of process Pri in S.

• The transition relation δ′ri
is defined as below. Along side the transition description, we will

also provide a mapping g : δ′ri
7→ δri ∪ {ε}, where δri is the transitions of process Pri in S.

b.1 For any memory read transition of the form τ = (q,op,?m, q ′) ∈ δri where op ∈
∪a∈Γ{Push(a),Pop(a)}∪ {Zero,Int}, we add the transition τ′ = ((q,m),op,m, (q ′,m)) ∈
δ′ri

, we will let g (τ′) = τ.
b.2 We add also add for all q ∈ Qp , m,m′′′ ∈ M , the transition τ = ((q,m),Int,m′′′, (q,m′′′)) ∈

δ′p , this allows upward closure of the memory value, we let g (τ) = ε
Note that for any word w and any configuration c if w ∈ L(Ari ,c) then any word w ′ such

that w is a subword of w ′ is also in the language. Now we will like to prove that the exis-
tence of a single stage run can be reduced to language intersection problem in the pushdown
automata Ap , Ar1 , · · · Arn .

Lemma 3. There is a 1-phase run of the form (s0,⊥⊥⊥,m0)−→∗(q ,γ,m) in S iff there is a word
w ∈ M∗ such that w ∈ L((s0

p ,⊥), ((q(p),m),γ(p)))∩⋂
i∈[1...n] L((s0

ri
,⊥), ((q(ri ),m),γ(ri )))

Proof. (⇒)
We will prove by induction on length of the run that for any 1-phase run of the form (s0,

⊥⊥⊥,m0)−→∗(q ,γ,m) in S, we can find runs of the form (s0
p ,⊥) w−−→∗

((q(p),m),γ(p))) and (s0
ri

,

⊥) w−−→∗
((q(ri ),m),γ(ri )) for each i ∈ [1 . . .n].

• For base case, consider a zero length run. This trivially follows from a run on ε.
• Case where (s0,⊥⊥⊥,m0)−→∗(q ,γ,m) is of length greater than 1, then we can clearly split such

a run into (s0,⊥⊥⊥,m0)−→∗(q ′′′,γ′′′,m′′′) τ→ (q ,γ,m). Now by induction, we have runs of the form

(s0
p ,⊥) w ′−−→∗

((q ′′′(p),m′′′),γ′′′(p)) and ∀i ∈ [1..n](s0
ri

,⊥) w ′−−→∗
((q ′′′(ri ),m′′′),γ′′′(ri ))

We will consider various possibilities for τ and show that in each case, we can extend the
run as required.

− Case where τ is a memory read transition. We have two cases to consider, the transition
is that of the writer ( τ ∈ δp ) or it is that of a reader ( τ ∈ δri ).

* Let τ = (q ′′′(p),Int,?m, q(p)) ∈ δp , then notice that m = m′′′ and that there is a memory
read transition of the form ((q ′′′(p),m),Int,ε, (q(p),m)) ∈ δ′p by a.1. From this we get

(s0
p ,⊥) w ′−−→∗

((q(p),m),γ(p))

Also notice that for any reader process ri , q(ri ) = q ′′′(ri ) and γ(ri ) = γ′′′(ri ). Hence by
induction we have

(s0
ri

,⊥) w ′−−→∗
((q(ri ),m),γ(ri ))

For cases where τ is an operation other than an internal move, the argument is similar.



38 CHAPTER 3. SHARED MEMORY SYSTEMS

* Let τ= (q ′′′(ri ),Int,?m, q(ri )) ∈ δri , for some ri ∈ I. Notice that in this case, m′′′ = m and
we have ((q ′′′(ri ),m′′′),Int,m′′′, (q(ri ),m′′′)) ∈ δ′ri

by b.1. From this, we get

(s0
ri

,⊥) w ′m′′′−−−−→
∗

((q(ri ),m′′′),γ(ri ))

For process p, we have the stuttering transition from a.3, and q(p) = q ′′′(p), γ(p) =
γ′′′(p). From this we get

(s0
p ,⊥) w ′m′′′−−−−→

∗
((q(p),m′′′),γ(p))

For all other r j 6= ri , we have the upward closure transition from b.2. From this and the
fact that q(r j ) = q ′′′(r j ), γ(r j ) =γ′′′(r j ), the result follows.

− Case where τ is a memory write transition, let τ = (q ′′′(p),Int, !m, q(p)) ∈ δp . Notice that
((q ′′′(p),m′′′),Int,m, (q(p),m)) ∈ δ′p from a.2.

(s0
p ,⊥) w ′m−−−−→∗

((q(p),m),γ(p))

Further we have for all ri ∈ I, the upward closure move of the form ((q ′′′(ri ),m′′′),Int,m,
(q(ri ),m)) ∈ δ′ri

from b.2. From this, we can easily get the required runs.

(⇐)
Before going to prove this direction, we will introduce some notations and claims that

we will use later. For the writer we will say that (qp ,γp ,m)
w
 (q ′

p ,γ′p ,m′) for some w =
m1m2 · · ·mnm′ iff there is a collection of runs involving only the transitions of p, of the form

(q ,γ,m) (?m∗)!m1(?m1
∗)−−−−−−−−−−−−→∗

(q1,γ1,m1), (q ′′′
1,γ′′′

1,m1) !m2(?m2
∗)−−−−−−−−→∗

(q2,γ2,m2)

!m3(?m3
∗)−−−−−−−−→∗ · · · !mn (?mn

∗)−−−−−−−−→∗
(qn ,γn ,mn) !m′′′(?m′′′∗)−−−−−−−→

∗
(q ′′′

p ,γ′′′
p ,m′′′)

such that q(p) = qp ,γ(p) = γp , q ′′′(p) = q ′
p ,γ′′′(p) = γ′p and for each i ∈ [1 . . .n], q ′′′

i (p) =
qi (p) and γ′′′

i (p) =γi (p). We will call such runs a fractured run.

Similarly for any reader r ∈ I, we say that π′
r = (qr ,γr ,m)

w
 (q ′

r ,γ′r ,m′) for some w =
m0.m1.m2 · · ·mn , where m0 = m and mn = m′′′, iff there is a run involving only the transitions
of r , of the form

(q ,γ,m) (?m∗)−−−−→∗
(q1,γ1,m), (q ′′′

1,γ′′′
1,m1) (?m1

∗)−−−−−→∗
(q2,γ2,m1), · · · ,

(qn ,γn ,m′′′) (?m′′′∗)−−−−−→
∗

(q ′′′,γ′′′,m′′′)

such that q(r ) = qr ,γ(r ) = γr , q ′′′(r ) = q ′
r ,γ′′′(r ) = γ′r and for each i ∈ [1 . . .n], q ′′′

i (r ) = qi (r )
and γ′′′

i (r ) =γi (r ).
We will also use the following Claim in our proof.

Claim 2. Suppose there is a fractured run of the writer of the form πp = (qp ,γp ,m)
w
 (q ′

p ,γ′p ,

m′′′), set of fractured runs one per readers ( for each i ∈ [1 . . .n]) of the form πri = (qri ,γri ,m)
wri 

(q ′
ri

,γ′ri
,m′′′). Further, for each ri , if there is a monotonic map of the form hri : [1 . . . |wri |] 7→



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 39

[0. . . |w |], from positions of wri to positions of w such that if hri ( j ) = i then we have wri [ j ] =
w[i ] (except for hri (i ) = 0, in which case w [i ] = m ), then there is an combined 1-stage run
in S of the form (q ,γ,m)−→∗(q ′′′,γ′′′,m′′′), where q(p) = qp , q(ri ) = qri , q ′′′(p) = q ′

p , q ′′′(ri ) = q ′
ri

,
γ(p) = γp ,γ(ri ) = γri ,γ′′′(p) = γ′p ,γ′′′(ri ) = γ′ri

.

Proof. (idea)
Let us assume that w = a1a2 · · ·an . Since there is a monotonic map hri from each wri to w ,

it is easy to see that each of these wri is of the form m∗a∗
j1

a∗
j2
· · ·a∗

jni
for some a j1 a j2 · · ·a ji ¹ w .

Further j1, j2, · · · , jni are the positions into which wri maps, via hri . Hence wri can be split as
v0v1 · · ·vni according to memory values to which they map.

Let σri be the sequence of transitions used in πri . Now σri can be split as σri =
σ

ri
0 σ

ri
1 · · ·σri

ni
such that Σ(σri

j ) = v j .

The global run can now be obtained by first executing sequence of the form σ
ri
0 that are

mapped to position 0 followed by sequence of transitions that generate a1, followed by se-
quence of transitions that are mapped to this position (if any), followed by transition that
generates a2 and so on.

Coming back to proof of Lemma 3, since we are given that w ∈ L(((s0
p ,m0),⊥), ((qp ,m),

γp )), then clearly there is a run of the form ((s0
p ,m0),⊥) w−−→∗

((qp ,m),γp ). Let τp
1 τ

p
2 · · ·τp

m be
the sequence of transitions executed in such a run.

Similarly since for all r ∈ I, we have w ∈ L(((s0
r ,m0),⊥), ((qr ,m),γr )), we have a run of the

form ((s0
r ,m0),⊥) w−−→∗

((qr ,m),γr ). Let τr
1τ

r
2 · · ·τr

mr
be the sequence of transitions in such a

run.
We will let σp = g (τp

1 )g (τp
2 ) · · ·g (τp

m) and vp = Σ(σp ). Clearly such a σp gives us a run of

the form ((s0
p ,m0),⊥)

vp
 ((qp ,m),γp ). Let w = m0

n0 m1
n1 m2

n2 · · ·mk
nk mnm , for some n0 ≥ 0

and n1, · · · ,nk ,nm ≥ 1. Note that w is in stuttering downward closure of vp . This follows from
the fact that Ap is similar to Pp , except that it can stutter the memory writes or lose them.
From this, we get that vp can be broken up as vp = v0m1v1m2 · · ·vk mvk+1. Let v ′ = m0vp , it
is easy to see that there is a natural monotonic map f from positions of w to positions in v ′

such that if f (i ) = j then w[i ] = v ′[ j ].
Now for any reader r , let σr = g (τr

1)g (τr
2) · · ·g (τr

mri
). Let vr = Σ(σr ), it is easy to see that

vr is a subword of w . This follows from the fact that Ar is similar to Pr except that it might
read arbitrary values (using the upward closure transitions) without changing configurations.
Since σr contains transitions of the SCPS S sans the upward closure moves that were added
to Ar , we have a local move in SCPS of the form ((s0

r ,m0),⊥)
vr ((qr ,m),γr ). Further there

is a natural monotonic map h from positions of vr to positions of w such that if h(i ) = j
then vr [i ] = w[ j ]. Composing these two maps provides us a monotonic map from positions
of vr to positions in vp . Now using Claim 2, we can get the required run in the SCPS. This
completes the proof of Lemma 3.

We are however interested in k stage runs where the identity of the writer (and hence the
closures to be applied) changes with the stage. We will now show how to extend the above



40 CHAPTER 3. SHARED MEMORY SYSTEMS

construction to k stage setting. For this, we will fix the sequence of writers in each stage as
τ ∈ Ik .

Let (s,⊥⊥⊥,m0) and (q ,γ,m) be the initial and target configurations of the SCPS and we wish
to determine if there is a k stage run consistent with τ that goes from the initial to the target
configuration. We will show how to construct a pushdown automaton Aτ

i that simulates Pi ,
where its runs break up into k parts, where in the j th part it applies either a stuttering down-
ward closure or upward closure to the behaviour of Pi depending on whether j = τ( j ) or not.
We will show that the reachability in the SCPS can be reduced to checking if intersection of the
language of these pushdown systems is empty or not. For i ∈ [1 . . .k], let Mi = M∗ · (M × {i }).

1. For any j ≤ k if τ( j ) = i then we add the following set of write transitions.

a.1 For any memory read transition of the form τ = (q,op,?m, q ′) ∈ δi where op ∈
∪a∈Γ{Push(a),Pop(a)}∪ {Zero,Int}, we add the transition ((q, j ,m),op,ε, (q ′, j ,m)) ∈ δ′p .

a.2 For any memory write transition of the form τ = (q,op, !m, q ′) ∈ δp where op ∈
∪a∈Γ{Push(a),Pop(a)}∪ {Zero,Int}, we add for all m′′′ ∈ M , the transitions ((q, j ,m′′′),op,
ε, (q ′, j ,m)) ∈ δ′p , and ((q, j ,m′′′),op,m, (q ′, j ,m)) ∈ δ′p (such a pair allows memory writes
to be nondeterministically made visible or not, hence ensuring downward closure).

a.3 We also add for all q ∈ Qp , m ∈ M , the transition ((q, j ,m),Int,m, (q, j ,m)) ∈ δ′p , this
allows stuttering of the memory value.

2. For any j ≤ k if τ( j ) 6= i then we add the following set of read transitions.

b.1 For any memory read transition of the form τ = (q,op,?m, q ′) ∈ δri where op ∈
∪a∈Γ{Push(a),Pop(a)} ∪ {Zero,Int}, we add the transition ((q, j ,m),op,m, (q ′, j ,m)) ∈
δ′ri

.
b.2 We add also add for all q ∈ Qp , m,m′′′ ∈ M , the transition ((q, j ,m),Int,m′′′, (q, j ,m′′′)) ∈

δ′p , this allows upward closure of the memory value.

3. In addition, we have for all q ∈ Qi , m ∈ M and j ∈ [1..k −1], the transitions ((q,m, j ),Int,
(m.i ), (q,m, j +1)) ∈ δτi . These set of transitions are used to synchronise the initial memory
value at the beginning of each stage.

Using arguments similar to Lemma 3, we can easily prove the following lemma which
relates a 1 stage run in the SCPS with a common subword of the pushdown systems con-
structed.

Lemma 4. For any j ∈ [1..k], there is a word w ∈ M∗ such that w ∈⋂
i∈I L Aτ

i
(((q(i ),m, j ),γ(i )),

((q ′′′(i ),m′′′, j ),γ′′′(i ))) iff there is a 1-phase run of the form (q ,γ,m)−→∗(q ′′′,γ′′′,m′′′) in S

We now prove the following lemma. This lemma relates the emptiness checking of lan-
guage intersection in the constructed pushdowns with a run in SCPS.

Lemma 5. For every p ∈ I, we can construct, in polynomial time in |S|, a PDA Aτ
p over the stack

alphabet Γp , such that, for cp = (((q(p),m),k),γ(p)), p ∈ I, we have

1. If w ∈ L(Aτ
p ,cp ) then w ∈ M1 ·M2 · · ·Mk−1.M∗. (unambiguous breakup)



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 41

2. If w ∈ L(Aτ
p ,cp ) with w = w1w2 . . . wk , w1 ∈ M∗

1 , . . . , wk−1 ∈ M∗
k−1 and wk ∈ M∗, then for

all w ′
1 ∈ M∗

1 , . . . , w ′
k−1 ∈ M∗

k−1 and w ′
k ∈ M∗ such that, either p = τ(i ) and w ′

i ∈ St (wi ) ↓ or
p 6= τ(i ), and w ′

i ∈ wi ↑, we have w ′
1.w ′

2. . . . w ′
k ∈ L(Aτ

p ,cp ). (closure)

3. There is a k stage run from (s,⊥⊥⊥,m0) to (q ,γ,m) with τ(i ) as the writer in the i th stage iff⋂
p∈I L(Aτ

p ,cp ) 6= ;. (decoupling)

Proof.

1. For each p ∈ I, if w ∈ L(Aτ
p ,cp ) then we have a run of the form

((s(p),m0,1),⊥) w−−→∗
((q(p),m,k),γ(p))

It is easy to see that such a run can be expanded as,

((s(p),m0,1),⊥) w1−−→∗
((q1,m1,1),γ1)

(m1,1)→ ((q1,m1,2),γ1)

w2−−→∗
((q2,m2,2),γ2)

(m2,2)→ ((q2,m2,3),γ2) w3−−→∗ · · ·
(mk−1,k−1)→ ((qk−1,mk−1,k),γk−1) wk−−−→∗

((q(p),m,k),γ(p))

From this, we know that w = w1.(m1,1).w2.(m2,2) . . . (mk−1,k).wk ∈ M1 ·M2 · · ·Mk−1.M∗

2. For this, we will first prove the following Claim.

Claim 3. For any j ∈ [1..k], and for any p ∈ I, if ((q,m, j ),γ) w−−→∗
((q ′,m′′′, j ),γ′), then the

following holds.

a) If τ( j ) = p then for all w ′ such that w ′ ∈ w ↓, we have a run of the form ((q,m, j ),

γ) w ′−−→∗
((q ′,m′′′, j )γ′)

b) If τ( j ) 6= p then for all w ′ such that w ′ ∈ w ↑, we have a run of the form ((q,m, j ),

γ) w ′−−→∗
((q ′,m′′′, j ),γ′)

Proof.

a) We will prove this by induction on length of w . Base case is when w = ε. In this case, we
have nothing to do. For the induction case, we will consider |w | > 0. In this case, we will
let w = v.m′′′ for some m′′′ ∈ M . Now for any w ′ ∈ w↓, it is the case that w ′ = v ′m′′′ such
that v ′ ∈ v↓ or w ′ ∈ v↓. Let the run on w be of the form

((q,m, j ),γ) v−→∗
((q ′′,m′′′′′′, j ),γ′′) m′′′

→ ((q ′,m′′′, j ),γ′)

Let the transition used to generate m′′′ be of the form τ = ((q ′′,m′′′′′′, j ),Int,m′′′, (q ′,m′′′, j ))
(we will only consider this case, the other cases are similar). Now for any w ′ ∈ w ↓, if
w ′ ∈ v↓, by induction we have a run of the form

((q,m, j ),γ) v ′−−→∗
((q ′′,m′′′′′′, j ),γ′′)

Combining this with transition of the form, ((q ′′,m′′′′′′, j ),Int,ε, (q ′,m′′′, j )) available in a.2,
we get the required run



42 CHAPTER 3. SHARED MEMORY SYSTEMS

((q,m, j ),γ) v ′−−→∗
((q ′′,m′′′′′′, j ),γ′′) ε→ ((q ′,m′′′, j ),γ′)

For case where w ′ = v ′a, with v ′ ∈ v↓, we use the transition τ to extend the run got from
induction.

b) This case is tedious but very similar to proof above , hence we will skip the same.

Now coming back to proof of Lemma 5, since we have w ∈ L(Aτ
p ,cp ), there is a run of the

form

((s(p),m0,1),⊥) w1−−→∗
((q1,m1,1),γ1)

(m1,1)→ ((q1,m1,2),γ1)

w2−−→∗
((q2,m2,2),γ2)

(m2,2)→ ((q2,m2,3),γ2) w3−−→∗ · · ·
(mk−1,k−1)→ ((qk−1,mk−1,k),γk−1) wk−−−→∗

((q(p),m,k),γ(p))

Now using Claim 3, we can replace any wi in the above run by w ′
i , where w ′

i ∈ wi↓ if τ(i ) = p
and w ′

i ∈ wi↑ otherwise. From this, we get the required result.
3. (⇒) We are given that there is a k-stage run of the form

(s,⊥⊥⊥,m0)−→∗(q ,γ,m)

Such a run can be split as follows

c0 = (s,⊥⊥⊥,m0)−→∗c1 = (q1,γ1,m1)−→∗c2 = (q2,γ2,m2) · · ·
ck−1 = (qk−1,γk−1,mk−1)−→∗ck = (q ,γ,m)

Where each ci−→∗ci+1 is a single stage. Now using Lemma 4, we have runs of the form

((s(p),1,m0),⊥)−→∗((q1(p),1,m1),γ1(p)),

(qi (p), i ,mi ),γi (p))−→∗(qi+1(p), i ,mi+1),γi+1(p)),

(qk (p),k,mk ),γk (p))−→∗(q(p),k,m),γ(p))

Combining these runs with transitions from 3, we get the required run.

⇐ Since
⋂

p∈I L(Aτ
p ,cp ) 6= ;, there is a w such that w ∈⋂

p∈I L(Aτ
p ,cp ). Notice that such a w

can be split as w = w1.(m1, 1)w2(m2, 2) · · ·wk . From this, for each p ∈ I, we have runs of
the form

((s(p),m0,1),⊥) w1−−→∗
((q1(p),m1,1),γ1(p))

(m1,1)→ ((q1(p),m1,2),γ1(p))

w2−−→∗
((q2(p),m2,2),γ2(p)) · · · (mk−1,k−1)→ ((qk−1(p),mk−1,k),γk−1(p))

wk−−−→∗
((q(p),m,k),γ(p))

From this we get that



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 43

• w1 ∈⋂
p∈I L(((s(p),m0,1),⊥), ((q1(p),m1,1),γ1(p)))

• wi ∈⋂
p∈I L(((qi (p),mi , i +1),γi (p)), ((qi+1(p),mi+1, i +1),γi+1(p))), for all i ∈ [1..n −1]

• wk ∈⋂
p∈I L(((qk−1(p),mk−1,k),γk−1), ((q(p),m,k),γ(p))).

Now applying Lemma 4, we get the following sub-computations of SCPS.

– (s,⊥⊥⊥,m0)−→∗(q1,γ1,m1)
– (qi ,γi ,mi )−→∗(qi+1,γi+1,mi+1), for all i ∈ [1..n −1]
– (qk−1,γk−1,mk−1)−→∗(q ,γ,m).

Now combining these runs, gives us the required run. This completes the proof of
Lemma 5.

Remark: Note that in our construction we fix a-priori a stage sequence τ and then constructed
the pushdown automata Aτ

i (for all i ∈ I). It is however possible to eliminate the need to fix the stage
sequence a-priori. This can be done by letting each process guess a writer at the beginning of each stage
and synchronising this guess using an input letter. Thus, we can construct a pushdown automata Ai

without needing to fix a stage sequence apriori.

In the second step we exploit the fact that the language of each Aτ
p is a finite unambiguous

concatenation of languages that are upward or downward closed. Towards this we first state
two propositions which explain the importance of closures.

Proposition 6 (Downward closure of CFLs [54, 15]). Given a pushdown automaton P and two
configurations ci ,c f , we can construct, in time and space at most exponential in size of P, ci

and c f , a FSA A with two configurations c ′i and c ′f such that L(A,c ′i ,c ′f ) = L(P,ci ,c f )↓.

Proposition 7 (Upward closure of CFLs [15]). Given a pushdown automaton P and two con-
figurations ci ,c f , we can construct, in time and space at most exponential in size of P, ci and
c f , a FSA A with two configurations c ′i and c ′f such that L(A,c ′i ,c ′f ) = L(P,ci ,c f )↑.

This means that, if we are dealing with a single stage then we may replace the PDA Ai ,
i ∈ I, described earlier, by exponential sized finite automata Bi , i ∈ I (for all i , including the
writer p). Thus we have reduced the problem to the emptiness of the intersection for FAs.
However the k stage case is somewhat more complex. This is because, as Aτ

i switches from
one stage to the next, it has to preserve the configuration of Pi (i.e. the contents of the stack)
as well as the contents of the memory. While this is trivial when Aτ

i is a pushdown, it is not
possible to do this using finite number of states. However, all is not lost as we may convert
Aτ

i into a 2k-reversal bounded PDA Bτ
i . Recall that a run of pushdown automaton is said to

be 1-reversal if the stack height of the sequence of configurations is either uniformly non-
increasing (does not involve a push move) or non-decreasing (does not involve a pop move).
A k-reversal run is concatenation of k sequences of 1-reversal runs. A k-reversal bounded
PDA is one which only allows at most k-reversal runs.

Lemma 6. For every p ∈ I, it is possible to construct, in exponential time in the size of Aτ
p , a 2k

reversal bounded PDA Bτ
p and a configuration c ′p , such that L(Bτ

p ,c ′p ) = L(Aτ
p ,cp ).



44 CHAPTER 3. SHARED MEMORY SYSTEMS

Proof. We first fix a pushdown automaton A = (Q,Γ,Σ,δ, s) and show that for any two given
configurations c = (q,α),c ′ = (q ′,β) the closure language C l (L(c,c ′)) can be accepted by a 2-
reversal bounded automata B ( whenever type of closure is not important, we will use C l ()
to refer to either the downward or the upward closure ). For any run ρ, we say it is a γ-run,
γ ∈ Γ∗.⊥ if γ is the longest common suffix of the stack of every configuration along the run
of ρ. We write γ(c,c ′) to refer to the set of words accepted on γ-runs from c to c ′. We will
represent a γ-run from c to c ′ over a word w as c w−−→∗

γc ′. Let c = (q,ρ) to c ′ = (q ′,ρ′). Then,
L(c,c ′), the set of words accepted on runs from c to c ′ is

{x.y | x ∈ γ(c, (q ′′,γ)), y ∈ γ((q ′′,γ),c ′), where γ is a suffix of ρ and q ′′ ∈Q}

For each α ∈ Γ and q1, q2 ∈Q, we let

L−
α(q1, q2) = {w | (q1,α⊥) w−−→∗

(q2,⊥) without using emptiness tests }

L+
α(q1, q2) = {w | (q1,⊥) w−−→∗

(q2,α⊥) without using emptiness tests }

L⊥(q1, q2) = {w | (q1,⊥) w−−→∗
(q2,⊥)}

We can see that the language γ(c, (q ′′,γ)) (resp. γ((q ′′,γ),c ′) ) can be rewritten
as

⋃
q1,q2··· ,q`−1∈Q L−

α1
(q, q1) · L−

α2
(q1, q2) · · ·L−

α`
(q`−1, q ′′) · L and with ρ = α1α2 · · ·α`γ (resp.⋃

q1,q2··· ,q`′−1∈Q L ·L+
α′

1
(q ′′, q1) ·L+

α′
2
(q1, q2) · · ·L+

α′
`′

(q`′−1, q ′) with ρ′ =α′
`′α

′
`′−1 · · ·α′

1γ) and L = {ε}

if γ 6= ⊥ and L = L⊥(q ′′, q ′′) otherwise.
Hence, any word w ∈ C l (L(c,c ′)) can be rewritten as the concatenation of three words

(i.e., w = w1w2w3). The first word w1 is in C l (L−
α1

(q, q1)) ·C l (L−
α2

(q1, q2)) · · ·C l (L−
α`

(q`−1,
q ′′

1 )) for some states q1, · · ·q`−1 ∈ Q, letters α1α2 · · ·α` and stack content γ such that ρ =
α1α2 · · ·α`γ. The second word w2 is in C l (L⊥(q ′′

1 , q ′′
2 )) if γ = ⊥, and in {ε} otherwise. The

last word w3 is in C l (L+
α′

1
(q ′′

2 , q ′
1)) ·C l (L+

α′
2
(q ′

1, q ′
2)) · · ·C l (L+

α′
`′

(q ′
`′−1, q ′)) for some some states

q ′
1, · · ·q ′

`′ ∈ Q, letters α′
1α

′
2 · · ·α′

`′ such that ρ′ = α′
`′α

′
`′−1 · · ·α′

1γ. Note that such a run has at
most 3 reversals.

Lemma 7. Given a pushdown automaton P = (Q,Γ,Σ,δ, s), we can construct a 2-reversal
bounded PDA B = (Q ′,Γ,Σ,δ′, s′) such that for any two configurations c = (q,ρ),c ′ = (q ′,
ρ′) ∈C (P ), L(B , ((q,−),ρ), ((q ′,+),ρ′)) =C l (L(A,c,c ′)), where (q,+), (q,−) ∈Q ′.

Proof. The languages L−
α(q1, q2), L+

α(q1, q2) and L⊥(q1, q2) are context-free and their upward
and downward closures are effectively regular (see Propositions 6,7) and so let B−

α (q1, q2),
B+
α (q1, q2) and B⊥(q1, q2) be finite state automata recognising C l (L−

α(q1, q2)), C l (L+
α(q1, q2))

and C l (L⊥(q1, q2)) respectively. We let S subscripted with automata to indicate the states of
automata eg. SB−

α (q1,q2) to be the states of B−
α (q1, q2). Similarly, we let Initial,Final,δ sub-

scripted with the automata to indicate initial state, final state and transitions respectively.
As observed earlier, any word w ∈ C l (L(A,c,c ′)) can be rewritten as the concatenation

of three words (i.e., w = w1w2w3). The first word w1 is in B−
α1

(q, q1) ·B−
α2

(q1, q2) · · ·B−
α`

(q`−1,
q ′′

1 ) for some letters α1α2 · · ·α` and stack content γ such that ρ = α1α2 · · ·α`γ. The second
word w2 is in B⊥(q ′′

1 , q ′′
2 ) if γ = ⊥, and in {ε} (with q ′′

1 = q ′′
2 ) otherwise. The last word w3



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 45

is in B+
α′

1
(q ′′

2 , q ′
1) ·B+

α′
2
(q ′

1, q ′
2) · · ·B+

α′
`′

(q ′
`′−1, q ′) for some letters α′

1α
′
2 · · ·α′

`′ ∈ Γ such that ρ′ =
α′
`′α

′
`′−1 · · ·α′

1γ. Note that such a run has 3 phases namely decreasing phase, zero phase and
increasing phase. Hence our state space consists of states of the regular automata recognising
the closure languages along with states of A tagged with phase information. The state space
of B is given by Q×{+,−,⊥}∪⋃

p,p ′∈Q,α∈ΓSB−
α (p,p ′)∪SB+

α (p,p ′)∪SB⊥(p,p ′). The initial state is given
by (s,−) since we always start in a decreasing phase.

In the automata we construct, we intend to simulate the increasing, decreasing and zero
phases. Hence we need to add the transitions of these automata to PDS that we construct.
Note that the syntax of finite state automata differs from that of PDA. Hence for any (q, a,
q ′) ∈⋃

p,p ′∈Q,α∈ΓδB−
α (p,p ′) ∪δB+

α (p,p ′) ∪δB⊥(p,p ′) we add the transition (q,Int, a, q ′) to δ′.
The phase in our automata can transition from decreasing to zero and zero to increas-

ing phase, hence we add for all p ∈ Q, the set of transitions ((p,−),Int,ε, (p,⊥)), ((p,⊥),Int,
ε, (p,+)). During the decrease phase, the automaton B from the current state (say (p,−))
has to guess a return state (say (p ′,−)), pops the top of stack (say α) , simulate the automa-
ton B−

α (p, p ′) and finally returns to state (p ′,−). Hence we include in the transition ((p,−),
Pop(α),ε, InitialB−

α (p,p ′)) and (FinalB−
α (p,p ′),Int,ε, (p ′,−)). Similarly, we add the transitions ((p,

⊥),Zero,ε, InitialB⊥(p,p ′)) and (FinalB⊥(p,p ′),Int,ε, (p ′,⊥)) and ((p,+),Push(α),ε, InitialB+
α (p,p ′))

and (FinalB+
α (p,p ′),Int,ε, (p ′,+)) corresponding to the simulation of zero phase and increase

phase. Clearly such a construction allows at most 2-reversals, one during decrease phase and
another during the increase phase.
We prove the correctness of the construction below.

• C l (L(A,c,c ′)) ⊆ L(B , ((q,−),ρ), ((q ′,+),ρ′))
For every u ∈ C L(L(A,c,c ′)), we will now show that u ∈ L(B , ((q,−),ρ), ((q ′,+),ρ′)). Let u ∈
C L(L(A,c,c ′)), then there is a w ∈ L(A,c,c ′) such that c w−−→∗

c ′ (with u ∈C L(w)). Clearly
such a w can be split into words recognised in decreasing phase w1, the word recognised
in zero phase w2 and the word recognised in increasing phase w3. Clearly there is a γ run
(q,ρ) w1−−→∗

γ(q ′′
1 ,γ) w2−−→∗

γ(q ′′
2 ,γ) w3−−→∗

γ(q ′,ρ′). Note that now u can also be split as u1.u2.u3

where for i ∈ [1..3], ui ∈ C l (wi ). Let ρ = α1.α2. · · · .αn .γ, then (q,ρ) w1−−→∗
γ(q ′′

1 ,γ) can be
represented as

(q,α1.α2. · · · .αn .γ)
w 1

1−−→
∗
γ(q1,α2. · · · .αn .γ)

w 2
1−−→

∗
γ · · · w n

1−−−→
∗
γ(q ′′

1 ,γ)

i.e. the execution can be split into series of runs with one symbol from the stack popped
each time. Clearly u1 = u1

1.u2
1 · · ·un

1 with ui
1 ∈C l (w i

1). By definition of B−
α (p, p ′), it recognises

the closure of words of run from p with α on top of stack and ending at p ′ with α popped
(note that the zero test is not allowed). Clearly u1 ∈ B−

α1
(q, q1) and ui ∈ B−

αi
(qi−1, qi ) and

un ∈ B−
αn

(qn−1, q ′′
1 ). Since we have a transition in our construction of B from state (q,−) on

popping α1 to InitialB−
α1

(q,q1) and from FinalB−
α1

(q,q1) to (q1,−), we have a run of the form

((q,−),α1.α2. · · · .αn .γ)
u1

1−−→
∗

(q1,−),α2. · · · .αn .γ)

Reasoning similarly, we can find a corresponding run

((q,−),α1.α2. · · · .αn .γ)
u1

1−−→
∗

((q1,−),α2. · · · .αn .γ)
u2

1−−→
∗
· · · un

1−−→
∗

((q ′′
1 ,−),γ)



46 CHAPTER 3. SHARED MEMORY SYSTEMS

Similarly, we can find corresponding runs ((q ′′
1 ,⊥),γ) u2−−→∗

((q ′′
2 ,⊥),γ) and ((q ′′

2 ,+),

γ) u3−−→∗
((q ′,+),ρ′). This along with the fact that from a decreasing phase we can transi-

tion to zero phase and from zero phase to increasing phase, it is easy to see that there is a
run in B such that ((q,−),ρ) u−→∗

((q ′,+),ρ′)).
• L(B , ((q,−),ρ), ((q ′,+),ρ′)) ⊆C l (L(A,c,c ′))

We will now show that for every u ∈ L(B , ((q,−),ρ), ((q ′,+),ρ′)), we can find a w ∈ L(A,c,
c ′) such that u ∈ C l (w). Since u ∈ L(B , ((q,−),ρ), ((q ′,+),ρ′)), u can be split up as the word
recognised in decreasing, zero and increasing phases i.e. u = u1.u2.u3 such that

(q,−),ρ) u1−−→∗
((q ′′

1 ,−),γ)
ε→ ((q ′′

1 ,⊥),γ) u2−−→∗
((q ′′

2 ,⊥),γ)
ε→ ((q ′′

2 ,+),γ)
u3−−→∗

((q ′,+),ρ′) [ with u2 = ε and q ′′
1 = q ′′

2 if γ 6= ⊥]

Let ρ =α1.α2. · · · .αn .γ, then it is easy to see that the decreasing phase can be split up as

((q,−),α1.α2. · · · .αn .γ)
u1

1−−→
∗

((q1,−),α2. · · · .γ)
u2

1−−→
∗

((q2,−),α3. · · · .γ) · · ·
((qn−1,−),αn . · · · .γ)

un
1−−→

∗
((q ′′

1 ,−),γ)

where u1
1 ∈ L(B−

α1
(q, q1)), ui

1 ∈ L(B−
αi

(qi−1, qi )) and un
1 ∈ L(B−

αn
(qn−1, q ′′)). By construction,

for any v ∈ B−
α (p, p ′) there is a run from (p,α.γ) w−−→∗

(p ′,γ) in A with v ∈C l (w) (since there
is no zero test, there is a γ run for any γ). Hence there is a run (q,ρ) w1−−→∗

(q ′′
1 ,γ) in A. Using

similar argument we can find runs (q ′′
1 ,γ) w2−−→∗

(q ′′
2 ,γ) (w2 = ε if γ 6= ⊥) and (q ′′

2 ,γ) w3−−→∗
(q ′,

ρ′) in A, with u2 ∈C l (w2) and u3 ∈C l (w3). From this we have that w = w1.w2.w3 ∈ L(A,c,
c ′) and u ∈C l (w).

With the above lemma in place, we are ready to construct Bτ
p from a given

Aτ
p = (P,Γ,Σ,δ, s) such that for any give configuration c = (q,γ) of Aτ

p , L(Aτ
p ,c) = L(Bτ

p , ((q,
+),γ)). Note that the states of Aτ

p are of the form (q,m, i ) i.e. are tagged with memory and
the stage information. We let Si = {(q,m, i ) | (q,m, i ) ∈ P } i.e. the set of all states that are
tagged as stage i . The idea is to first construct a 2 reversal bounded automata for each
stage. For this purpose, we construct Aτ,i

p by restricting the states and transition to Si . i.e.

Aτ,i
p = (Si ,Γ,Σ,δi , s), s ∈ Si is any state, the initial state is not important as we will see later, let

δi = δ∩ (Si ×Op×Σε×Si ) i.e. the transitions restricted to stage-i states. Now for such a PDA,
by Lemma 7 we can construct a 2-reversal bounded PDA Bτ,i

p such that C l (L(Aτ,i
p , (q,ρ), (q ′,

ρ′))) = L(Bτ,i , ((q,−),ρ), ((q ′,+),ρ′)). In fact due to the nature of construction of Aτ
p , if τ(i ) = p

then we have that St (L(Aτ,i
p , (q,ρ), (q ′,ρ′)))↓= L(Aτ,i

p , (q,ρ), (q ′,ρ′)) and if τ(i ) 6= p then L(Aτ,i
p ,

(q,ρ), (q ′,ρ′)) ↑= L(Aτ,i
p , (q,ρ), (q ′,ρ′)). The idea now is to concatenate appropriate closures

of Bτ,i
p for each i . We choose Bτ,i

p to be downward closed when τ(i ) = p and upward closed

otherwise. The Bτ
p automaton is now simply defined as union of Bτ,i

p automata for i ∈ [1..k]

along with additional transitions. The states of Bτ
p are union of states of Bτ,i

p , the transitions

of Bτ
p are the union of transitions of Bτ,i

p , in addition to stage change transitions of the form



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 47

(((q,m, i ),+),Int, (m, i ), ((q,m, i +1),−)). i.e. for every state-i in increasing phase, we allow it
to transition into the next stage i +1 in decreasing phase. Note that in such a construction
the stack content remains the same across the stage boundaries. With this and Lemma 7, the
correctness of the construction is not difficult to see. This completes the proof of Lemma 6

Unfortunately, the emptiness of the intersection of even two 2-reversal bounded PDAs is
undecidable, as can be seen from an easy reduction from the Post’s correspondence problem
(PCP). The situation is quite different when the PDAs are counters. In fact, we can show:

Lemma 8. Let k be a natural number. Let A1 be a 2k turn PDA and A2, . . . , An a sequence of
2k-reversal bounded counter automata. Let ci be a configurations of Ai for all i : 1 ≤ i ≤ n.
Then, the problem of checking whether L(A1,c1)∩·· ·∩L(An ,cn) is not empty can be decided in
nondeterministic time that is polynomial in the size of Ai ,ci and k, and exponential in n.

For proving Lemma 8, we will first define PDS with reversal restricted counter. We will
then show that given a 2k-reversal bounded PDA and (n−1) number of 2k-reversal bounded
counter automata, deciding whether intersection of languages recognised by these system is
empty or not is decidable by reducing it to the reachability problem of a PDS equipped with
3k reversal restricted counters.

Definition 3 (Pushdown with reversal-restricted counters). Let n,k be two natural numbers,
β(i ) = {inc(i ),dec(i ),zero(i ) | i ∈ [1..n]}, and β̃(n) = ⋃n

i=1β(i ). Let A = (Q,Γ,Σ∪ β̃(n),δ, s) be a

PDS equipped with counters. For every i ∈ [1..n], we say that a run ρ = (q,γ) w−−→∗
A(q ′,γ′) is (k,

i )-reverse run iff the following conditions hold:

• w ↓β(i )∈ St (wi ) for some wi ∈ (β(i ))∗ such that |wi | ≤ k,
• |w[1.. j ]↓{dec(i)} | ≤ |w[1.. j ]↓{inc(i)} | for all j ∈ [1..|w |], and
• |w[1.. j ]↓{dec(i)} | = |w[1.. j ]↓{inc(i)} | for all j ∈ [1..|w |] such that w( j ) = zero(i ).

For every subset J ⊆ [1..n], the run ρ is (k, J )-reverse run iff it is (k, i )-reverse for all i ∈ J . We
use L(k,J )(A,c) to denote the set of words w such that there is (k, J )-reverse run of the form (s,
⊥) w−−→A c. For any (k, J )-reverse run of the form (s,⊥) w−−→A c, we will use ρi (w) to indicate the
current value of the counter-i . i.e. ρi (w) = |w ↓{inc(i)} |− |w ↓{dec(i)} |

Reversal restricted reachability Problem: Given two natural numbers n,k and a PDS A and
a configuration c, the (k,n)-reversal-restricted-reachability problem is to determine if there
is a (k, [1..n])-reverse run of the form (s,⊥) w−−→∗

Ac. We will also refer to this simply as reacha-
bility on pushdown with k reversal restricted counters.

Lemma 9. Let k be a natural number. Let A1 be a 2k reversal bounded PDA and A2, . . . , An a
sequence of 2k-reversal bounded counter automata. For i ∈ [1..n], let ci = (q f

i ,⊥) be any config-
urations of Ai . Then, the problem of checking whether L(A1,c1)∩·· ·∩L(An ,cn) is empty or not
can be reduced to 3k reversal restricted reachability on a PDS with n counters. Furthermore,
the size of P is polynomial in the size of Ai and k, and exponential in n.



48 CHAPTER 3. SHARED MEMORY SYSTEMS

Proof. We will fix the 2k-reversal bounded pushdown automaton to be A = (Q1,Γ1,Σ,δ1, s1)
and the 2k-reversal bounded counter automaton to be Ai = (Qi , {a,⊥},Σ,δi , si ) for all i : 2 ≤
i ≤ n. We will now show how to construct S = (Q,Γ,Σ∪β̃(n),∆, ŝ). The states of S will have the
product of states of PDA and the counter automata along with states that can count up to n.
i.e. Q = (Q1 × ·· ·×Qn)∪ (Q1 × ·· ·×Qn × [1..n]×Σ). We need the states that count up to n in
order to ensure that any move on input alphabet is made simultaneously by PDA and all the
counter automata. The initial state of S, ŝ = (s1, · · · , sn) is the initial states of the pushdown
automaton and the counter automata. The transition includes set of all epsilon moves of each
of the PDA and the counter system along with synchronised moves on any input alphabets.
For all (q1,Op,ε, q ′

1) ∈ δ1, for all qi ∈Qi , i ∈ [2..n], we have the transitions

((q1, q2, · · · , qn),Op,ε, (q ′
1, q2, · · · , qn)) ∈∆

For any (qi ,Op,ε, q ′
i ) ∈ δi with i 6= 1, we have for all q j ∈Q j such that j 6= i , the transitions

((q1, · · · , qi−1, qi , qi+1, · · · , qn),Int, x, (q1, · · · , qi−1, q ′
i , qi+1, · · · , qn)) ∈∆

where x = i nc(i ) if Op = Push(a), x = dec(i ) if Op = Pop(a), x = zer o(i ) if Op = Zero and
x = ε otherwise.

The transition relations ensures that any move on input symbol is made synchronously
by the pushdown automata and all the counter automatas. This is ensured using the counting
states which moves from one counter to another and returns to normal state only after each
of the counter automaton has executed a transition involving the symbol i.e. for every b ∈Σ,
every (q1,Op,b, q ′

1) ∈ δ1 and for all qi ∈Qi (2 ≤ i ≤ n), we have

((q1, q2, · · · , qn),Op,b, (q ′
1, q2, · · · , qn ,2,b)) ∈∆

For every j ∈ {2, ...,n −1}, (q j ,Op,b, q ′
j ) ∈ δ j and for all qi ∈Qi with i 6= j , we have

(q1, · · · , q j , · · · , qn , j ,b),Int, x j , (q1, · · · , q ′
j , · · · , qn , j +1,b) ∈∆

where x j = i nc( j ) if Op = Push(a), x j = dec( j ) if Op = Pop(a), x j = zer o( j ) if Op = Zero and
x j = ε otherwise

We also have the transition that takes us back to normal state once all the counter au-
tomata have executed a transition involving b. i.e. for all qi ∈ Qi , i ∈ [1..n − 1] , (qn ,Op,b,
q ′

n) ∈ δn and for xn defined as above, we have the transitions

((q1, q2, · · · , qn ,n,b),Int, xn , (q1, q2 · · · , q ′
n)) ∈∆

Since each counter automaton allows only runs that are at most 2k-reversals, it is easy
to see that for any run of our system, if we project only the operations of a counter (say i ), it
can be written as concatenation of at most k sequences of the form i nc(i )∗.dec(i )∗.zer o(i )∗.
Clearly such a sequence is at most 3 reversal restricted and hence the newly constructed sys-
tem allows only runs that are at most 3k reversal restricted. Furthermore the correctness of
our construction follows from the following straight forward Lemma.



3.5. BOUNDED-STAGE REACHABILITY OF RECURSIVE PROCESSES 49

Lemma 10. ((s1, · · · , sn),⊥) u−→∗
((q f

1 , · · · , q f
n ),⊥) is a (k, [1..n])-reverse run in S with |u ↓{inc(i)}

| = |u↓{dec(i)} | for all 2 ≤ i ≤ n iff for all i ∈ {1, ...,n}, we have (si ,⊥) w−−→∗
Ai (q f

i ,⊥) with w = u↓Σ.

The decidability of checking whether there exists a (k, [1..n])-reverse run of the form ((s1,

· · · , sn),⊥) u−→∗
((q f

1 , · · · , q f
n ),⊥) in S with |u ↓{inc(i)} | = |u ↓{dec(i)} | for all 2 ≤ i ≤ n follows from

the following lemma. The lemma states that the problem of deciding whether there is a re-
versal restricted run to a specific configuration is NP-COMPLETE .

Proposition 8 (Reversal restricted reachability Problem [85]). The reachability on pushdown
with reversal restricted counters is NP-COMPLETE.

Finally, Lemma 8 is an immediate consequence of Proposition 8 and Lemma 9. This finishes
the proof of Theorem 5.

The complexity of such a construction is as follows: The complexity of the |B | automaton
constructed in Lemma 7 is exponential on the size of |P |, from this, the size of Bτ

p that we
construct in Lemma 6 is exponential on the size of Aτ

p . Now in Lemma 9, the size of the
reversal bounded system P that we construct is polynomial in size of Bτ

p and exponential on

n. Such a P that we construct is specific to the τwe fixed earlier. There are nk possible choices
for τ. Hence the over all complexity for solving the bounded stage reachability problem is
equivalent to solving the 3k reversal restricted reachability on a pushdown with n counters
of size O(nk .|S|O(|S|.n)), where n is the number of processes, |S| =Σp∈I|Pp | and k is the number
of stages. This gives us the NEXPTIME upper bound.

Towards showing lower bounds for the problem, we will reduce the problem of check-
ing emptiness for the intersection of a collection of n finite automata (which is known to be
PSPACE complete) to the n-stage bounded reachability problem for SCPS with n counters to
obtain the following Theorem.

Theorem 9. The stage-bounded reachability problem for SCPS consisting only of counter sys-
tems is PSPACE-HARD.

Proof. Let (Ai )1≤i≤n be the given collection of FA. We use n counters C1 to Cn and n stages.
In the first stage the counter C1 guesses a word w and writes it letter by letter on the memory
(taking care to eliminate stuttering) while incrementing its counter by n − 1 for each such
letter. While doing this it also simulates the automaton A1 on this word verifying that w is
accepted by A1. In this stage, each counter Ci , 2 ≤ i ≤ n, reads the values written on the
memory by C1 and verifies that the word wi it reads is accepted by Ai . It also records the the
length of wi in its counter. Of course, wi ¹ w and so at the end of this stage, writing ci for the
value of counter i we have c1 = (n −1).|w | and |wi | = ci ≤ c1 for each 2 ≤ i ≤ n.

In stage i , 2 ≤ i ≤ n, the counter Ci writes as many values as ci to the shared memory
and C1 reads and reduces the value of its counter by the number of values it reads. The run
is accepting only if C1 is empty at the end of stage n. Notice that this may happen if and only
if ci = c1 (and the communication in all the stages were loss-free) and thus wi = w for all
2 ≤ i ≤ n. Thus, the emptiness of the intersection reduces to the n-stage reachability in this
SCPS.



50 CHAPTER 3. SHARED MEMORY SYSTEMS

3.6 Conclusion

In this chapter, we introduced shared memory concurrent pushdown system and showed
that for such models, even one bit shared memory is sufficient to simulate two counter sys-
tem. We then went on to introduce a restriction called stage bounding. We showed that the
stage bounding by itself is not enough to get decidability. We showed that two pushdowns
and a counter system are enough to get undecidability for reachability under stage bounded
restriction. We then showed that if we restrict ourselves to one pushdown and multiple coun-
ters, it is possible to decide the reachability problem in NEXPTIME. We first showed that it is
possible to reduce the k stage bounded reachability problem on SCPS to language intersec-
tion of 2k reversal bounded counters automata with a pushdown automata. The size of such
2k reversal bounded counters automata that we constructed is exponential in the size of the
SCPS. Later we show that deciding intersection of 2k reversal bounded counter system with
a pushdown system can be reduced to reachability on pushdown with 3k reversal restricted
counters, which is known to be NP-COMPLETE. The complexity of our construction is expo-
nential in the size of the SCPS and on the number of processes. The exponential dependency
on the size of the SCPS arises mainly because we use the exponential time algorithms avail-
able for computing the downward and upward closures of pushdown automata. This leads
to an exponential sized pushdown with reversal bounded counter system that we construct.
However, what we really need is an algorithm that works on counter automata. The question
arises as to whether we can do away with this exponent by providing a more efficient down-
ward and upward closures for counter automata. We will show in subsequent chapter that
this is indeed possible.



Chapter 4

Regular abstractions of one counter
automata

4.1 Introduction

A very well known result called the Higmans’s Lemma [81], states that any upward closed lan-
guage has only finite number of minimal elements under the subword relation. As an easy
consequence we have that every upward closed language is regular and consequently every
downward closed language is regular as well. Given a language L, a natural problem is then
to construct a finite automaton for L↑ (upward closure of L) and L↓ (downward closure of L)
from a finite representation of L. However, this may not always be possible. Emptiness of
L is equivalent to the emptiness of L↑ or L↓ and thus such an effective construction cannot
exist for any class for which emptiness is undecidable. Even for classes that have a decid-
able emptiness problem, the effective construction of such finite automata is an interesting
problem.

Another abstraction that may be applied to a language is the Parikh image abstraction.
Parikh image of a word w ∈Σ∗ denoted Parikh(w) is a vector v ∈N|w | that counts the number
of occurrences letters of Σ in w . The Parikh image of a language L, written Parikh(L) is the set
of vectors containing the Parikh images of the words of L.

It has long been known that all three abstractions can be effectively computed for context-
free languages (CFL), by the results of van Leeuwen [139] and by what is now referred to as
the Parikh theorem [121]. For the Parikh image of CFLs, a number of constructions have been
proposed as well [139, 75, 55, 28]; we refer the reader to the paper by Esparza, Ganty, Kiefer,
and Luttenberger [62] for a survey and state-of-the-art results: exponential upper and lower
bounds on the size of NFA for (L). Algorithms performing these tasks, as well as finite au-
tomata recognizing them, are now widely used as building blocks in the language-theoretic
approach to verification. Recall that the downward and upward closures were used in chapter
3 for solving the bounded stage reachability problem over shared memory concurrent push-
down systems. There are also other places where computing upward and downward closures
occurs as an ingredient in the analysis of systems communicating via shared memory, see,
e.g.,[23, 20, 111]. The recent paper [99] shows that for parametrized networks of systems

51



52 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

communicating via shared memory, the decidability hinges on the ability to compute down-
ward closures. Parikh-images as an abstraction in the verification of infinite state systems has
been extensively used (see e.g.,[3, 92, 79, 61, 131, 22, 65, 72, 4]).

Effective constructions for the downward closure have been developed for Petri nets [76]
and stacked counter automata [147]. The paper [148] gives a sufficient condition for a class
of languages to have effective downward closures; this condition has since been applied to
higher-order pushdown automata [78]. The effective regularity of the Parikh image is known
for phase-bounded and scope-bounded multi-stack visibly pushdown languages [137, 102],
and availability languages [4].

The family of languages recognised by one counter automata is more than the class of reg-
ular languages but less than the class of context-free languages. From verification perspec-
tive, the class of counter automata has proved to be an useful infinite-state model [12, 104].
In this chapter, we consider the complexity of these abstractions on languages accepted by
one counter automata.

We first show how to obtain a polynomial sized NFA for L↑,L↓, when L is a language of a
counter automata. While the construction of L↑ is fairly straight forward, the construction of
L↓ is involved.

As an application, we consider the shared-memory concurrent pushdown systems that
we saw in chapter 3. There we showed that the reachability of such systems in the bounded
stage setting was NEXPTIME. Specifically, given an SCPS S = (I,P,m0), we reduce the k
bounded stage reachability problem to a reversal bounded pushdown system, whose size
is O(nk .|S||S|.n), where n = |I|. We show in this chapter on how to eliminate the exponential
dependancy on the size of the system. Hence reducing the exponential dependency only on
the number of processes.

We then consider the Parikh image abstractions for the languages of the class of counter
automata. We provide an quasi-polynomial solution for this problem. Given a counter au-
tomata A , we show how to construct a suitable NFA of size O(|Σ|.|A |O(l og (|A|))). This con-
struction proceeds in two steps. In the first step, we show that it is enough to restrict our
attention to only runs with at most polynomially many reversals. The next step works for a
reversal bounded pushdown automata as well. We show in this step, that a given reversal
bounded pushdown system can be transformed in to another pushdown system (with the
same Parikh image) with logarithmic bound on its stack size.

4.2 Counter automata

We first recall that the counter automata is defined as a tuple C = (Q,Σ,δ, s,F ), where the
transitions can be of the form δ⊆Q × {Int,Dec,Zero,Inc}×Σε×Q. We first show that in order
to compute the upward, downward closure and the Parikh image abstraction, it is sufficient
to compute it for only the positive runs. The intuitive explanation for this is, any run of a
counter automata can be broken up as a positive part, followed by a zero test part, followed
by a positive part, and so on. The part which only performs the zero test part does not require
a counter. Hence if each of these positive parts and zero test parts can be abstracted as a finite
state automata, then they can be stitched together to get the abstraction of the entire run. We



4.2. COUNTER AUTOMATA 53

formalise this idea in the next subsection.

4.2.1 Simplified counter automata

We are interested in computing an efficient finite representation of the downward closure,
the upward closure and the Parikh image abstraction for a counter automata. We first show
that it suffices to consider only a subclass of counter automata called the simplified counter
automata, which has the following properties

• There are no zero tests.
• There is a unique final state i.e. F = { f }.
• Only runs of the from (s,0)−→∗( f ,0) are considered accepting.

We will first prove that it suffices to consider closures on such simplified counter au-
tomata. Once we obtain an algorithm for this subclass, it can easily be extended with at-
most polynomial blow up to compute closures on the general counter automata. Given a
counter automata C = (Q,Σ,δ, s,F ), we will let L+

q,q ′(C ) to be the set of all words accepted by

a run from configuration (q,0) to configuration (q ′,0), not involving any zero test. We will
in sequel show that for every pair of states q, q ′ ∈ Q, if there is an automata Bq,q ′ such that
L(Bq,q ′) = L+

q,q ′(C )↓, then there is an automata B such that L(B) = L(C )↓. Further size of the
automata is at most linear in size of Σq,q ′∈Q |Bq,q ′ | and size of C . Though we show this only for
downward closure, such a Lemma can easily be extended to other abstractions (i.e. upwards
closure and Parikh image ).

Lemma 11. Given a counter automata C = (Q,Σ,δ, s,F ) and for every q, q ′ ∈ Q an NFA Bq,q ′ ,
such that L(Bq,q ′) = L+

q,q ′(C )↓, we can construct an automata B = (QB ,Σ,∆B , s,F ) such that
L(B) = L(C )↓. Further |B | =Σq,q ′∈Q |Bq,q ′ |+ |C |

Proof. Before we prove the Lemma, we will first introduce −→∗
Z to mean a subcomputation

of the form c1−→∗c2 · · ·−→∗cn such that value of the counter in each of the configurations is
0. We will let Lz

q,q ′ = {w | (q,0) w−−→∗
Z (q ′,0)} ( words of runs not involving the stack). Now,

let w ∈ L(C ), then it is easy to see that w can be split as w = w0.w1.w2 · · ·w2n such that for
i ∈ [0..n], w2i ∈ Lz

qi ,qi+1
(C ) and w2i+1 ∈ L+

q2i+1,q2i+2
(C ) i.e. it can be split as alternating sequence

of subwords, one involving no stack operation and the other involving no zero tests. It is also
easy to see that u ∈ w↓ iff u ∈ w0↓ .w1↓ .w2↓ · · ·w2n↓. We have assumed that we have a NFA
Bq,q ′ such that L+

q,q ′(C )↓= L(Bq,q ′). An NFA for Lz
q,q ′(C ) can be obtained by deleting from C all

the moves that modify the counter.
Using these facts, we will formally describe the construction of B automata. For this pur-

pose, for any q, q ′ ∈Q we will use State(Bq,q ′), Initial(Bq,q ′),Final(Bq,q ′) and∆(Bq,q ′) to refer to
the states, initial state, final state and transitions of Bq,q ′ respectively. Further we will assume
that state space of each Bq,q ′ is distinct.

• The states of B automata are given by QB =Q ∪⋃
q,q ′∈Q State(Bq,q ′)

• The transition relations are defined as below.

1. For all q, q ′ ∈Q, we have ∆(Bq,q ′) ⊆∆B .



54 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

2. For each transition of the form (q,Int, a, q ′) ∈∆ and (q,Zero, a, q ′) ∈∆, we have the tran-
sition (q, a, q ′) ∈∆B and a transition for downward closure (q,ε, q ′) ∈∆B .

3. We further have for all q, q ′ ∈Q, the transitions (q,ε, Initial(Bq,q ′)) ∈∆B and (Final(Bq,q ′),
ε, q ′) ∈∆B

The correctness of such a construction is easy to see, suppose w ∈ L(B), then there is
a run of the form q0

u1−−→∗
q1

v1−−→∗
q2

u2−−→∗
q3 · · · such that the transitions used in generating

ui ’s are from 2 and transitions used in generating vi ’s are from 1 and 3. It is easy to see
that each transition in the sequence qi

ui−−→∗
qi+1 can easily be simulated by it correspond-

ing transition in ∆, hence we have the run of the form (qi ,0)
u′

i−−→
∗

(qi+1,0) where ui ¹ u′
i . The

runs of the form qi
vi−−→∗

qi+1 actually look like qi → Initial(Bqi ,qi+1 ) vi−−→∗
Final(Bqi ,qi+1 ) → qi+1.

Now by definition, corresponding to the run Initial(Bqi ,qi+1 ) vi−−→∗
Final(Bqi ,qi+1 ), there is a run

(qi ,0)
v ′

i−−→
∗

(qi+1,0) such that vi ¹ v ′
i . Now combining these runs, we get the required run in

counter automata.
For the other direction, suppose w ′ ∈ L(C )↓, then there is a corresponding run in C

of the form π = (q0,0) w−−→∗
(qn ,0), such that w ′ ¹ w . Notice that such a run can be split

as (q0,0) u1−−→∗
Z (q1,0) v1−−→∗

(q2,0) u2−−→∗
Z (q3,0) · · · (qn ,0), where the runs (qi ,0) vi−−→∗

(qi+1,0) do
not involve a zero test. Let u′

1,u′
2, · · · ,u′

n , v ′
1, v ′

2, · · · , v ′
n be such that v ′

i ¹ vi , u′
i ¹ ui and

u′
1v ′

1u′
2v ′

2 · · ·u′
n v ′

n = w .

Clearly corresponding to runs of the form (qi ,0) vi−−→∗
(qi+1,0), for every v ′′

i ¹ vi there

is a run of the form Initial(Bqi ,qi+1 )
v ′′

i−−→
∗

Final(Bqi ,qi+1 ). This we get because L(Bqi ,qi+1 ) =
L+

qi ,qi+1
(C )↓. Hence there is a run of the form Initial(Bqi ,qi+1 )

v ′
i−−→

∗
Final(Bqi ,qi+1 ) in B . Simi-

larly, corresponding to runs of the form (qi ,0) ui−−→∗
Z (qi+1,0), it is easy to see that we have a

run of the form q0
u′

1−−→
∗

q1 in B . Now combining these runs with transitions in 3, we get the
required joint run in B .

The above construction can be extended to other closures as well and hence, for the
rest of the sections in this chapter, we will limit our attention to the subclass of simplified
counter automata. In rest of the chapter, when we say counter automata, we mean a simpli-
fied counter automata (unless specified otherwise).

4.3 Computing upward closures

In this subsection, we will show that for any simplified counter automata A , we can construct
in polynomial time, a NFA that accepts L(A )↑. This easy construction follows the argument
traditionally used to bound the length of the shortest accepting run in the pushdown au-
tomata. We use the following notation in what follows: for a run ρ and an integer D we write
ρ[D] to refer to the run ρ′ obtained from ρ by replacing the counter value v by v +D in every
configurations along the run.



4.4. COMPUTING DOWNWARD CLOSURES 55

Lemma 12. Let A = (Q,Σ,δ, s,F ) be a counter automata and let w be a word accepted by A .
Then there is a word y ¹ w in L(A ) such that y is accepted by a run where the value of the
counter never exceeds |Q|2 +1.

Proof. We show that for any accepting run ρ reading a word w , there is an accepting run ρ′,
reading a word y ¹ w , in which the maximum value of the counter does not exceed |Q|2 +1.
We prove this by double induction on the maximum value of the counter and the number of
times this value is attained during the run ρ.

If the maximum value is below |Q|2 +1 there is nothing to prove. Otherwise let the max-
imum value m > |Q|2 + 1 be attained c times along ρ. We break the run up into segments
ρ = ρ0ρ1ρ2ρ3 . . .ρmρ

′
m−1 . . .ρ′

2.ρ′
1.ρ′

0 where

1. ρ0ρ1ρ2 . . .ρm is the shortest prefix of ρ after which the counter attains the value m.
2. ρ0ρ1ρ2 . . .ρi is the longest prefix of ρ0ρ1ρ2 . . .ρm after which the counter value is i , 1 ≤ i ≤

m −1.
3. ρ0ρ1ρ2 . . .ρm .ρ′

m−1 . . .ρ′
i , is the shortest prefix of ρ with ρ0ρ1ρ2 . . .ρm as a prefix and after

which the counter value is i , 0 ≤ i ≤ m −1.

Let the configuration reached after the prefix ρ0 . . .ρi be (pi , i ), for 1 ≤ i ≤ m. Similarly let the
configuration reached after the prefix ρ0ρ1ρ2 . . .ρm .ρ′

m−1 . . .ρ′
i be (qi , i ), for 0 ≤ i ≤ m −1.

Now we make two observations: firstly, the value of the counter never falls below i during
the segment of the run ρi+1 . . .ρ′

i — this is by the definition of the ρi s and ρ′
i s. Secondly,

there are i < j such that pi = p j and qi = q j — this is because m ≥ |Q|2 + 1. Together this
means that we may shorten the run by deleting the sequence of transitions corresponding
to the segment ρi+1 . . .ρ j leading from (pi , i ) to (p j , j ) and the sequence corresponding to
the segment ρ′

j−1 . . .ρ′
i from (q j , j ) to (qi , i ) and still obtain a valid run of the system. That is,

ρ0ρ1 . . .ρiρ j+1[−m]ρ j+2[−m] . . .ρ′
j [−m]ρ′

i−1 . . .ρ′
0 is a valid run, where m = j − i . Clearly the

word accepted by such a run, say y ′ is a subword of w , and further this run has at least one
fewer occurrance of the maximal counter value m. Thus the Lemma follows by applying the
induction hypothesis to this run and using the fact that the subword relation is transitive.

The set of words in L(A ) accepted along runs where the value of the counter does not
exceed |Q|2 +1 is accepted by an NFA with |Q|.(|Q|2 +1) states (it keeps the counter values as
part of the state). Combining this with the standard construction for upward closure for NFAs
we get

Theorem 10. There is a polynomial-time algorithm that takes as input a counter automata
A = (Q,Σ,δ, s,F ) and computes an NFA with O(|A |3) states accepting L(A )↑.

4.4 Computing downward closures

Next we show a polynomial time procedure that constructs an NFA accepting downward clo-
sure of the language of a simplified counter automata.

First we extend the definition of configurations to values where the counters come from

Z rather than N. Formally, the set of transitions defines the one step move relation
τ=⇒ (with

τ ∈ δ) on configurations as follows.



56 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

1. τ= (q, a,Int, q ′). Then, (q,n)
τ=⇒ (q ′,n) for all n ∈Z. Internal move.

2. τ= (q, a,Dec, q ′). Then, (q,n)
τ=⇒ (q ′,n −1) for all n ∈Z. Decrement move.

3. τ= (q, a,Inc, q ′). Then, (q,n)
τ=⇒ (q ′,n +1) for all n ∈Z. Increment move.

This extends naturally to sequences of transitions: (q,n)
ε=⇒ (q,n) and (q,n)

σ.τ==⇒ (q ′,n′) if there

is (q ′′,n′′) such that (q,n)
σ=⇒ (q ′′,n′′) and (q ′′,n′′)

τ=⇒ (q ′,n′). We call this a free run on the
sequence of transitions σ.

Remark: We observe that if ρ = (q0,n0)
a1=⇒ (q1,n1) . . . ,

ai=⇒ (qi ,ni ) . . .
ak=⇒ (qk ,nk ) and m is an integer,

positive or negative, then ρ[m] = (q0,n0+m)
a1=⇒ (q1,n1+m) . . . ,

ai=⇒ (qi ,ni +m) . . .
ak=⇒ (qk ,nk +m) is also

a free run.

Finally, note that any free run in which the counter values are always ≥ 0 is a run. We first
prove a couple of useful lemmas that will lead us to our polynomial time construction.

Let A = (Q,Σ,δ, s,F = { f }) be any counter automata and let K = |Q|. Consider any run ρ

of A from a configuration (p, i ) to a configuration (q, j ). If the value of the counter increases
(resp. decreases) by at least K in ρ then, it contains a segment that can be pumped (or iter-
ated) to increase (resp. decrease) the value of the counter. If the increase in the value of the
counter in this iterable segment is k then by choosing an appropriate number of iterations
we may increase the value of the counter at the end of the run by any multiple of this k. Quite
clearly, the word read along this iterated run will be a superword of word read along ρ. The
following Lemmas,whose proof is a simplified version of that of Lemma 12, formalize this.

Lemma 13. Let (p, i ) x−→∗
(q, j ) with j − i > |Q|. Then, there is an integer k > 0 such that for

each N ≥ 1 there is a run (p, i ) w−−→∗
(p ′, j +N .k), where w = y1.(y2)N+1.y3, with x = y1 y2 y3.

Proof. Consider the run (p, i ) x−→∗
(q, j ) and break it up as

(p, i ) = (pi , i ) x1−−→∗
(pi+1, i +1) x2−−→∗

(pi+2, i +2) . . .
x j−−→∗

(p j , j ) x ′−−→∗
(q, j )

where the run (pi , i ) x1−−→∗
. . . xr−−→∗

(pr ,r ) is the shortest prefix after which the value of the
counter attains the value r . Since j − i > K it follows that there are r,r ′ with i ≤ r < r ′ ≤ j
such that pr = pr ′ . Clearly one may iterate the segment of the run from (pr ,r ) to (pr ,
r ′) any number of times, say N ≥ 1, to get a run (p, i ) w−−→∗

(q, j + (r ′ − r )N ). where w =
x1 . . . xr (xr+1 . . . xr ′)N+1xr+1 . . . xk . Setting k = r ′− r yields the Lemma.

An analogous argument shows that if the value of the counter decreases by at least K in
ρ then we may iterate a suitable segment to reduce the value of the counter by any multiple
of k ′ (where the k ′ is the net decrease in the value of the counter along this segment) while
reading a superword. This is formalized as

Lemma 14. Let (q ′, j ′) z−→∗
(p ′, i ′) with j ′− i ′ > K . Then, there is an integer k ′ > 0 such that for

every N ≥ 1 there is a run (q ′, j ′+N .k ′) w=y1(y2)N+1 y3−−−−−−−−−−−→
∗

(p ′, i ′), with z = y1 y2 y3.

Proof. We break the run into segments as:

(q ′, j ′) = (q j ′ , j ′)
z j ′−1−−−−→∗

(q j ′−1, j ′−1)
z j ′−2−−−−→∗

(q j ′−2, j ′−2) . . .
zi ′−−→∗

(qi ′ , i ′) z ′−−→∗
(p ′, i ′)



4.4. COMPUTING DOWNWARD CLOSURES 57

where (q ′, j ′) = (q j ′ , j ′)
z j ′−1−−−−→∗

(q j ′−1, j ′ − 1)
z j ′−2−−−−→∗

(q j ′−2, j ′ − 2) . . . zt−−→∗
(qt , t ) is the shortest

prefix after which the value of counter is t . Since j ′ − i ′ > K it follows that there are t , t ′

such that j ′ ≥ t > t ′ ≥ i ′ such that qt = qt ′ . Then, starting at any configuration (qt ,R) with
R = t+(t−t ′)N , N ∈N, we may iterate the transitions in the run (qt , t )−→∗(qt ′ , t ′), an additional

N times. In particular this yields a run (qt , t+(t−t ′)N ) z ′′−−→∗
(qt ′ , t ′) where z ′′ = (zt−1 . . . zt ′)N+1.

Observe that zt−1 . . . z ′
t is a subword of z ′′. Finally, notice that this also means that (q ′,

j ′+N .(t − t ′)) z1...zt−−−−→∗
(qt , t +N .(t − t ′)) z ′′−−→∗

(qt ′ , t ′) zt ′+1...zi−−−−−−→∗
(p ′, i ′). Taking k ′ = (t − t ′) com-

pletes the proof.

A consequence of these somewhat innocous Lemmas is the following interesting fact: we
can turn a triple consisting of two runs, where the first one increases the counter by at least
K and the second one decreases the counter by at least K , and a free-run that connects them,
into a real run provided we are content to read a superword along the way.

Lemma 15. Let (p, i ) x−→∗
(q, j )

y=⇒ (q ′, j ′) z−→∗
(p ′, i ′), with j − i > K and j ′− i ′ > K . Then, there

is a run (p, i ) w−−→∗
(p ′, i ′) such that x y z ¹ w.

Proof. Let the lowest value of counter in the entire run be m. If m ≥ 0 then the given free run
is by itself a run and hence there is is nothing to prove. Let us assume that m is negative.

First we use Lemma 13, to get a k and an x ′ for any N > 1 and a run (p, i ) x ′−−→∗
(q, j +

k.N ) with x ¹ x ′. We can then extend this to a run (p, i ) x ′−−→∗
(q, j +k.N )

y=⇒ (q ′, j ′+k.N ), by
choose any N such that k.N > m. Then, we have that the value of the counter is ≥ 0 in every

configuration of this run. Thus (p, i ) x ′−−→∗
(q, j +k.N )

y−→∗
(q ′, j ′+k.N ) for any such N . Now,

we apply Lemma 14 to the run (q ′, j ′) z−→∗
(p ′, i ′) to obtain the k ′. We now set our N to be a

value divisible by k ′, say k ′.I . Thus, (p, i ) x ′−−→∗
(q, j+k.k ′.I )

y−→∗
(q ′, j ′+k.k ′.I ) and now we may

again use Lemma 14 to conclude that (q ′, j ′+k.k ′.I ) z ′′−−→∗
(p ′, i ′) with x ¹ x ′ and z ¹ z ′′. This

completes the proof.

Interesting as this may be, this Lemma still relies on the counter value being recorded
exactly in all the three segments in its antecedent and this is not sufficient. In the next step,
we weaken this requirement (while imposing the condition that q = q ′ and j = j ′) by releasing
the (free) middle segment from this obligation.

Lemma 16. Let (p, i ) x−→∗
(q, j ),(q, j ) z−→∗

(p ′, i ′), with j − i > K and j ′− i ′ > K . Let there be a
free run from q to q that reads y. Then, there is a run (p, i ) w−−→∗

(p ′, i ′) such that x y z ¹ w.

Proof. Let the given free-run result in (q, j )
y=⇒ (q, j +d) (where d is the net effect of the free

run on the counter, which may be positive or negative). Iterating this free-run m times yields

a free-run (q, j )
ym

=⇒ (q, j+m.d), for any m ≥ 0. Next, we use Lemma 13 to find a k > 0 such that
for each N > 0 we have a run (p, i ) xN−−→∗

(q, j +N .k) with x ¹ xN . Similarly, we use Lemma 14

to find a k ′ > 0 such that for each N ′ > 0 we have a run (q, j +N ′.k ′) yN ′−−−→∗
(p ′, i ′) with y ¹ yN ′ .

Now, we pick m and N to be multiples of k ′ in such a way that N .k +m.d > 0. This can
always be done since k is positive. Thus, N .k +m.d = N ′.k ′ with N ′ > 0. Now we try and



58 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

combine the (free) runs (p, i ) xN−−→∗
(q, j +N .k), (q, j +N .k)

ym

=⇒ (q, j +N .k +m.d) and (q, j +
N ′.k ′) yN ′−−−→∗

(p ′, i ′) to form a run. We are almost there, as j +N .k +m.d = j +N ′.k ′. However,
it is not guaranteed that this combined free-run is actually a run as the value of the counter

may turn negative in the segment (q, j +N .k)
ym

=⇒ (q, j +N .k +m.d). Let −N ′′ be the smallest
value attained by the counter in this segment. Then by replacing N by N +N ′′.k ′ and N ′ by
N ′+N ′′.k we can manufacture a triple which actually yields a run (since the counter values
are ≥ 0), completing the proof.

With Lemma 16 in place we can now explain how to relax the usage of counters. Let us
focus on runs that are interesting, that is, those in which the counter value exceeds K at some
point. Any such run may be broken into 3 stages: the first stage where counter value starts
at 0 and remains strictly below K + 1, a second stage where it starts and ends at K + 1 and
a last stage where the value begins at K and remains below K and ends at 0 (the 3 stages
are connected by two transitions, an increment and a decrement). Suppose, we write the
given accepting run as (p,0) w1−−→∗

(q,c) w2−−→∗
(r,0) where (q,c) is a configuration in the second

stage. If a ∈ Σ is a letter that may be read in some transition on some free run from q to
q . Then, w1aw2 is in L(A)↓. This is a direct consequence of Lemma 16. It means that in
the configurations in the middle stage we may freely read certain letters without bothering
to update the counters. This turns out to be a crucial step in our construction. To turn this
relaxation idea into a construction, the following seems a natural.

We make an equivalent, but expanded version of A . This version has 3 copies of the state
space: The first copy is used as long as the value of the counter stays below K + 1 and on
attaining this value the second copy is entered. The second copy simulates A exactly but
nondeterministically chooses to enter third copy whenever the counter value is moves from
K +1 to K . The third copy simulates A but does not permit the counter value to exceed K . For
every letter a and state q with a free run from q to q along which a is read on some transition,
we add a self-loop transition to the state corresponding to q in the second copy that does not
affect the counter and reads the letter a. This idea has two deficiencies: first, it is not clear
how to define the transition from the second copy to the third copy, as that requires knowing
that value of the counter is K +1, and second, this is still a counter automata (since the second
copy simply faithfully simulates A ) and not an NFA.

Suppose we bound the value of the counter by some value U in the second stage. Then
we can overcome both of these defects and construct a finite automaton as follows: The state
space of the resulting NFA has stages of the form (q, i , j ) where j ∈ {1,2,3} denotes the stage
to which this copy of q belongs. The value i is the value of the counter as maintained within
the state of the NFA. The transitions interconnecting the stages go from a state of the form
(q,K ,1) to one of the form (q ′,K +1,2) (while simulating a transition involving an increment)
and from a stage of the form (q,K +1,2) to one of the form (q ′,K ,3) (while simulating a decre-
ment). The value of i is bounded by K if j ∈ {1,3} while it is bounded by U if j = 2. (States
of the form (q, i ,2) also have self-loop transitions described above.) By using a slight gener-
alization of Lemma 16, which allows for the simultaneous insertion of a number of free runs
(or by applying the Lemma iteratively), we can show that any word accepted by such a finite
automaton lies in L(A )↓. However, there is no guarantee that such an automaton will accept



4.4. COMPUTING DOWNWARD CLOSURES 59

every word in L(A )↓. The second crucial point is that we are able to show that if U ≥ K 2+K +1
then every word in L(A ) is accepted by this 3 stage NFA. We show that for each accepting run
ρ in A there is an accepting run in the NFA reading the same word. The proof is by a double
induction, first on the maximum value attained by the counter and then on the number of
times this value is attained along the run. Clearly, segments of the run where the value of
the counter does not exceed K 2 +K +1 can be simulated as is. We then show that whenever
the counter value exceeds this number, we can find suitable segments whose net effect on
the counter is 0 and which can be simulated using the self-loop transitions added to stage 2
(which do not modify the counters), reducing the maximum value of the counter along the
run. We now present the formal details.
We begin by describing the NFA AU where U ≥ K +1.

AU = (Q1 ∪Q2 ∪Q3,Σ,∆, iU ,FU })

where Q1 =Q × {0 . . .K }× {1}, Q2 =Q × {0 . . .U }× {2} and Q3 =Q × {0 . . .K }× {3}. We let iU = (s,
0,1) and FU = {( f ,0,1), ( f ,0,3) | f ∈ F }. The transition relation is the union of the relations ∆1,
∆2 and ∆3 defined as follows:

Transitions in∆1:

1. (q,n,1)
a→ (q ′,n,1) for all n ∈ {0 . . .K } whenever (q,Int, a, q ′) ∈ δ.

Simulate internal move.
2. (q,n,1)

a→ (q ′,n −1,1) for all n ∈ {1 . . .K } whenever (q,Dec, a, q ′) ∈ δ.
Simulate decrement.

3. (q,n,1)
a→ (q ′,n +1,1) for all n ∈ {0 . . .K −1} whenever (q,Inc, a, q ′) ∈ δ.

Simulate an increment.
4. (q,K ,1)

a→ (q ′,K +1,2) whenever (q,Inc, a, q ′) ∈ δ.
Simulate an increment and shift to second phase.

Transitions in∆2:

1. (q,n,2)
a→ (q ′,n,2) for all n ∈ {0 . . .K 2 +K +1} whenever (q,Int, a, q ′) ∈ δ.

Simulate internal move.
2. (q,n,2)

a→ (q ′,n −1,2) for all n ∈ {1 . . .K 2 +K +1} whenever (q,Dec, a, q ′) ∈ δ.
Simulate decrement.

3. (q,K +1,2)
a→ (q ′,K ,3) whenever (q,Dec, a, q ′) ∈ δ.

Simulate decrement and shift to third phase.
4. (q,n,2)

a→ (q ′,n +1,2) for all n ∈ {0 . . .K 2 +K } whenever (q,Inc, a, q ′) ∈ δ.
Simulate an increment move.

5. (q,n,2)
a→ (q,n,2) whenever (q, a) ∈ S where S = {(q, a) | q

w=⇒ q, a ¹ w}. Freely simulate
loops.

Transitions in∆3:

1. (q,n,3)
a→ (q ′,n,3) for all n ∈ {0 . . .K } whenever (q, a,Int, q ′) ∈ δ.

Simulate internal move.



60 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

2. (q,n,3)
a→ (q ′,n −1,3) for all n ∈ {1 . . .K } whenever (q, a,Dec, q ′) ∈ δ.

Simulate decrement.
3. (q,n,3)

a→ (q ′,n +1,3) for all n ∈ {0 . . .K −1} whenever (q, a,Inc, q ′) ∈ δ.
Simulate an increment move.

The following Lemma, which is easy to prove, states that the first and third phases simu-
late faithfully any run where the value of the counter is bounded by K .

Lemma 17.

1. If (q, i , l ) w−−→∗
(q ′, j , l ) in AU then (q, i ) w−−→∗

(q ′, j ) in A , for l ∈ {1,3}.
2. If (q, i ) w−−→∗

(q ′, j ) in A through a run where the value of the counter is ≤ K in all the config-
urations along the run then (q, i , l ) w−−→∗

(q ′, i , l ) for l ∈ {1,3}.

Proof. Follows directly from the construction, we have an equivalent transition manipulating
the counter stored in the state, for every transition in the original counter system.

The next Lemma extends this to runs involving the second phase as well. All moves other
than those simulating unconstrained free runs can be simulated by A . The second phase of
AU can also simulate any run where the counter is bounded by U .

Lemma 18.1. If (q, i , l ) w−−→∗
(q ′, j , l ′) is a run of AU in which no transition from ∆2 of type 5 is

used then (q, i ) w−−→∗
(q ′, j ) is a run of A .

2. If ρ = (q0, i0) a1−−→∗
(q1, i1) a2−−→∗

. . . am−−−→∗
(qm , im) is a run in A in which the value of the counter

never exceeds K 2 +K +1 then ρ′ = (q0, i0,2) a1−−→∗
(q1, i1,2) a2−−→∗

. . . am−−−→∗
(qm , im ,2) is a run in

AU .

Proof. The proof of this again directly follows from the fact that for every move in counter
system M , we have an equivalent transition in AU .

Now, we are in a take the first step towards generalizing Lemma 16 to prove that L(AU ) ⊆
L(A )↓.

Lemma 19. Let (q, i ,2) w−−→∗
(q ′, j ,2) be a run in AU . Then, there is an N ∈N, words x0, y0, x1,

y1, . . . , xN , and integers n0,n1, . . . ,nN−1 such that:

1. w ¹ x0 y0x1 y1 . . . xN .

2. (q, i )
x0 y0...xN======⇒ (q ′, j ′) where j ′ = j +n0 +n1 . . .+nN−1.

3. (q, i )
x0 y

m0
0 x1 y

m1
1 ...xN===========⇒ (q ′, j ′′) where j ′′ = j +m0.n0 +m1.n1 . . .+mN−1.nN−1, for any m0,m1,

. . .mN−1 ≥ 1.

Note that 2 is just a special case of 3 when m0,m1, · · ·mN−1 = 1.

Proof. The run (q, i ,2) w−−→∗
(q ′, j ,2) in AU uses only transitions of the types 1,2,4 and 5. Let

N be the number of transitions of type 5 used in the run. We then break up the run as follows:

(q, i ,2) x0−−→∗
(p0, i0,2) a0−−→∗

(p0, i0,2) x1−−→∗
(p1, i1,2) . . . (pN−1, iN−1,2)

aN−1−−−−→∗
(pN−1, iN−1,2) xN−−→∗

(q ′, j ,2)



4.4. COMPUTING DOWNWARD CLOSURES 61

where the transitions on ai ’s are the N moves using transitions of type 5 in the run. Let (pr ,

ir )
yr=⇒ (pr , i ′r ) be a free run with ar ¹ yr and let nr = i ′r − ir . Clearly w ¹ x0 y0x1 y1 . . . xN .
It is quite easy to show by induction on r , 0 ≤ r < N , by replacing moves of types 1,2 and

4 by the corresponding moves in A and moves of type 5 by the iterations of the free runs
identified above that:

(q, i ) x0−−→∗
(p0, i0)

y
m0
0==⇒ (p0, i0 +m0.n0)

x1=⇒ (p1, i1 +m0.n0)
y

m1
1==⇒ (p1, i1 +m0.n0 +m1.n1)

. . . (pr , ir +m0.n0 . . .+mr−1.nr−1)
ymr

r==⇒ (pr , ir +m0.n0 . . .mr .nr ) xr+1−−−→∗

(pr+1, ir+1 +m0n0 . . .mr .nr )

and with r = N −1 we have the desired result.

Now, we use an argument that generalizes Lemma 16 in order to show that:

Lemma 20. Let w be any word accepted by the automaton AU . Then, there is a word w ′ ∈ L(A )
such that w ¹ w ′.

Proof. If states in Q2 are not visited in the accepting run of AU on w then we can use Lemma
17 to conclude that w ∈ A . Otherwise, we break up the run of AU on w into three parts as
follows:

(s,0,1) w1−−→∗
(p,K ,1)

a1→ (q,K +1,2) w2−−→∗
(r,K +1,2)

a2→ (t ,K ,3) w3−−→∗
( f ,0,3)

Using Lemma 17 it follows that (s,0) w1−−→∗
(p,K ) and (t ,K ) w3−−→∗

( f ,0). We then apply Lemmas
13 and 14 to these two segments respectively to identify k and k ′. Next we use Lemma 19 to
identify the positive integer N , integers n0,n1, . . .nN−1 and the free run

(q,K +1)
x0 y0...xN======⇒ (r,K +1+n0 +n1 . . .+nN−1)

with w2 ¹ x0 y0x1 y1 . . . xN−1 yN−1xN . We identify numbers m,m0,m1, . . . ,mN−1, all ≥ 1, such
that (m−1).k+m0.n0+. . .mN−1.nN−1 = k ′.m′ for some m′ ≥ 0. By taking m−1 and each mi to
be some multiple of k ′ we get the sum (m−1).k+m0.n0+ . . .mN−1nN−1 to be a multiple of k ′,
however this multiple may not be positive. Since k > 0, by choosing m −1 to be a sufficiently
large multiple of k ′ we can ensure that m′ ≥ 0. Using these numbers we construct the free run

(q,K +1+ (m −1).k)
x0 y

m0
0 x1 y

m1
1 ...xN===========⇒ (r,K +1+ (m −1).k +m0n0 + . . .mN−1nN ) =

(r,K +1+k ′.m′)

Let l be the lowest value attained in this free run. If l ≥ 0 then

(q,K +1+ (m −1).k)
x0 y

m0
0 x1 y

m1
1 ...xN−−−−−−−−−−−−→

∗
(r,K +1+k ′.m′)



62 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

and using Lemma 13 and 14 we get

(s,0) w−−→∗
(p,K + (m −1).k)

a1→ (q,K +1+ (m −1).k)
x0 y

m0
0 x1 y

m1
1 ...xN−−−−−−−−−−−−→

∗
(r,K +1+k ′.m′)

a2→ (t ,K +k ′.m′) z−→∗
( f ,0,3)

with w1 ¹ w , w2 ¹ x0 ym0
0 x1 ym1

1 . . . xN and w3 ¹ z as required.
Suppose l < 0. Then, we let I be a positive integer such that I .k + l > 0 and I = k ′.m′′ (i.e.

I is divisible by k ′) which must exist since k > 0. Then

(q,K +1+ (m −1).k + I .k)
x0 y

m0
0 x1 y

m1
1 ...xN===========⇒ (r,K +1+ I .k +k ′.m′)

is a free run in which the counter values are always ≥ 0 and is thus a run. Once again, we may
use Lemmas 13 and 14 (since I .k is a multiple of k ′) to get

(s,0) w−−→∗
(p,K + (m −1).k + I .k)

a1→ (q,K +1+ (m −1).k + I .k)
x0 y

m0
0 x1 y

m1
1 ...xN−−−−−−−−−−−−→

∗

(r,K +1+k ′.m′+ I .k)
a2→ (t ,K +1+k ′.m′+ I .k) z−→∗

( f ,0,3)

with w1 ¹ w , w2 ¹ x0 ym0
0 x1 ym1

1 . . . xN and w3 ¹ z. This completes the proof of the Lemma.

Next, we show that if U ≥ K 2 +K +1 then L(A ) ⊆ L(AU ).

Lemma 21. Let U ≥ K 2 +K +1. Let w be any word in L(A ). Then, w is also accepted by AU .

Proof. The proof is accomplished by examining runs of the from (s,0) w−−→∗
( f ,0) and showing

that such a run may be simulated by AU transition by transition in a manner to be described
below. Any run ρ = (s,0) w−−→∗

( f ,0) can be broken up into parts as follow:

(s,0) x−→∗
(g , j )

y ′−−→
∗

(h, j ′) z−→∗
( f ,0)

where, ρ1 = (s,0) x−→∗
(g , j ) is the longest prefix where the counter value does not exceed K ,

ρ3 = (h, j ′) z−→∗
( f ,0), is the longest suffix, of what is left after removing ρ1, in which the value

of the counter does not exceed K , and ρ2 = (g , j )
y ′−−→

∗
(h, j ′) is what lies in between. We

note that using Lemma 17 we can conclude that there are runs (s,0,1) x−→∗
(g , j ,1) and (h,

j ′,3) z−→∗
( f ,0,3). Further, observe that if value of the counter never exceeds K then ρ2 and ρ3

are empty, x = w , g = f and j = 0. In this case, using Lemma 17, there is a (accepting) run (s,
0,1) w−−→∗

( f ,0,1).
If the value of the counter exceeds K then j = j ′ = K and by Lemma 17, (s,0,1) x−→∗

(g ,K ,
1), (h,K ,3) z−→∗

( f ,0,3) and ρ2 is non-empty. Further suppose that, ρ2, when written out as a
sequence of transitions is of the form

ρ2 = (g ,K )
a→ (p,K +1) = (p0, i0)

a1→ (p1, i1)
a2→ (p2, i2) . . .

an→
(pn , in) = (q,K +1)

b→ (h,K )



4.4. COMPUTING DOWNWARD CLOSURES 63

We will show by double induction on the maximum value of the counter value attained in the
run ρ2 and the number of times the maximum is attained that there is a run

ρ′
2 = (g ,K ,1)

a→ (p,K +1,2) = (p ′
0, i ′0,2)

a1→ (p ′
1, i ′1,2)

a2→ (p ′
2, i ′2,2)

a3→ . . .

. . .
an→ (p ′

n , i ′n ,2) = (q,K +1,2)
b→ (h,K ,3)

such that for all i , 0 ≤ i < n,

1. either pi = p ′
i and pi+1 = p ′

i+1 and the i th transition (on ai+1) is of type 1,2 or 4,
2. or p ′

i = p ′
i+1, i ′i = i ′i+1, p ′

i =⇒ pi and pi+1 =⇒ p ′
i so that the i th transition (on ai+1) is a transi-

tion of type 5.

For the basis, notice that if the maximum value attained is ≤ K 2 +K +1 then, by Lemma
18, there is a run of AU that simulates ρ2 such that item 1 above is satisfied for all i .

Now, suppose the maximum value attained along the run is m > K 2 +K +1. We proceed
along the lines of the proof of Lemma 12. We first break up the run ρ2 as

(g ,K )
a→ (p0,K +1) = (qK+1,K +1)

yK+2−−−−→∗
(qK+2,K +2)

yK+3−−−−→∗
(qK+3,K +3)

. . .
ym−−→∗

(qm ,m)
y ′

m−1−−−−→
∗

(q ′
m−1,m −1)

y ′
m−1−−−−→

∗
. . .

y ′
K+1−−−−→

∗
(q ′

K+1,K +1) z−→∗

(q,K +1)
b→ (h,K )

where

• The prefix upto (qm ,m), henceforth referred to as σm , is the shortest prefix after which the
counter value is m.

• The prefix upto (qi , i ), K +1 ≤ i < m is the longest prefix of σm after which the value of the
counter is i .

• The prefix upto (q ′
i , i ), K + 1 ≤ i < m is the shortest prefix of ρ2 with σm as a prefix after

which the counter value is i .

By construction, the value of the counter in the segment of the run from (qi , i )−→∗ . . .−→∗(q ′
i , i )

never falls below i . Further, by simple counting, there are i , j with K +1 ≤ i < j ≤ m such that
qi = q j and q ′

i = q ′
j . Thus, by deleting the segment of the runs from (qi , i ) to (qi , j ) and (q ′

j , j )

to (q ′
j , i ) we get a shorter run ρd which looks like

(g ,K ) a−→∗
(p0,K +1) = (qK+1,K +1) . . .

yi−−→∗
(qi , i )

y j+1−−−→∗
(q j+1, i +1)

. . .
ym−−→∗

(qm ,m − j + i )
y ′

m−1−−−−→
∗

. . . . . .
y ′

j−−→
∗

(q ′
j , i )

y ′
i−1−−−→

∗
(q ′

i−1, i −1) . . .

(q ′
K+1,K +1) z−→∗

(q,K +1) b−→∗
(h,K )

This run reaches the value m at least one time fewer than ρ2 and thus we may apply the
induction hypothesis to conclude the existence of a run ρ′

d of Ag h that simulates this run
move for move satisfying the properties indicated in the induction hypothesis. Let this run



64 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

be:

(g ,K ,1)
a→ (r0,K +1,2) . . .

yi−−→∗
(ri ,ci ,2))

y j+1−−−→∗
(r j+1,c j+1,2) . . .

ym−−→∗

(rm ,cm ,2)
y ′

m−1−−−−→
∗

. . . . . .
y ′

j−−→
∗

(r ′
j ,c ′j ,2)

y ′
i−1−−−→

∗
(r ′

i−1,c ′i−1,2) . . .

(r ′
K+1,c ′K+1,2) z−→∗

(r ′,K +1,2)
b→ (h,K )

Now, if (pl , il )
al+1→ (pl+1, il+1) was a transition in ρ2 in the part of the run from (qi , i ) to (qi ,

j ) then, qi =⇒ pl , pl
al+1==⇒ qi and pl+1 =⇒ qi . Now, either ri = qi or ri =⇒ qi , and q j+1 =⇒ ri and

(qi , a j+1,op, q j+1) is a transition for some op. In the both cases clearly ri
al+1==⇒ ri . Thus every

such deleted transition can be simulated by a transition of the form (ri ,ci ,2)
al+1→ (ri ,ci ,2).

A similar argument shows that every transition of the form (pl , il )
al+1→ (pl+1, il+1) deleted

in the segment (q ′
j , j ) to (q ′

j , i ) can be simulated by (r ′
j ,c ′j ,2)

al+1→ (r ′
j ,c ′j ,2). Thus we can extend

the run ρ′
d to a run ρ′

2 that simulates ρ2 fulfilling the requirements of the induction hypothe-
sis. This completes the proof of this Lemma.

Notice that the size of the state space of AU is K .(K 2 +K +1) when U = K 2 +K +1. Since
downward closures of NFAs can be constructed by just adding additional (ε) transitions, Lem-
mas 20 and 21 imply that:

Theorem 11. There is a polynomial-time algorithm that takes as input a simple counter au-
tomaton A = (Q,Σ,δ, s,F ) and computes an NFA with O(|A |3) states accepting L(A )↓.

4.5 Revisiting shared memory systems

Recall that we defined shared-memory concurrent pushdown systems and a restriction
bounded stage on its runs in chapter 3. We also described a procedure for solving the
bounded stage reachability on shared memory system when at most one pushdown process
was involved. For this, we showed how to reduce the k bounded stage reachability problem
on an SCPS S, to reachability on pushdown with reversal bounded counters . The size of the
resulting reversal bounded system that we constructed was O(nk .|S|O(|S|.n)), where n is the
number of processes in S.

Observe that the exponential dependancy on the number of stages was because we pro-
ceeded by fixing the sequence τ of writers for each stage in the construction. This was done
for sake of simplifying the proof. This can easily be eliminated, by modifying Lemma-5 such
that each process guesses the writer in each stage and all the processes synchronise on the
identity of the writer at the beginning of each stage (as they do w.r.t. the value of the memory
at the beginning of the stage). This modification reduces the complexity to O(k.|S|O(|S|.n)).
However note that the complexity is still exponential on size of SCPS and the number of pro-
cesses.

Next, notice from the calculation in Lemma 6, that the size of the automaton appears in
the exponent only because we assumed that the size of the closures on counter systems is



4.6. PARIKH IMAGES OF REVERSAL BOUNDED PDAS 65

exponential. Thus, the results proved above, reduces the complexity further to O(k.|S|O(n)).
With this we have the following theorem

Theorem 12. The stage bounded reachability problem for SCPS with at most one pushdown
system is in NEXPTIME in the number of processes, while polynomial in the size of system and
number of stages. In particular, the problem is in NP if the number is processes are fixed.

4.6 Parikh Images of Reversal Bounded PDAs

In this section we describe an algorithm to construct an NFA Parikh-equivalent to an counter
automata A . The NFA has at most O(|Σ|K O(logK )) states where K = |A |, a significant improve-
ment over O(2poly(K ,|Σ|)) for PDA.

We establish this result in two steps. In the first step, we show that we can focus our at-
tention on computing Parikh-images of words recognised along reversal bounded runs. A
reversal in a run occurs when the counter system switches to incrementing the counter after
a non-empty sequence of decrements (and internal moves) or when it switches to decre-
menting the counter after a non-empty sequence of increments (and internal moves). For a
number R, a run is R reversal bounded, if the number of reversals along the run is ≤ R. Let us
use LR (A ) to denote the set of words accepted by A along runs with at most R reversals.

We construct a new polynomial size counter automata from A and show that we can
restrict our attention to runs with at most R reversals of this counter automata, where R is
a polynomial in K . In the second step, from any simple counter automata A with K states
and any integer R we construct an NFA of size O(K O(log (R))) whose Parikh image is LR (A ).
Combination of the two steps gives a O(K O(log K )) construction.

4.6.1 Reversal bounding

We establish that, up to Parikh-image, it suffices to consider runs with 2K 2 +K reversals. We
use two constructions: one that eliminates large reversals (think of a waveform) and another
that eliminates small reversals (think of the noise on a noisy waveform). For the large rever-
sals, the idea used is the following: we can reorder the transitions used along a run, hence
preserving Parikh-image, to turn it into one with few large reversals (a noisy waveform with
few reversals). The key idea used is to move each simple cycle at state q with a positive (resp.
negative) effect on the counter to the first (resp. last) occurrence of the state along the run. To
eliminate the smaller reversals (noise), the idea is to maintain the changes to the counter in
the state and transfer it only when necessary to the counter to avoid unnecessary reversals.

Consider a run of A starting at a configuration (p,c) and ending at some configuration (q,
d) such that the value of the counter e in any intermediate configuration satisfies c −D ≤ e ≤
c+D (where D is some positive integer). We refer to such a run as an D-bound run. Reversals
along such a run are not important and we get rid of them by maintaining the (bounded)
changes to the counter within the state.

We construct a counter automata A [D] as follows: its states are Q ∪Q1 ∪Q2 where Q1 =
Q × [−D,D] and Q2 = [−D,D]×Q. All transitions of A are transitions of A [D] as well and



66 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

thus using Q it can simulate any run of A faithfully. From any state q ∈Q the automaton may
move nondeterministically to (q,0) in Q1. The states in Q1 are used to simulate D-bound runs
of A without altering the counter and by keeping track of the net change to the counter in
the second component of the state. For instance, consider the D-bound run of A described
above: A [D] can move from (p,c) to ((p,0),c) then simulate the run of A to (q,d) to reach
((q,d −c),c). At this point it needs to transfer the net effect back to the counter (by altering it
appropriately). The states Q2 are used to perform this role. From a state (q, j ) in Q1, A [D] is
allowed to nondeterministically move to ( j , q) indicating that it will now transfer the (positive
or negative) value j to the counter. After completing the transfer it reaches a state (0, q) from
where it can enter the state q via an internal move to continue the simulation of A .

The nice feature of this simulated run via Q1 and Q2 is that there are no reversals in the
simulation and it involves only increments (if d > c) or only decrements (if d < c).

We now formalize the automaton A [D] and its properties. The counter automata A [D] =
(QD ,Σ,δD , s,F ) is defined as follows:

QD =Q ∪ (Q × {−D, . . . ,D})∪ ({−D, . . . ,D}×Q)

and δD is defined as follows:

1. δ⊆ δD . Simulate runs of A .
2. (q,Int,ε, (q,0)) ∈ δD . Begin a summary phase.
3. ((q, j ),Int, a, (q ′, j )) ∈ δD , if (q,Int, a, q ′) ∈ δ. Simulate an internal move.
4. ((q, j ),Int, a, (q ′, j +1)) ∈ δD , if (q,Inc, a, q ′) ∈ δ. Simulate an increment.
5. ((q, j ),Int, a, (q ′, j −1)) ∈ δD , if (q,Dec, a, q ′) ∈ δ. Simulate a decrement.
6. ((q, j ),Int,ε, ( j , q)) ∈ δD . Finish summary run.
7. (( j , q),Int,ε, ( j −1, q)) ∈ δD , if j > 0. Transfer a positive effect.
8. (( j , q),Dec,ε, ( j +1, q)) ∈ δD , if j < 0. Transfer a negative effect.
9. ((0, q),Int,ε, q) ∈ δD . Transfer control back to copy of A .

The following Lemma is the first of a sequence that relate A and A [D].

Lemma 22. 1. For any p, q ∈Q and any c,d ∈N, if (p,c) w−−→∗
(q,d) in A then (p,c) w−−→∗

(q,
d) in A [D].

2. For any p, q ∈Q and any c,d ∈N if (p,c) w−−→∗
(q,d) in A [D] then (p,c+D) w−−→∗

(q,d+D)
in A . In particular, if (p,0) w−−→∗

(q,0) in A [D] then (p,D) w−−→∗
(q,D) in A .

Proof. The first statement simply follows from the fact that δ⊆ δD .
Let ρ = (p,c) w−−→∗

(q,d) be a run in A [D]. The second statement is proved by induction on
the number of transitions of type 2 taken along ρ (i.e. the number of summary simulations
used in ρ). If this number is 0 then all the transitions used are of type 1 thus ρ is a run in A

and thus ρ[D] satisfies the requirements of the Lemma.
Otherwise, let ρ must be of the form

ρ = (p,c) w1−−→∗
(p1,c1)

ε→ ((p1,0),c1) w2−−→∗
((0, q1),d1)

ε→ (q1,d1) w3−−→∗
(q,d)

where we have identified the first occurrence of the transition of type 2 and as well as the
first occurrence of a transition of type 9. Now, by the induction hypothesis, we have runs (p,
c +D) w1−−→∗

(p1,c1 +D) and (q1,d1 +D) w3−−→∗
(q,d +D) in A .



4.6. PARIKH IMAGES OF REVERSAL BOUNDED PDAS 67

From the definition of δD , run ((p1,0),c1) w2−−→∗
((0, q1),d1) must be of the form

((p1,0),c1) w2−−→∗
((p2,c2),c1)

ε→ ((c2, p2),c1) ε−→∗
((0, p2),c1 + c2)

with p2 = q1 and d1 = c1 + c2 and where the run ((p1,0),c1) w2−−→∗
((p2,c2),c1) involves only

transitions of the form 3, 4 or 5.

Claim: Let ((g ,0),e) x−→∗
((h, i ),e) be a run in A [D] using only transitions of type 3, 4 or 5.

Then (g ,e) x−→∗
(h,e + i ) in A for any e ≥ D .

Proof. By induction on the length of the run. The base case is trivial. For the inductive case,

suppose ((g ,0),e) x ′−−→∗
((h′, i ′),e)

a→ ((h, i ),e) and by the induction hypothesis (g ,e) x ′−−→∗
(h′,

e + i ′) for any e ≥ D . Now, if the last transition is an internal transition then, ((h′, i ′),Int, a, (h,
i )) ∈ δ and i = i ′. Thus (h′,e + i )

a→ (h,e + i ) in A . If the last transition is an increment then
((h′, i ′),Int, a, (h, i )) ∈ δ and i = i ′+1. Thus, once again we have (h′,e + i ′) a→ (h,e + i ) in A .
Finally, if the last transition is a decrement transition then, ((h′, i ′), a,Dec, (h, i )) ∈ δ. Then,
i = i ′−1 and i ≥−D . Thus, e+i ≥ 0 and thus (h′,e+i ′) a→ (h,e+i ) in A , completing the proof
of the claim.

Since, c1 +D ≥ D , we may apply the claim to conclude that (p1,c1 +D) w2−−→∗
(p2 = q1,

c1 +D + c2 = d1 +D) in A . This completes the proof of the Lemma.

Next we show that A [D] can simulate any D-bound run without reversals.

Lemma 23. Let (p,c) w−−→∗
(q,d) be an D-bound run in A . Then, there is a run (p,c) w−−→∗

(q,
d) in A [D] in which the counter value is never decremented if c ≤ d and never incremented if
c ≥ d.

Proof. The idea is to simply simulate the run as a summary run in A [D]. Let the given run be

(p,c) = (p0,c0)
a1→ (p1,c1)

a2→ (p2,c2) . . .
an→ (pn ,cn) = (q,d)

Then, it is easy to check that the following is a run in A [D]

(p0,c0)
ε→ ((p0,0),c0)

a1→ ((p1,c1 − c0),c0)
a2→ . . .

an→ ((pn ,cn − c0),c0)
ε→ ((cn − c0, pn),c0)

It is also easy to verify that for any configuration with (( j , p),e) with e + j ≥ 0, (( j , p),e) ε−→∗
(p,

e+ j ) is a run in A[D] consisting only of increments if j > 0 and consisting only of decrements
if j < 0. Since cn ≥ 0, (cn − c0)+ c0 ≥ 0 and the result follows.

Actually this automaton A[D] does even better. Concatenation of D-bound runs is often
not an D-bound run but the idea of reversal free simulation extends to certain concatena-
tions. We say that a run (p0,c0) w−−→∗

(pn ,cn) is an increasing (resp. decreasing) iterated D-
bound run if it can be decomposed as

(p0,c0) w1−−→∗
(p1,c1) w2−−→∗

. . . (pn−1,cn−1) wn−−−→∗
(pn ,cn)

where each (pi ,ci ) wi+1−−−−→∗
(pi+1,ci+1) is an D-bound run and ci ≤ ci+1 (resp. ci ≥ ci+1). We say

it is an iterated D-bound run if it is an increasing or decreasing iterated D-bound run.



68 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

Lemma 24. Let (p,c) w−−→∗
(q,d) be an increasing (resp. decreasing) D-bound run in A . Then,

there is a run (p,c) w−−→∗
(q,d) in A [D] along which the counter value is never decremented

(resp. incremented).

Proof. Simulate each ρi by a run that only increments (resp. decrements) the counter using
Lemma 23.

While , as a consequence of item 1 of Lemma 22, we have L(A ) ⊆ L(A [D]), the converse is
not in general true as along a run of A [D] the real value of the counter, i.e. the current value
of the counter plus the offset available in the state, may be negative, leading to runs that are
not simulations of runs of A . The trick, as elaborated in item 2 of Lemma 22, that helps us
get around this is to relate runs of A [D] to A with a shift in counter values. We need a bit
more terminology to proceed.

We say that a run of is an D≤ run (resp. D≥ run) if the value of the counter is bounded
from above (resp. below) by D in every configuration encountered along the run. We say that
a run of A is an D> run if it is of the form (p,D) w−−→∗

(q,D), it has at least 3 configurations and
the value of the counter at every configuration other than the first and last is > D . Consider
any run from a configuration (p,0) to (q,0) in A . Once we identify the maximal D> sub-runs,
what is left is a collection of D≤ sub-runs.

Let ρ = (p,c) w−−→∗
(q,d) be a run of A with c,d ≤ D . If ρ is a D≤ run then its D-

decomposition is ρ. Otherwise, its D-decomposition is given by a sequence of runs ρ0,ρ′
0,

ρ1,ρ′
1 . . .ρ′

n−1,ρn with ρ = ρ0.ρ′
0.ρ1.ρ′

1 . . . .ρ′
n−1.ρn , where each ρi is a D≤ run and each ρ′

i is a
D> run for 0 ≤ i ≤ n. Notice, that some of the ρi ’s may be trivial. Since the D> subruns are
uniquely identified this definition is unambiguous. We refer to the ρ′

i ’s (resp. ρi s) as the D>
(resp. D≤) components of ρ.

Observe that the D≤ runs of A can be easily simulated by an NFA. Thus we may focus
on transforming the D> runs, preserving just the Parikh-image, into a suitable form. For D,
R ∈N, we say that a D> run ρ is a (D,R)-good run (think noisy waveform with few reversals)
if there are runs σ1,σ2 . . . ,σn ,σn+1 and iterated D-bound runs ρ1,ρ2, . . . ,ρn such that ρ =
σ1ρ1σ2ρ2 . . .σnρnσn+1 and |σ1|+ . . .+|σn+1|+2.n ≤ R. Using Lemma 24 and that it is a D>
run we show

Lemma 25. Let (p,D) w−−→∗
(q,D) be an (D,R)-good run of A . Then, there is a run (p,0) w−−→∗

(q,
0) in A [D] with atmost R reversals.

Proof. Let the given run be ρ. We first shift down ρ to ρ[−D] to obtain a run from (p,0) to (q,
0), which is possible since ρ is D> run. We then transform each of the iterated D-bound runs
using Lemma 24 so that there are no reversals in the transformed runs. Thus all reversals
occur inside the σi [−D]’s or at the boundary and this gives us the bound required by the
Lemma.

So far we have not used the fact that we can ignore the ordering of the letters read along a
run (since we are only interested in the Parikh-image of L(A )). We show that for any run ρ of
A we may find another run ρ′ of A , that is equivalent up to Parikh-image, such that every D>
component in the D-decomposition of ρ′ is (D,R)-good, where R and D are polynomially
related to K .



4.6. PARIKH IMAGES OF REVERSAL BOUNDED PDAS 69

We fix D = K in what follows. We take R = 2K 2+K for reasons that will become clear soon.
We focus our attention on some D> component ξ of ρ which is not (D,R)-good. Let X ⊆ Q
be the set of states of Q that occur in at least two different configurations along ξ. For each
of the states in X we identify the configuration along ξ where it occurs for the very first time
and the configuration where it occurs for the last time. There are at most 2|X |(≤ 2K ) such
configurations and these decompose the run ξ into a concatenation of 2|X |+1(≤ 2K +1) runs
ξ = ξ1.ξ2 . . .ξm where ξi ,1 < i < m is a segment connecting two such configurations. Now,
suppose one of these ξi ’s has length K or more. Then it must contain a sub-run (p,c)−→∗(p,
d) with at most K moves, for some p ∈ X (so, this is necessarily a K -bound run). If d − c ≥ 0
(resp. d −c < 0), then we transfer this subrun from its current position to the first occurrence
(resp. last occurrence) of p in the run. This still leaves a valid run ξ′ since ξ begins with a K as
counter value and |ξi | ≤ K . Moreover ξ and ξ′ are equivalent upto Parikh-image.

If this ξ′ continues to be a K> run then we again examine if it is (K ,R)-good and oth-
erwise, repeat the operation described above. As we proceed, we continue to accumulate a
increasing iterated K -bound run at the first occurrence of each state and decreasing iterated
K -bound run at the last occurrence of each state. We also ensure that in each iteration we
only pick a segment that does NOT appear in these 2|X | iterated K -bounds. Thus, these iter-
ations will stop when either the segments outside the iterated K -bound are all of length < K
and we cannot find any suitable segment to transfer, or when the resulting run is no longer a
K> run. In the first case, we must necessarily have a (K ,2K 2 +K )-good run. In the latter case,
the resulting run decomposes as usual in K≤ and K> components, and we have that every K>
component is strictly shorter than ξ. We formalize the ideas sketched above now.

We begin by proving a Lemma which says that any K> run ρ can be transformed into
a Parikh-equivalent run ξ which is either a K> run which is (K ,2K 2 +K )-good or has a K -
decomposition each of whose K> components are strictly shorter than ρ.

Lemma 26. Let ρ = (p,K ) w−−→∗
(q,K ) be a K> run in A . Then, there is a run ξ= (p,K ) w ′−−→∗

(q,
K ) in A , with |ξ| = |ρ|, Parikh(w) = Parikh(w ′) such that one of the following holds:

1. ξ is not a K> run. Thus, all K>-components in the K -decomposition of ξ are strictly shorter
than ξ (and hence ρ).

2. ξ is a K> run and ξ=σ1ρ1 . . .σnρn where n ≤ 2K +1, each ρi is an iterated K -bound run and
|σi | ≤ K for each i . Thus, ξ is (K ,2K 2 +K )-good.

Proof. Let ρ = (p0,c0)
a1→ (p1,c1) . . .

am→ (pm ,cm). Let X ⊆ Q be the set of controls states that
repeat in the run ρ. We identify the first and last occurrences of each state q ∈ X along the
run ρ, and there are n = 2.|X | ≤ 2K such positions. We then decompose the run ρ as follows

(p0,c0) =(q0,e0)σ1(q1,e1)σ2(q2,e2) . . .

. . . (qn−1,en−1)σn(qn ,en)σn+1(qn+1,en+1) = (q,d)

where configurations (q1,e1), (q2,e2) . . . (qn ,en) correspond to the first or last occurrence of
states from X . We introduce, for reasons that will become clear in the following, an empty



70 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

iterated K -bound run ρi following each (qi ,ei ) to get

(q0,e0)σ1(q1,e1)ρ1(q1,e1)σ2(q2,e2)ρ2(q2,e2) . . .

. . . (qn−1,en−1)σn(qn ,en)ρn(qn ,en)σn+1(qn+1,en+1)

Let ξ0 be ρ with the decomposition as written above. We shall now construct a sequence
of runs ξi , i ≥ 0, from (p,K ) to (q,K ), maintaining the length and the Parikh image as an
invariant, that is, Parikh(ξi ) = Parikh(ξi+1) and |ξi | = |ρ|. In each step, starting with a K> run
ξi , we shall reduce the length of one of theσi by some 1 ≤ l ≤ K and increase the length of one
iterated K -bound runs ρ j by l to obtain a run ξi+1, maintaining the invariant. If this resulting
run is not a K> run then it has a K -decomposition in which every K> component is shorter
than ξi (and hence ρ), thus satisfying item 1 of the Lemma completing the proof. Otherwise,
after sufficient number of iterations of this step, we will be left satisfying item 2 of the Lemma.
Let the K> run ξi be given by

(q0,e0)σi
1(q1,e i

1)ρi
1(q1, f i

1 )σi
2(q2,e i

2)ρi
2(q2, f i

2 ) . . .

. . . (qn−1,e i
n−1)σi

n(qn ,e i
n)ρi

n(qn , f i
n )σi

n+1(qn+1,e i
n+1)

where each ρi
j is an iterated K -bound run. If the length of |σi

j | ≤ K for each j ≤ n+1 then, we
have already fulfilled item 2 of the Lemma, completing the proof. Otherwise, there is some j
such that |σi

j | ≥ K . Therefore, we may decompose σi
j as

(q j−1, f i
j−1)χ1(r, g )χ2(r, g ′)χ3(q j ,e i

j )

where (r, g )χ2(r, g ′) is a run of length ≤ K and r ∈ X . There are two cases to consider, depend-
ing on whether g ′− g ≥ 0 or g ′− g < 0.

Let (qB ,e i
B ) and (qE , f i

E ) be the first and last occurrences of r in ξi . We will remove the
segment of the run given by χ2 and add it to ρi

B if g ′ ≥ g and add it to ρi
E otherwise. First

of all, since the first and last occurrences of r are distinct, the ρi
B will remain a increasing

iterated K -bound run while ρi
E remains a decreasing iterated K -bound run. Clearly, such a

transformation preserves the Parikh image of the word read along the run. It is easy to check
that, since ξi is a K> run and the length of χ2 is bounded by K , the resulting sequence ξi+1

(after adjusting the counter values) will be a valid run, since the counter stays ≥ 0. However,
it may no longer be a K> run. (This may happen, if e i

B < g and there is a prefix of χ2 whose
net effect is to reduce the counter by more than e i

B −K .) However, in this case we may set ξi+1

is a run from (p,K ) to (q,K ), with the same length as ξi and thus every K> component in its
K -decomposition is necessarily shorter than ξi . Thus, it satisfies item 1 of the Lemma.

If ξi+1 remains a K> run then we observe that |σi
1 . . .σi

n | > |σi+1
1 . . .σi+1

n | and this guaran-
tees the termination of this construction with a ξ satisfying one of the requirements of the
Lemma.

Starting with any run, we plan to apply Lemma 26, to the K> components, preserving
Parikh-image, till we reach one in which every K> component satisfies item 2 of Lemma 26.
To establish the correctness of such an argument we need the following Lemma.



4.6. PARIKH IMAGES OF REVERSAL BOUNDED PDAS 71

Lemma 27. Let ρ = (p,0) w−−→∗
(q,0) be a run. If ρ = ρ1(r,K )ρ2 then every K> component in

the decomposition of ρ is a K> component of ρ1 or ρ2 and vice versa. In particular, if ρ = ρ1(r,
K )ρ2(r ′,K )ρ3 then, K> components of the K -decomposition of ρ are exactly the K> components
of the runs ρ1, ρ2 or ρ3.

Proof. By the definition of K> run and K decompositions.

We can now combine Lemmas 27 and 26 to obtain:

Lemma 28. Let ρ = (p,0) w−−→∗
(q,0) be any run in A . Then, there is a run ρ′ = (p,0) w ′−−→∗

(q,0)
of A with Parikh(w) = Parikh(w ′) such that every K> component ξ in the canonical decompo-
sition of ρ′ is (K ,2K 2 +K )-good.

Proof. The proof is by double induction, on the length of the longest K> component in ρ that
is not (K ,2K 2 +K )-good and the number of components of this size that violate it. For the
basis case, observe that any K> component whose length is bounded by 2K 2+K is necessarily
(K ,2K 2 +K )-good.

For the inductive case, we pick a K> component ξ in ρ of maximum size apply Lemma 26
and replace ξ by ξ′ to get ρ′. If ξ′ is (K ,2K 2 +K )-good we have reduced the number of com-
ponents of the maximum size that are not (K ,2K 2+2)-good in ρ′. Otherwise, ξ′ satisfies item
2 of Lemma 26 and thus by Lemma 27 the number of K> components in the decomposition
of ρ′ of the size of ξ that are not (K ,2K 2 +K )-good is one less than that in ρ. This completes
the inductive argument.

Let A K be the NFA simulating the counter system A when the counter values lie in the
range [0,K ], by maintaining the counter values in its local state. This automaton is of size
O(K 2). Now, suppose for each pair of states p, q ∈ Q we have an NFA Bpq which is Parikh-
equivalent to L2K 2+K (A [K ]p,q ), where A [K ]p,q is the automaton A [K ] with p as the only
initial state and q as the only accepting state. We combine these automata (there are K 2 of
them) with A K by taking their disjoint union and adding the following additional (internal)
transitions. We add transitions from the states of the from (p,K ) of A K , for p ∈Q to the initial
state of state of all the Bpq , q ∈Q. Similarly, from the accepting states of Bpq we add internal
transitions to the state (q,K ) in A K . Finally we deem (s,0) to be the only initial state and ( f ,
0) to be the only final state of the combined automaton. We call this NFA B.

Lemma 29. Parikh(L(B)) = Parikh(L(A ))

Proof. Let ρ be an accepting run of A on a word w . We first apply Lemma 28 to construct
a run ρ′ on a w ′, with Parikh(w) = Parikh(w ′), in whose K -decomposition, every K> compo-
nent is (K ,2K 2 +K )-good. Let χ = (p,K ) x−→∗

(q,K ) be such a component. Then, by Lemma
25, there is a run χ′ : (p,0) x−→∗

(q,0) in A [K ] with at most 2K 2 +K reversals. Thus, there is
a x ′ ∈ L(Bpq ) with Parikh(x) = Parikh(x ′). If (s,0) x−→∗

(p,K ) is a K≤ component of ρ′ then (s,
0) x−→∗

(p,K ) in A K . If (p,K ) x−→∗
(q,K ) is a K≤ component of ρ′ then (p,K ) x−→∗

(q,K ) in A K

and finally if (p,K ) x−→∗
( f ,0) is a K≤ component of ρ′ then (p,K ) x−→∗

( f ,0) in A K . Putting
these together we get a run from (s,0) to ( f ,0) in B on a word Parikh-equivalent to w ′ and
hence w .



72 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

For the converse, any word in L(B) is of the form x.u1.v1.u2.v2 . . .un vn .y where (s,

0) x−→∗
(p1,K ) in A K , (qn ,K )

y−→∗
( f ,0) in A K , ui ∈ L(Bpi qi ) and (qi ,K ) vi−−→∗

(pi+1,K ) in A K ,

for each 1 ≤ i ≤ n. By construction, there is a run (s,0) x−→∗
(p1,K ) in A and (qn ,K )

y−→∗
( f ,0) in

M . Further for each i , there is a run (qi ,K ) vi−−→∗
(pi+1,K ) in A as well. Since ui ∈ L(Bpi qi ), by

construction of Bpi qi , there is a run (pi ,0)
u′

i−−→
∗

(qi ,0) in A [K ] with Parikh(ui ) = Parikh(u′
i ).

But then, by the second part of Lemma 22, there is a run (pi ,K )
u′

i−−→
∗

(qi ,K ) in A . Thus
we can put together these different segments now to obtain an accepting run in A on the
word x.u′

1.v1.u′
2.v2 . . .u′

n vn . Thus, Parikh(L(B)) ⊆ Parikh(L(A )), completing the proof of the
Lemma.

The number of states in the automaton B is
∑

p,q∈Q |Bpq |+K 2. What remains to be settled
is the size of the automata Bpq . That is, computing an upper bound on the size of an NFA
which is Parikh-equivalent to the language of words accepted by an counter automata (in this
case M [K ]) along runs with at most R (in this case K 2 +K ) reversals. This problem is solved
in the next subsection and the solution (see Lemma 32) implies that that the size of Bpq is
bounded by O(|Σ|K O(log K )). Thus we have

Theorem 13. There is an algorithm, which given an counter automata with K states and al-
phabet Σ, constructs a Parikh-equivalent NFA with O(|Σ|.K O(logK )) states.

4.6.2 Parikh image under reversal bounds

Here we show that, for any counter system A , with K states and whose alphabet isΣ, and any
R ∈N, an NFA Parikh-equivalent to LR (A ) can be constructed with size O(|Σ|.K O(log K )). As a
matter of fact, this construction works even for pushdown systems and not just for counter
systems.

Let A be a simple counter system. It will be beneficial to think of the counter as a stack
with a single letter alphabet, with pushes for increments and pops for decrements. Then, in
any run from (p,0) to (q,0), we may relate an increment move uniquely with its corresponding
decrement move, the pop that removes the value inserted by this push.

Now, consider a one reversal run ρ of A from say (p,0) to (q,0) involving two phases,
a first phase ρ1 with no decrement moves and a second phase ρ2 with no increment moves.
Such a run can be simulated, up to equivalent Parikh image (i.e. upto reordering of the letters
read along the run) by an NFA as follows: simultaneously simulate the first phase (ρ1) from
the source and the second phase, in reverse order (ρr ev

2 ), from the target. (The simulation of
ρr ev

2 uses the transitions in the opposite direction, moving from the target of the transition to
the source of the transition). The simulation matches increment moves of ρ1 against decre-
ment moves in ρr ev

2 (more precisely, matching the i th increment ρ1 with the i th decrement
in ρr ev

2 ) while carrying out moves that do not alter the counters independently in both direc-
tions. The simulation terminates (or potentially terminates) when a common state, signifying
the boundary between ρ1 and ρ2 is reached from both ends.

The state space of such an NFA will need pairs of states from Q, to maintain the current
state reached by the forward and backward simulations. Since, only one letter of the input



4.6. PARIKH IMAGES OF REVERSAL BOUNDED PDAS 73

can be read in each move, we will also need two moves to simulate a matched increment
and decrement and will need states of the form Q ×Q ×Σ for the intermediate state that lies
between the two moves.

Unfortunately, such a naive simulation would not work if the run had more reversals. For
then the i th increment in the simulation from the left need not necessarily correspond to the
i th decrement in the reverse simulation from the right. In this case, the run ρ can be written
as follows:

(p,0)ρ1(p1,c)
τ1→ (p ′

1,c +1)ρ3(p ′
2,c +1)

τ2→ (p2,c)ρ4(q1,c)ρ5(q,0)

where, the increment τ1 corresponds to the decrement τ2 and all the increments in ρ1 are
exactly matched by decrements in ρ5. Notice that the increments in the run ρ3 are exactly
matched by the decrements in that run and similarly for ρ4. Thus, to simulate such a well-
matched run from p to q , after simulating ρ1 and ρr ev

5 simultaneously matching correspond-
ing increments and decrements, and reaching the state p1 on the left and q1 on the right,
we can choose to now simulate matching runs from p1 to p2 and from p2 to q1 (for some
p2). Our idea is to choose one of these pairs and simulate it first, storing the other in a stack.
We call such pairs obligations. The simulation of the chosen obligation may produce further
such obligations which are also stored in the stack. The simulation of an obligation succeeds
when the state reached from the left and right simulations are identical, and at this point
we we may choose to close this simulation and pick up the next obligation from the stack or
continue simulating the current pair further. The entire simulation terminates when no obli-
gations are left. Thus, to go from a single reversal case to the general case, we have introduced
a stack into which states of the NFA used for the single reversal case are stored. This can be
formalized to show that the resulting PDA is Parikh-equivalent to A .

Observe that in this construction each obligation inserted into the stack corresponds to
a reversal in the run being simulated, as a matter of fact, it will correspond to a reversal from
decrements to increments. Thus it is quite easy to see that the stack height of the simulating
run can be bounded by the number of reversals in the original run.

But a little more analysis shows that there is a simulating run where the height of the stack
is bounded by log (R) where R is the number of reversals in the original run. Thus, to simulate
all runs of A with at most R reversals, we may bound the stack height of the PDA by l og (R).

We show that if the stack height is h then we can choose to simulate only runs with at
most 2log (R)−h reversals for the obligation on hand. Once we show this, notice that when
h = log (R) we only need to simulate runs with 1 reversal which can be done without any fur-
ther obligations being generated. Thus, the overall height of the stack is bounded by log (R).
Now, we explain why the claim made above holds. Clearly it holds initially when h = 0. In-
ductively, whenever we split an obligation, we choose the obligation with fewer reversals to
simulate first, pushing the other obligation onto the stack. Notice that this obligation with
fewer reversals is guaranteed to contain at most half the number of reversals of the current
obligation (which is being split). Thus, whenever the stack height increases by 1, the number
of reversals to be explored in the current obligation falls at least by half as required. On the
other hand, an obligation (p, q) that lies in the stack at position h from the bottom, was placed
there while executing (earlier) an obligation (p ′, q ′) that only required 2k−h+1 reversals. Since



74 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

the obligation (p, q) contributes only a part of the obligation (p ′, q ′), its number of reversals is
also bounded by 2k−h+1. And when (p, q) is removed from the stack for simulation, the stack
height is h −1. Thus, the invariant is maintained.

We now describe the formal construction of the automaton and establish its correctness
now. We establish the result directly for a pushdown system. Recall that if Γ is a singleton we
have exactly a counter system.

Given a PDA A = (Q,Σ,Γ,δ,⊥, s,F ) we construct a new PDA AP which simulates runs of
A , upto Parikh-images, and does so using runs where the stack height is bounded by l og (R)
where R is the number of reversals in the run of A being simulated. AP = (QP ∪ {sP , tP },Σ,
ΓP ,δP , sP , tP ) is defined as follows. The set QP = ΓP is given by (Q ×Q)∪ (Q ×Q ×Σ). States
of the form (p, q) are charged with simulating a well matched run from (p,⊥) to (q,⊥). While
carrying out a matched push from the left and a pop from the right, as we are only allowed
read one letter of Σ in a single move, we are forced to have an intermediary state to allow for
the reading of the letters corresponding to both the transitions being simulated. The states
of the form (p, q, a), a ∈ Σ, are used for this purpose. The transition relation δP is described
below:

1. (sP ,ε,Int, (s, t )) ∈ δP . Initialize the start and target states.
2. ((p, q),Int, a, (p ′, q)) ∈ δP whenever (p,Int, a, p ′) ∈ δ. Simulate an internal move from the

left.
3. ((p, q),Int, a, (p, q ′)) ∈ δP whenever (q ′,Int, a, q) ∈ δ. Simulate an internal move from the

right.
4. ((p, q),Int, a, (p ′, q ′,b)) ∈ δP whenever (p,Push(x), a, p ′), (q ′,Pop(x), a, q) ∈ δ for some x ∈

Γ. Simulate a pair of matched moves, a push from the source and the corresponding pop
from the target, first part.

5. ((p, q,b),Int,b, (p, q)) ∈ δP whenever b ∈ Σ. Second part of the move described in previous
item.

6. ((p, q),Push((q ′, q)),ε, (p, q ′)) ∈ δP for every state q ′ ∈Q. Guess a intermediary state where
a pop to push reversal occurs. Simulate first half first and push the second as an obligation
on the stack.

7. ((p, q),Push((p, q ′)),ε, (q ′, q)) ∈ δP for every state q ′ ∈Q. Guess a intermediary state where
a pop to push reversal occurs. Simulate second half first and push the first as an obligation
on the stack.

8. ((p, p),Pop((p ′, q ′)),ε, (p ′, q ′)) ∈ δP . Current obligation completed, load next one from
stack.

9. ((p, p),Zero,ε, tP ) ∈ δP . All segments completed successfully, so accept.

The following Lemma shows that every run of AP simulates some run of A upto Parikh-
image. In what follows, we recall that a run ρ is a γ-run for some γ ∈ Γ∗⊥ if γ is a suffix of the
stack contents in every configuration in ρ (denoted −→γ).

Lemma 30. Let β ∈ Γ∗P⊥. Let ((p, q),β) w−−→∗
((r,r ),β) be a β-run in AP , for some p, q and r in

Q. Then, for every γ ∈ (Γ \ {⊥})∗⊥ there is a run (p,γ) w ′−−→∗
(q,γ) in A such that Parikh(w ′) =

Parikh(w). Thus, if w ∈ L(AP ) then there is a w ′ in L(A ) with Parikh(w) = Parikh(w ′).

Proof. Proof of the Lemma directly follows from the following Claim.



4.6. PARIKH IMAGES OF REVERSAL BOUNDED PDAS 75

Claim 4. If there is a run of the form ((p, q),β) v−→∗
((p ′, q ′),β) in AP , then for everyγ ∈ (Γ\{⊥})∗,

there are runs of the form (p,γ⊥) v1−−→∗
(p ′,αγ⊥) and (q ′,αγ⊥) v2−−→∗

(q,γ⊥), for some α ∈ (Γ \
{⊥})∗ such that Parikh(v) = Parikh(v1.v2).

Proof. We will now prove this by inducting on stack height and on length of the run. Suppose
the stack was never used (always remained β), then the proof is easy to see. Then we proceed
by length of the run.

The only interesting case is when the run is of the form ((p, q),β) v1−−→∗
((p1, q1),

β) a1a2−−−−→∗
((p ′, q ′),β), where the transition used to execute the sub-run ((p1, q ′

1),β) a1a2−−−−→∗
((p ′,

q ′),β) are τ1 = ((p1, q1),Int, a1, (p ′, q ′, a2) ( from 4 ) followed by τ2 = ((p ′, q ′, a2),Int, a2, (p ′,
q ′)) ∈ δP ( from 5 ) . In this case, clearly there are transitions of the form (p1,Push(x), a1, p ′)
and (q ′,Pop(x), a1, q1) ∈ δ. From this we have (p1,γ⊥)−→∗(p ′, xγ⊥) and (q ′, xγ⊥)−→∗(q1,γ⊥).
Combining this with the run got by induction, gives us the required run.

Let us assume that stack was indeed used, then the run ((p, q),β) v−→∗
((p ′, q ′),β) can be

split as

((p, q),β) v1−−→∗
((p1, q1),β) → ((p2, q2), (t1, t2)β) v2−−→∗

((r1,r1), (t1, t2)β) → ((t1, t2),β) v3−−→∗
((p ′, q ′),β)

We have two cases to consider, either q1 = t2 or p1 = t1. We will consider the case where
q1 = t2, the other case is analogous. In this case, clearly p2 = p1 and t1 = q2. Hence the run is
of the form

((p, q),β) v1−−→∗
((p1, q1),β) → ((p1, q2), (q2, q1)β) v2−−→∗

((r1,r1), (q2, q1)β) → ((q2, q1),β) v3−−→∗
((p ′, q ′),β)

Now consider the sub-run of the form

((p, q),β) v1−−→∗
((p1, q1),β)

clearly such a run is shorter and hence by induction we have a corresponding runs of

the form (p,γ⊥)
v ′

1−−→
∗

(p1,α′′γ⊥) and (q1,α′′γ⊥)
v ′′

1−−→
∗

(q,γ⊥), for all γ ∈ (Γ \ {⊥})∗ some α′′ ∈
(Γ\ {⊥})∗ and such that Parikh(v1) = Parikh(v ′

1.v ′′
1 ).

Consider the sub-run of the form

((p1, q2), (q2, q1)β) v2−−→∗
((r1,r1), (q2, q1)β)

clearly stack height of such a run is shorter by 1. Hence by induction, we have a cor-

responding runs of the form, (p1,γ⊥)
v ′

2−−→
∗

(r1,α′γ′⊥) and (r1,α′γ′⊥)
v ′′

2−−→
∗

(q2,γ′⊥) for some
α′ ∈ (Γ\ {⊥})∗ and all γ′ ∈ (Γ\ {⊥})∗ , such that Parikh(v2) = Parikh(v ′

2.v ′′
2 ). Hence we also have

the run (r1,α′α′′γ⊥)
v ′′

2−−→
∗

(q2,α′′γ⊥) and a run of the form (r1,α′α′′γ⊥)
v ′′

2−−→
∗

(q2,α′′γ⊥).



76 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

consider the sub-run of the form

((q2, q1),β) v3−−→∗
((p ′, q ′),β)

clearly such a run is shorter in length, hence by induction, we have corresponding

runs (q2,γ′⊥)
v ′

3−−→
∗

(p ′,αγ′⊥) and (q ′,αγ′⊥)
v ′′

3−−→
∗

(q1,γ′⊥), for some α ∈ (Γ \ {⊥})∗ and all γ′ ∈
(Γ \ {⊥})∗ and such that Parikh(v3) = Parikh(v ′

3.v ′′
3 ). Hence we also have (q2,α′′γ⊥)

v ′
3−−→

∗
(p ′,

αα′′γ⊥) and (q ′,αα′′γ⊥)
v ′′

3−−→
∗

(q1,α′′γ⊥)
Now combining these sub-runs, we get the required run.

In the other direction, we show that every run of A is simulated upto Parikh-image by
AP with a stack height that is logrithmic in the number of reversals. The next Lemma shows
how AR simulates runs of A and provides bounds on stack size in terms of the number of
reversals of the run in A .

Lemma 31. Let (p,α) w−−→∗
(q,α) be a α-run of A with R reversals with α ∈ Γ∗.⊥. Then, for any

γ ∈ Γ∗P⊥, there is a γ-run ((p, q),γ) w ′−−→∗
((r,r ),γ) with Parikh(w) = Parikh(w ′). Further for any

configuration along this run the height of the stack is no more than |γ|+ log (R +1).

Proof. The proceeds by a double induction, first on the number of reversals and then on the
length of the run.

For the base case, suppose R = 0. If the length of the run is 0 then the result follows
trivially. Otherwise, we will first recall that we use τ−→ to refer to transition relation labeled
with the transitions ( as opposed to letters). Let the α-run ρ, α ∈ Γ∗⊥ be of the form:

(p,α) = (p0,α0)
τ1→ (p1,α1)

τ2→ . . .
τn→ (pn ,αn) = (q,α)

If τ1 is an internal move (p0,Int, a1, p1) then ((p0, pn),Int, a1, (p1, pn)) is a transition δP (of
type 2). Thus

((p0, pn),γ)
a1→ ((p1, pn),γ)

is a valid move in AP . Let w = a1w1. Then, by induction hypothesis, there is a γ-run

((p1, pn),γ)
w ′

1−−→
∗

((r,r ),γ))

with Parikh(w ′
1) = Parikh(w1), whose stack height is bounded by |γ|. Putting these two to-

gether we get a γ-run

((p0, pn),γ)
a1.w ′

1−−−−→
∗

((r,r ),γ)

with Parikh(w) = Parikh(a1.w ′
1) whose stack height is bounded by |γ| as required.

If τn is an internal transition (pn−1, an ,Int, pn) then

((p0, pn), an ,Int, (p0, pn−1)) ∈ δP



4.6. PARIKH IMAGES OF REVERSAL BOUNDED PDAS 77

is a transition of of type 3. Thus, ((p0, pn),γ)
an→ ((p0, pn−1),γ) is a move in AP . Further, by the

induction hypothesis, there is a word w2 with w = w2.an and a γ-run ((p0, pn−1),γ)
w ′

2−−→
∗

((r,
r ),γ) with Parikh(w2) = Parikh(w ′

2). Then, since Parikh(an .w ′
2) = Parikh(w2.an), we can put

these two together to get the requisite run. Once again the stack height is bounded by |γ|.
Since the given run is a α-run, the only other case left to be considered is when τ1 is a

push move and τn is a pop move. Thus, let τ1 = (p0,Push(x1), a1, p1) and τn = (pn−1,Pop(xn),
an , pn). We claim that x1 = xn and as a matter fact the value x1 pushed by τ1 remains in the
stack all the way till end of this run and is popped by τn . If the x1 was popped earlier in the
run than the last step, then the stack height would have necessarily reached |α| at this pop,
and therefore there will necessarily be a subsequent push of xn . But this contradicts the fact
that R = 0. Thus, we have the following moves in AP .

((p0, pn),γ)
((p0,pn ),Int,a1,(p1,pn−1,an ))−−−−−−−−−−−−−−−−−−−−→((p0, pn−1, an),γ)

((p1,pn−1,an ),Int,an ,(p1,pn−1)−−−−−−−−−−−−−−−−−−−−−→((p1, pn−1),γ)

Let w = a1w3an . Then applying the induction hypothesis we get a γ-run ((p1, pn−1),

γ)
w ′

3−−→
∗

((r,r ),γ) where the stack height is never more than |γ|. Combining these two gives

us a γ-run ((p0, pn),γ)
a1an w ′

3−−−−−−→
∗

((r,r ),γ) where the stack height is never more than |γ|. Ob-
serving that Parikh(a1an w ′

3) = Parikh(a1w3an) gives us the desired result.
Now we examine runs with R ≥ 1. And once again we proceed by induction on the length

l of runs with R reversals. For R ≥ 1 there are no runs of length l = 0 and so the basis holds
trivially. As usual, let

(p,α) = (p0,α0)
τ1→ (p1,α1)

τ2→ . . .
τn→= (pn ,αn) = (q,α)

be anα-run with R reversals. If either τ1 or τn is an internal move then the proof can proceed
by induction on l exactly along the same lines as above and the details are omitted. Other-
wise, since this is a α-run, τ1 is a push move and τn is a pop move. Let τ1 = (p0, a1, push(x1),
p1) and τn = (pn−1, an , pop(xn), pn). Now we have two possibilities.

Case 1: The value x1 pushed in τ1 is popped only by τn . This is again easy, as we can apply
the same argument as in the case R = 0 to conclude that,

((p0, pn),γ)
((p0,pn ),Int,a1,(p1,pn−1,an ))−−−−−−−−−−−−−−−−−−−−→((p0, pn−1, an),γ)

((p1,pn−1,an ),Int,an ,(p1,pn−1)−−−−−−−−−−−−−−−−−−−−−→((p1, pn−1),γ)

Again, with w = a1w3a2, and applying the induction hypothesis to the shorter run (p1,
α1) w3−−→∗

(pn−1,αn−1) with exactly R reversals, we obtain a γ-run

((p1, pn−1),γ)
w ′

3−−→
∗

((r,r ),γ)

in which the height of the stack is bounded by |γ|+ l og (R +1). Combining these gives us the

γ-run with stack height bounded by |γ|+log (R+1), ((p0, pn),γ)
a1an w ′

3−−−−−−→
∗

((r,r ),γ) as required.



78 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA

Case 2: The value x1 pushed in τ1 is popped by some τ j with j < n. Then we break the run

into two α-runs, ρ1 = (p0,α0)
a1...a j−−−−−→∗

(p j ,α j ) and ρ2 = (p j ,α j )
a j+1...an−−−−−−→∗

(pn ,αn). Note that
α=α0 =α j =αn . Let a1 . . . a j = w1 and a j+1 . . . an = w2. Let the number of reversals of ρ1 and
ρ2 be R1 and R2 respectively. First of all, we observe that R1 +R2 +1 = R. Thus R1,R2 < R and
further either R1 ≤ R/2 or R2 ≤ R/2.

Suppose R1 ≤ R/2. Then, by the induction hypothesis, there is an ((p j , pn)γ)-run

ρ′
1 = (((p0, p j ), (p j , pn).γ)

w ′
1−−→

∗
((r ′,r ′), (p j , pn).γ))

with Parikh(w1) = Parikh(w ′
1) and whose stack height is bounded by

|(p j , pn).γ|+ l og (R1 +1) = |γ|+1+ log (R1 +1)

≤ |γ|+1+ log (R +1)−1

= |γ|+ log (R +1)

Similarly, by the induction hypothesis, there is an γ-run ρ′
2 = ((p j , pn),γ)

w ′
2−−→

∗
((r,r ),γ) whose

number of reversals is bounded by |γ| + log (R2 + 1) ≤ |γ| + l og (R + 1) and for which
Parikh(w ′

2) = Parikh(w2).

We have everything in place now. We construct the desired run by first using a transition
of type 6, following by ρ′

1, followed by a transition of type 8, followed by a simulation of ρ′
2 to

obtain the following:

((p0, pn),γ)
((p0,pn ),Push((p j ,pn )),ε,(p0,p j ))−−−−−−−−−−−−−−−−−−−−−−−→((p0, p j ), (p j , pn).γ)

w ′
1−−→

∗

((r ′,r ′), (p j , pn)γ)
((r ′,r ′),Pop((p j ,pn )),ε,(p j ,pn ))−−−−−−−−−−−−−−−−−−−−−−→((p j , pn),γ)

w ′
2−−→

∗
((r,r ),γ)

This runs satisfies all the desired properties. The case where R2 ≤ R/2 is handled similarly
using moves of type 7 instead of type 6 and using the fact the Parikh(w ′

2.w ′
1) = Parikh(w ′

1.w ′
2).

This completes the proof of the Lemma.

As we did for counter systems we let LR (A ) refer to the language of words accepted by A

along runs with at most R reversals. Now, for a given R, we can simulate runs of AP where
stack height is bounded by l og (R), using an NFA by keeping the stack as part of the state.
The size of such an NFA is O(|QP ||ΓP |O(log (R))) = O(|Σ||Q|O(l og (R))). Let AR be such an NFA.
Then by Lemma 30, we have Parikh(L(AR )) ⊆ Parikh(L(A )) and by Lemma 31 we also have
Parikh(LR (A )) ⊆ Parikh(L(AR )). By keeping track of the reversal count in the state, we may
construct an A ′ with state space size O(R.|Q|) such that that L(A ′) = LR (A ′) = LR (A ). Thus,
we have

Lemma 32. There is a procedure that takes a simple OCA A with K states and whose al-
phabet is Σ, and a number R ∈ N and returns an NFA Parikh-equivalent to LR (A ) of size
O(|Σ|.(RK )O(log (R))).



4.7. CONCLUSION 79

4.7 Conclusion

In this chapter, we studied language theoretic features of context-free languages. We first
showed that the downward and upward closed (w.r.t. subword relation) language of a counter
automata can effectively be represented by a polynomial sized NFA.We then showed that
given a reversal bounded pushdown system, we can effectively obtain an Parikh equivalent,
sub exponential sized finite state automaton. Using this we showed that an Parikh equiva-
lent finite state representation of language of counter system is at most sub-exponential in
the size of the counter system. We conjecture that such a finite state representation recognis-
ing the Parikh image abstraction of counter system is tight. We further believe that the lower
bound can be obtained from a class of counter systems, described in Figure 4.1.

The counter system Cn , (for any n ∈N) operates on the alphabets {a1, · · · , an ,b1, · · · ,bn}. It
proceeds in phases and accepts a word of the form c∗1 c∗2 · · ·c∗n , where ci either ai or bi . In each
phase it either reads a word of the form a∗

i or of the form b∗
i . If it reads a word of the form a∗

i
then, the counter is incremented (denoted in the figure as +) for each word read. Similarly if
b∗

i is chosen in a phase then the counter is decremented (denoted in the figure as −) for each
bi that is read.

s0start

b1,−

a1,+

b2,−

a2,+

bn ,−

an ,+

f

Figure 4.1: Cn

We do not know how to construct polynomial sized NFAs for this family of counter sys-
tems and believe that such a family of NFAs does not exist.



80 CHAPTER 4. REGULAR ABSTRACTIONS OF ONE COUNTER AUTOMATA



Chapter 5

Multi-pushdown systems (MPDS)

5.1 Introduction

In this chapter, we describe the multi-pushdown system model and some related results.
This will be useful in the following chapters where we describe out results on this model. In-
formally a multi-pushdown system is a generalisation of pushdown systems equipped with
multiple stacks. Here, each recursive thread is modelled using a pushdown stack. Thus it
naturally generalises the use of pushdown systems to model sequential recursive program to
those with bounded number of recursive threads. In full generality, MPDS are not analysable
as even two stacks are sufficient to simulate a Turing machine [126]. The focus therefore has
been on identifying restrictions on behaviours of such systems that leads to decidability of
verification problems. We first introduce the MPDS model and then discuss some of the well
known results.

5.2 Multi-pushdown system

Definition 4 (MPDS). A Multi-PushDown System (MPDS) is a tuple M = (n,Q,Γ,∆, q0,γ0)
where:

1. n ≥ 1 is the number of stacks
2. Q is the non-empty set of states,
3. Γ is the finite set of stack symbols, containing a special symbol ⊥.
4. q0 ∈Q is the initial state, γ0 ∈ (Γε = Γ∪ {ε}) is the initial stack symbol
5. ∆ ⊆ Q ×⋃

i∈[1..n] Opi ×Q is the transition relation, where Opi = {Pushi (a),Popi (a) | a ∈ Γ \
{⊥}}∪ {Zeroi ,Inti }.

We will use Op to denote set of all transitions i.e. Op = ⋃
i∈[1..n] Opi and ∆i to mean ∆i =

∆∩ (Q ×Opi ×Q).

A configuration of the MPDS M is a (n+1) tuple (q, w1, w2, · · · , wn) with q ∈ Q, and w1,
w2, . . . , wn ∈ Γ∗⊥. The set of configurations of the MPDS M is denoted by C (M). The initial
configuration c i ni t

M of the MPDS M is (q0,⊥, . . . ,⊥,γ0⊥). Given τ = (q,op, q ′) ∈ ∆ . Given two

81



82 CHAPTER 5. MULTI-PUSHDOWN SYSTEMS (MPDS)

configurations c = (q,γ1, · · · ,γn) and c ′ = (q ′,γ′1, · · · ,γ′n) (where for all i ∈ [1..n], αi ,γi ∈ Γ∗⊥)

we say c
τ→ c ′ iff one of the following holds.

• τ= (q,Pushi (a), q ′), γ′i = a.γi and ∀ j ∈ [1..n] \ {i },γ′j = γ j

• τ= (q,Popi (a), q ′), γi = a.γ′i and ∀ j ∈ [1..n] \ {i },γ′j = γ j

• τ= (q,Zeroi , q ′), γ′i = γi =⊥ and ∀ j ∈ [1..n] \ {i },γ′j = γ j

• τ= (q,Inti , q ′) for some i ∈ [1..n] and ∀ j ∈ [1..n],γ′j = γ j

For any subset T ⊆ ∆, we define →T as
⋃
τ∈T

τ→M . We write −→∗
T to denote the reflexive

and transitive closure of the relation →T . For every sequence of transitions ρ = τ1τ2 . . .τm ∈
T ∗ and two configurations c,c ′ ∈C (M), we write c

ρ−→∗
T c ′ to denote that one of the following

two cases holds:

1. ρ = ε and c = c ′

2. There are configurations c0, · · · ,cm ∈ C (M) such that c0 = c, c ′ = cm , and ci
τi+1−−−→T ci+1 for

all i ∈ [0..m −1].

Given a configuration c = (q, w1, w2, · · · , wn), we use Stacki (c) to denote the stack-i content
i.e. Stacki (c) = wi and State(c) to denote the state q . A computation π of M starting from a
configuration c is a (possibly infinite) sequence of the form c0

τ1−−→c1
τ2−−→·· · such that c0 = c

and ci−1
τi−−→ci for all 1 ≤ i ≤ |τ1τ2 · · · |. We use Conf (π), State(π), and Trace(π) to denote the

sequences c0c1 · · · , State(c0)State(c1) · · · , and τ1τ2 · · · respectively. Given a finite computation

π1 = c0
t1→ c1

t2→ c2 · · · tm→ cm and a (possibly infinite) computation π2 = cm+1
tm+2→ cm+2

tm+3→
··· , π1 and π2 are said to be compatible if cm = cm+1. Then, we write π1 •π2 to denote the

computation π
def= c0

t1→ c1
t2→ c2 · · · tm→ cm

tm+2→ cm+2
tm+3→ ··· .

There are various interesting questions that one can ask about this model. Reachability
problem asks whether a given configuration c is reachable from the initial configuration. Re-
peated reachability problem on MPDS M asks whether given a set of states F ⊆ Q, if there is
an infinite computation π of M such that some state of F is visited infinitely often. We also
consider model checking LTL formulas on MPDS. We first fix set of atomic propositions AP,
an LTL formula ϕ, an MPDS M = (n,Q,Γ,∆, q0,γ0) and a labelling function τ : Q 7→ 2AP. The
labelling function is extended to any configuration c ∈ C (M) as, τ(c) = τ(State(c)). It is easy
to see that (C (M),−→,τ) is a labelled transition system. One can then ask if every infinite path
through this system satisfies a given LTL formula.

Since MPDS by itself is Turing powerful, our only hope is to study the above questions on
restricted behaviours of the MPDS. we will discuss below some of the well know restrictions
and related results.

5.2.1 Bounded Context

Qadeer and Rehof introduced bounded-context restriction in [124]. They also showed that
question of whether a given configuration is reachable by a bounded-context computation
for some a-priori fixed bound is decidable. Informally a context is a sequence of transitions
involving only one stack. In a bounded-context computation, there is an a-priori bound on
the number of contexts that can appear in it.



5.2. MULTI-PUSHDOWN SYSTEM 83

Definition 5. Contexts: A context of a stack i ∈ [1..n] is a computation of the form π =
c0

t1−−→c1
t2−−→·· · such that Trace(π) ∈ ∆∗

i ∪∆ωi . We define Initial(π) to be the configu-
ration at the beginning of π (i.e., Initial(π) = c0). Furthermore, for any finite context
π = c0

t1−−→c1
t2−−→·· · tm−−→cm , we use Target(π) to denote the configuration at the end of

the context π (i.e., Target(π) = cm). Similarly, we use Context(π) to denote the active
stack of the context (i.e. Context(π) = i is the stack on which it operates).

Context Decomposition: Every computation can be seen as a concatenation of a sequence of
contexts π1 •π2 • . . .. In particular, every computation π can be written as a sequence
π1 •π2 • . . . such that for all i , πi and πi+1 are not contexts of the same stack. We refer to
this as the context decomposition of π.

Context-bounded Computations: Given k ∈ N, a computation π = c0
t1−−→c1

t2−−→·· · is said to
be k context-bounded if it has a context decomposition π=π1 •π2 • . . .•πl consisting of
at most k contexts (i.e. l ≤ k). Thus in a context-bounded computation the number of
switches between the stacks is bounded by (k −1).

Results: S. Qadeer and J. Rehof showed that, given any configuration, deciding whether or
not it is reachable through a bounded-context computation is NP-COMPLETE [124]. In it was
shown [118] that, in most practical cases context bounding is an effective way to capture
bugs. In [105] it was shown that decidability of reachability on multi-threaded systems, op-
erating under the context bounded restriction can be reduced to decidability on a sequential
program. This enabled multi-threaded programs to be analysed under sequential setting,
using plethora of already available tools. In [21], a system where multi-threaded recursive
programs with ability to dynamically fork new threads and a variant of bounded-context re-
striction wass considered. Such a restriction allows only those behaviours in which, for every
process the number of contexts it is in involved is bounded. They showed that reachability
problem under this restricted setting is EXPSPACE COMPLETE. In [17], problem of finding a
fair ultimately periodic executions under a context bounded restriction for multi-pushdown
systems was considered and solved.

5.2.2 Bounded Phase

The restriction bounded-phase was introduced in [97]. Informally a phase is a sequence of
operations in which the Pop operations are performed on only one stack. In a bounded-phase
computation, there is an a-priori bound on the number of phases that it can involve.

Definition 6. Phase A Phase of a stack i ∈ [1..n] is a computation that involves pops ( and
zero test ) only from stack-i i.e. it is a computation of the form π = c0

t1−−→c1
t2−−→·· · in

which Trace(π) ∈∆↓i . Where ∆↓i =∆∩ (Q × (op \
⋃

j 6=i ∪a∈Γ{Pop j (a)}∪ {Zero j })×Q).

Bounded Phase computation Given k ∈N, a computation π= c0
t1−−→c1

t2−−→·· · is said to be k
Phase-bounded if it can be seen as concatenation of atmost k-Phases i.e. π = π1 •π2 •
. . .•πl such that π1, · · · ,πl are Phases and l ≤ k.



84 CHAPTER 5. MULTI-PUSHDOWN SYSTEMS (MPDS)

Results: The question of whether a given configuration is reachable through a bounded-
phase computation for some fixed a-priori bound was shown to be 2ETIME COMPLETE [97].
In the same paper, the authors also proved the Parikh theorem and closure under boolean
operations for the class of languages accepted by a bounded-phase MPDS. Given a set of
configurations C , we define Pre∗(C ) with respect to k-bounded-phase restriction as a set of
configurations c ′, from which a configuration c ∈ C can be reached through a k-bounded-
phase computation. Global model checking problem asks whether given a regular set of con-
figuration C , Pre∗(C ) is also effectively regular. In [134], the global model checking problem
and repeated reachability problem for MPDS with bounded-phase restriction were solved.
This lead to decidability of model checking LTL logic against bounded-phase computations.
In [133] parity games over MPDS with bounded-phase restrictions were considered and a
NON-ELEMENTARY decision procedure for solving it was established. We revisit parity games
over MPDS in a later chapter of the thesis. In [112, 56] it was shown that a bounded-phase
executions of an MPDS machine has bounded tree-width/split-width, as an application of
this, the decidability of many linear time properties over bounded-phase executions could
be obtained.

5.2.3 Bounded Scope

The bounded-scope restriction was introduced in [100], and we describe this restriction for-
mally below. We introduce some notation for this purpose. For any i ∈ [1..n] and for any
two contexts π1 and π2 of stack i , we write < π1,π2 >i to denote that Stacki (Initial(π2)) =
Stacki(Target(π1)). This notation is extended in the straightforward manner to any bigger
sequence. Given a run of MPDS π and its context decomposition π = π1 •π2 • · · · , we let
Compi (π) =< πi1 ,πi2 , · · · >i (with i1 < i2 < i3 < ·· · ) to be the maximal subsequence of i -
contexts of the decomposition.

Definition 7. Cluster A cluster ρ of a stack i ∈ [1..n] of size j ∈ N (also referred to as j -
cluster) is a sequence of finite contexts < π1,π2, . . . ,π j >i of the stack i such that
Stacki (Initial(π1)) = Stacki(Target(πj)) = ⊥ (i.e., the stack i at the beginning of the
context π1 and at the end of the context π j is empty).

Scope-Bounded Computations Intuitively, in a scope-bounded computation, any value that
is pushed in a stack i is removed within k contexts involving this stack i . Equivalently,
we require that for any scope-bounded computation, if the computation is finite, then
it is just a concatenation of clusters of size at most k i.e., a computation π is said to be a
k scope-bounded computation if for each i ∈ [1..n], Compi (π), can be seen as a sequence
of clusters of size at most k (i.e. Compi (π) =< ρ1,ρ2, · · · >i , where each ρ1, · · · ,ρmi is a k
cluster).

Results: In [102], the scope-bounded restriction was introduced and the reachability un-
der this restriction was shown to be PSPACE complete. Later in [56, 103], it was shown that
the tree-width/split-width of computations of such a system is bounded. In [102], language
theoretic properties of bounded-scope system were studied. It was shown that the scope-
bounded MPDS are determinizable. Further it was shown that the class of languages of a



5.2. MULTI-PUSHDOWN SYSTEM 85

scope-bounded MPDS are closed under intersection and complementation. Further a se-
quentialisation construction of MPDS with scope-bounded restriction was shown, leading to
Parikh theorem for such languages.

5.2.4 Ordered multi-pushdown run

Ordered multi-pushdown system was originally introduced in [45] and the verification and
model checking problems on these structures were studied in [16]. Informally, in an or-
dered MPDS execution, the pop operations are allowed only on the least non-empty stack.
We would like to note here that, we always refer to any stack by the position it occupies in
the configuration. From this, there is also an implicit ordering on the stacks. Before we for-
mally present the definition, we introduce a funtion Act : C (M) 7→ [1..n] that takes as an in-
put, a configuration of MPDS and outputs the least non-empty stack (or the active stack) of
that configuration. We define Act(c) = j if c ∈ Q ×⊥ j−1 × (Γ+⊥)× (Γ∗⊥)n− j and Act(c) = n if
c ∈Q × {⊥}n .

Definition 8. Any executionπ= c1
τ1−−→M c2

τ2−−→·· · of given MPDS M = (n,Q,Γ,∆, q0,γ0), is said
to be an order-restricted execution iff for all i ∈ [1..|π|], if τi ∈ (Q ×∪a∈ΓPop j (a)×Q)∩∆ j , for
some j ∈ [1..n] then Act(ci ) = j , i.e. the pop operation is allowed only on the least non-empty
stack.

Results: In [16] it was shown that the reachability problem under this restriction is decid-
able and 2ETIME COMPLETE. It was shown in [14] that the repeated reachability problem for
such models can be reduced to a sequence of reachability queries and hence model checking
the LTL formulas on ordered restriction computations of MPDS is decidable. In [112, 56], the
tree-width and split-width of a ordered restricted executions of an MPDS was shown to be
bounded.



86 CHAPTER 5. MULTI-PUSHDOWN SYSTEMS (MPDS)



Chapter 6

Linear time model checking under
bounded scope

6.1 Introduction

There have been many works to address the problem of detecting safety bugs in shared mem-
ory multi-threaded programs. However besides safety, it is crucial to also ensure whether
concurrent programs satisfy certain liveness properties. Then one interesting question is
what would be a suitable concept for restricting behaviours of the multi-threaded programs
when reasoning about liveness properties and more generally about any omega-regular
property expressible in linear time temporal logic such as LTL or by a Büchi automata.

While context-bounding is quite useful for detecting safety bugs for which it is sufficient
to consider finite computations, this concept is not very appropriate for reasoning about live-
ness properties for which it is necessary to consider infinite behaviours. The reason for this
is because context bounding does not give a chance for every thread to be executed infinitely
often. Any context-bounded infinite execution eventually degenerates to that of a pushdown
system. In this respect, the scope-bounded restriction [103], is more suitable for reasoning
about liveness since it allows behaviours with unbounded context-switches between threads.

In this chapter, we show how to obtain an decision procedure for model checking a LTL
formula against scope-bounded executions of an MPDS. For this, we first define what a scope-
bounded infinite run of an MPDS means. A bounded-scope repeated reachability problem
asks if there is an infinite bounded-scope computation that visits a given good state, infinitely
often. We then go onto show that the bounded-scope repeated reachability problem is decid-
able. We show that this problem can be reduced to checking emptiness on a Büchi pushdown
automata. We later show how to use this result to model check an LTL formula.

We also present an alternate proof of hardness for the bounded-scope reachability prob-
lem. The original proof of hardness in [103] was by an involved reduction from the emptiness
problem for a space bounded Turing machine to the bounded-scope reachability problem
on an MPDS system. In this chapter, we first show a simpler proof to obtain the lower bound.
For this, we show an easy reduction from the emptiness of the intersection of n finite state
automata, to the scope-bounded reachability problem on an MPDS.

87



88 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

In [14] the model checking problem of ordered multi-pushdown system is shown to be
decidable in 2ETIME-COMPLETE. It is not very clear how this decidability result is related to
the one we prove in this chapter. Simulating scope-bounded computation using the ordered
multi-pushdown system computation does not seem possible. More over the complexity
of the model checking problem for ordered multi-pushdown system is clearly higher than
model checking under bounded-scope restriction.

A procedure for detecting termination bugs using repeated context-bounded reachabil-
ity has been proposed in [17]. The idea there is to focus on checking the existence of fair
context-bounded ultimately periodic non-terminating computations i.e., infinite computa-
tions of the form uvω where u and v are finite computation segments with a bounded num-
ber of context-switches. The model checking procedure described in this chapter is more
general than the procedure in [17] since scope-bounded and ω regular behaviours are more
general than ultimately periodic computations and context-bounding.

Remark: In [101], the problem of model checking infinite scope-bounded executions of a
multi-pushdown system, against a powerful logic called multi-CaRet ( which is an extension
of CaRet logic) was considered and was shown to be EXPTIME-COMPLETE. Our work is inde-
pendent of their work and both results were obtained and published concurrently.

6.2 Hardness for scope-bounded reachability

In this section, we show an alternate proof of hardness for scope-bounded reachability.

Theorem 14. Given multi-pushdown system M, a constant k and a state q, checking if q is
reachable by a k-scope-bounded computation from the initial configuration is PSPACE HARD.

Proof. (sketch) Let us fix n finite state automata A1 · · · An where Ai = (Qi ,Σ,δi , q0
i , f 0

i ). We
know that the problem of checking whether

⋂n
i=1 L(Ai ) 6= ; is PSPACE HARD. We show how

to reduce this problem to checking whether a state is reachable via a finite n-bounded-scope
computation of an MPDS M . The idea is to construct an MPDS with n stacks. Initially each
of its n stacks are populated with the initial states of the automata (i th stack is initialised
with q0

i ). At start of each round, an input letter is guessed and systematically, the state stored
in each of the stack is replaced with a new state. The new state is the result of applying the
guessed input letter to the current state. For e.g. if stack-i has state qi in its stack and if the
guessed input letter is an a, qi is replaced with q ′

i if (qi , a, q ′
i ) ∈ δi . Clearly at the end of k

rounds, if the word guessed so far is w , then for each i ∈ [1..n], stack-i holds the state qi

where qi = δ∗i (q0
i , w). If at the end of some round if all the stacks contain a final state, then

we know that
⋂n

i=1 L(Ai ) 6= ; . This can easily be arranged by non-deterministically checking
at the end of a round, if all the stacks contain a final state and moving to a new state say f in
the MPDS. Note that in each round, the state contained in each stack is popped and then is
replaced by the next state (and hence the stack is emptied). Hence the problem of checking
if the intersection of the language of n finite state automata is empty can be reduced to 1
scope-bounded reachability (of state f ) in an MPDS with n stacks.



6.3. INFINITE SCOPE-BOUNDED COMPUTATIONS 89

6.3 Infinite scope-bounded computations

In this section, we introduce the definition of scope-bounded computation for infinite case.

Scope-Bounded Computations: Let π be any infinite computation, it is an infinite k scope-
bounded computation if it can be context decomposed as π1 •π2 • . . . such that one of the
following holds.

1. (Case where there are infinitely many context switches) For each i ∈ [1..n], Compi (π), can
be seen as a sequence of clusters of size at most k (i.e. Compi (π) =< ρ1,ρ2, · · · >i , where
each ρ1, · · · ,ρmi is a k cluster). Moreover, there are at least two distinct indices i , j ∈ [1..n]
such that σi and σ j are infinite (and all the stacks for which σl is finite are empty beyond a
point).

2. (Case where beyond some point all stacks except i are empty and there is a final infinite
context involving the stack i ) For all j 6= i , Comp j (π) =< ρ1ρ2 · · ·ρm j > j ( where each ρ1,
· · · ,ρm j is a k cluster) and Compi (π) =< ρ1,ρ2, · · ·ρmi ,σ′

i >i ,( where each ρ1, · · · ,ρmi is a k
cluster), σ′

i =<π′
1,π′

2 · · · ,π′
`
>i is a sequence of contexts with ` ≤ k and π′

`
is an infinite

context.

6.4 Model checking LTL on bounded scope executions

In this section, we show how to model check LTL formulas over scope-bounded computa-
tions of MPDS. For this, we first show how to solve the repeated reachability problem and
then we show how to use this to solve the model checking problem.

6.4.1 Bounded scope repeated reachability

Bounded scope repeated reachability problem asks, given an MPDS M = (n,Q,Γ,∆, qinit,γ0),
a number k ∈N and a set of final states F , whether there is an infinite k bounded-scope run,
starting from the initial configuration that visits some final state f ∈ F infinitely often. The
following Theorem states that this problem can be reduced to checking emptiness of a Büchi
pushdown system.

Theorem 15. Let k ∈ N be a natural number, M = (n,Q,Γ,∆, qinit,γ0) an MPDS, and F ⊆ Q a
set of states. Then it is possible to construct a Büchi pushdown automaton P such that M has
a k scope-bounded computation that visits some state in F infinitely often if and only if the
language Lω(P) is not empty. Moreover, the size of P is O(|F |(k|M|)dkn) for some constant d.

We first informally sketch the proof before formalising the same. Firstly it is easy to see
that we may restrict ourself to checking whether a single final state f ∈ F is visited infinitely
often along an infinite run. This is because, by definition we need only a single state to repeat
infinitely many times to satisfy the Büchi condition. If we can solve the problem for the single
state case, then we can repeat our check for each state in F . So w.l.o.g., we will assume that
F = { f } for some f ∈Q.



90 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

Before we go on to describe the proof, we introduce some notations be-
low. Given a finite context π, we first define an abstraction as Abs(π) =
(State(Initial(π)),Context(π),flg,State(Target(π))), i.e. it is a tuple that records the
initial state (as first component of tuple), the final state (as last component of the tuple), the
active stack of the context (as second component of the tuple) and information on whether
f was seen during the execution of the context (i.e. flg = 1 if π visited f , 0 otherwise).
Given an infinite context of the form π = c1−→c2−→c3−→·· · , its abstraction is defined as
Abs(π) = Abs(c1−→c2).Abs(c2−→c3) · · · i.e. the abstraction of its one step computations.
Given a sequence of contexts π = π1 • π2 • · · · , the abstraction of such a sequence is de-
fined as a word of the form Abs(π) = Abs(π1)Abs(π2) · · · , we call the resulting word the
abstraction sequence of π. Given a k cluster of the form ρ =< π1,π2, · · ·πl >i (l ≤ k), we let
Abs(ρ) = Abs(π1)Abs(π2) · · ·Abs(πl ). Given a ( possibly infinite ) sequence of abstractions
w of the form w = (q1, i1, f1, q ′

1)(q2, i2, f2, q ′
2)(q3, i3, f3, q ′

3) · · · , we say it is well-formed if
q1 = qinit and further for all i ≥ 2, we have qi = q ′

i−1. Given two configurations c,c ′ ∈ C (M),
we say c ≡i c ′ iff State(c) = State(c ′) and Stacki (c) = Stacki (c ′). Given two clusters ρ =< π1,
π2 · · · ,πl >i and ρ′ =< π′

1,π′
2, · · · ,π′

l >i containing equal number of contexts, we say they are
i -equivalent iff the following conditions hold.

• Abs(ρ) = Abs(ρ′)
• For all j 6= i , we have for all i ′ ∈ [1..l ], Stack j (Initial(πi′)) = Stackj(Initial(π′

i′))

Now consider any k scope-bounded infinite computation π. Clearly it can be context
decomposed into infinite number of finite contexts (π=π1•π2•· · · , where π1,π2, · · · are finite
contexts) or into finite number of contexts ending in an infinite context (π = π1 •π2 · · · •π`,
where π1,π2, · · ·π`−1 are finite context and π` is an infinite context).

Let us first consider a k scope-bounded computation π of an MPDS M , involving in-
finitely many finite contexts. Note that this corresponds to the computation having infinitely
many context switches. Let σi = Compi (π), clearly by definition, each σi is a sequence of (
possibly infinite ) k clusters i.e. for all i ∈ [1..n], we have σi =< ρi

1,ρi
2, · · · >i , where each ρi

j is
a k-cluster. Further we have that at least two indices i , j such thatσi ,σ j are infinite. Consider
Abs(π), clearly such an abstraction sequence is well formed. Given any well formed infinite
word w ∈ (Q × [0..n]× [0,1]×Q)ω, when can we say that it is an abstraction of some k scope-
bounded run of an MPDS? Firstly note that if we were to replace any k-cluster ρ correspond-
ing to stack-i in π by an i -equivalent k-cluster ρ′, the run is still a valid k scope-bounded
run. Hence it is enough to check whether there are abstraction sequences of k-clusters, one
for each stack and whether the given word is in the shuffle of such sequences. The following
Lemma formalises this.

Lemma 33. M has a k scope-bounded computation π = π1 •π2 • · · · , visiting infinitely often
the state f that can be decomposed into infinitely many finite contexts if and only if there is a
well formed word w such that

• There are infinitely many indices j ∈N such that w[ j ] ∈Q × [1..n]× {1}×Q
• For every stack i ∈ [1..n], there is a (possibly infinite) sequence σi of k clusters of the stack i ,

such that w ∈ Shuffle({Abs(σ1)}, . . . , {Abs(σn)}).



6.4. MODEL CHECKING LTL ON BOUNDED SCOPE EXECUTIONS 91

Proof. (⇒)
For each i ∈ [1..n], let σi = Compi (π). By definition of scope-bounded run, we have for

each i ∈ [1..n], σi is a (possibly infinite) sequence of k-clusters (i.e. σi =< ρi
1,ρi

2, · · · >i , where
ρi

1,ρi
2, · · · are k-clusters). It is easy to see that Abs(π) ∈ Shuffle({Abs(σ1)}, . . . , {Abs(σn)}) and

that Abs(π) is indeed well formed. Hence the required word is w = Abs(π).
(⇐)
We assume a well formed word w ∈ Shuffle({Abs(σ1)}, . . . , {Abs(σn)}) where each σi is a

concatenation of possibly infinite sequence of k clusters and show how to construct a MPDS
run π from it. Firstly note that each of the σi is a sequence of contexts of the form < πi

1,πi
2,

· · · >i . Let σ = π1,π2,π3, · · · be a sequence of contexts such that σ ∈ Shuffle(σ1, . . . ,σn) and
Abs(σ) = w . It is easy to note that w determines such a σ uniquely. Though we have this
sequence of contexts, it need not be compatible. Hence we are not immediately promised
an infinite run from this sequence of contexts. However all is not lost. The below Lemma 34
states that if there is a context of stack i starting from a particular configuration, then there is
a context starting from any configuration that is i -equivalent to it.

Lemma 34. Given any context π (with Context(π) = i ), let u = Trans(π) be the sequence of
transitions of π then from any configuration c such that c ≡i Initial(π). There is a valid run of
the form c u−→∗

c ′, with c ′ ≡i Target(π). Further we have that for all j 6= i , c ′ ≡ j c.

Proof. We prove this by induction on the length of the computation in the context. The base
case is a zero length computation, which is trivial. For the induction case, we will assume
that the length of the context is greater than 1. In this case, the context π can be split as
π= d−→∗d ′′ τ→ d ′. By induction, we have for any c ≡i d , a computation of the form c−→∗c ′′ such
that for all j 6= i , c ′′ ≡ j c and d ′′ ≡i c ′′. The case where τ is an internal move is easy to see. We
now consider the case where τ is a zero move and rest of the cases are similar. Suppose τ= (q,
Zeroi , q ′), since c ′′ ≡i d ′′, we have State(c ′′) = State(d ′′) and Stacki (c ′′) = Stacki (d ′′) =⊥. From
this we have c ′′ = (q,γ1, · · · ,γi−1,⊥, · · · ,γn)

τ→ c ′ = (q ′,γ1, · · · ,γi−1,⊥, · · · ,γn). Further, it is easy
to see that c ′ ≡i d ′ and for all j 6= i , c ′ ≡ j c.

Now using the above Lemma, we will show how to construct a valid scope-bounded
computation from σ (recall that σ = π1,π2,π3, · · · is a sequence of contexts such that σ ∈
Shuffle(σ1, . . . ,σn) and Abs(σ) = w). Let α = α1,α2 · · · be a sequence, such that αi =
Trans(πi ). Now the existence of a k scope-bounded run follows easily from the fact that,
using Lemma 34, we can inductively construct for any prefix α1, · · ·αn of α, a run from
the initial configuration c Ini t

M of the form c Ini t
M

α1···αn−−−−−→∗
cn such that cn ≡i Target(πn), where

i = Context(πn) and for all j 6= i we have cn−1 ≡ j cn .

We will now show that the abstractions of set of all k scope-bounded computations in-
volving infinitely many finite contexts is regular. For this, we will construct a Büchi automa-
ton that will recognise well formed words w ∈ (Q × [1..n] × [0,1] ×Q)ω such that there are
infinitely many indices j ∈N such that w[ j ] ∈ P × [0..n]× {1}×P and w ∈ Shuffle({Abs(σ1)},
. . . , {Abs(σn)}), where σi is a (possibly infinite) sequence of clusters of stack i . Then by using



92 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

Lemma 33, we get the existence of k bounded-scope run involving infinitely many context-
switches.

We will firstly show that for every k ∈N and i ∈ [1..n], the set Lk
i (M) of all the finite words

of the form Abs(ρ) where ρ is a k cluster of stack i can be seen as the language of a finite state
automaton. Note that such a language is finite and hence regular. The problem is to show
that it is effectively regular and to compute the complexity of the automata recognising such
a language. For this, we build a pushdown system recognising the abstractions of clusters
and then restricting ourselves to only those words whose length is less than or equal to k.

Let Ctxq,q ′

i be set of all sequences of contexts such that, for any j ∈ N if (π1,π2, · · · ,π j ) ∈
Ctxq,q ′

i then the following holds.

• Context(π1) = ·· · = Context(π j ) = i .
• For all l ∈ [1.. j −1], we have Stacki (Target(πl)) = Stacki(Initial(πl+1)).
• State(Initial(π1)) = q, State(Target(πn)) = q′ and Stacki (Initial(π1)) =

Stacki(Target(πn)) =⊥
Let sq,q ′

i = {Abs(π1,π2, · · · ,π j ) | (π1,π2, · · · ,π j ) ∈ Ctxq,q ′

i , j ∈N}. Such a set captures all abstrac-
tions of clusters of stack-i that starts at q and end in q ′.

Lemma 35. The set Sq,q ′

i is context free.

Proof. Any element of Sq,q ′

i is of the form, Abs(ρ), where ρ = (π1, · · · ,πn) ∈ Ctxq,q ′

i . From this
we know that each π1, · · · ,πn is a context of stack i and hence during its execution, no stack
other than i is used. This means that, a single stack is sufficient to simulate the moves. We
show how to construct a pushdown system that will simulate each of these contexts, using
its local states and its stack. The states of the pushdown system that we construct will be of
the form (q, q ′, i ). In this, the first component is used to store the starting state of the context,
second component is used to store the state reached while simulating the context and the last
component records whether the final state f was seen during the simulation. The pushdown
system will simulate a move of the context by performing any stack operation of the context
on its stack. Further it will update the second component of the state space to reflect the
effect of the move. If a final state is ever seen, it is recorded in the third component. The
pushdown system can nondeterministically guess from any configuration of the form ((q, q ′,
flg),γ), the completion of a context. In this case, it outputs the abstraction (q, i ,flg, q ′) and
starts simulating a new context. The details are formalised below.

The Pushdown system is defined as Pi (q, q ′) = ((Q ×Q × [0,1])∪ {e}, (Q × {i }× [0,1]×Q),
Γ,δ(q,q ′), (q, q,0)). The states of the pushdown system records along with the the start state
of the context, current state, and whether the state f was seen during the execution of the
context. The input alphabet is set of all possible abstractions of context i . The transition
relation δ(q,q ′) is defined as below.

1. For any transition (q1,Pushi (α), q ′
1) ∈ ∆, we add for all p ∈ Q, the transitions ((p, q1, x),

Push(α),ε, (p, q ′
1, y)) to δ(q,q ′). Further if q1 = f or q ′

1 = f then we let y = 1 and we let y = x
otherwise. We add similar transitions for operations such as Popi ,Zeroi and Inti . These
set of transitions simulate the context specific moves.



6.4. MODEL CHECKING LTL ON BOUNDED SCOPE EXECUTIONS 93

2. For all q1, q2, q3 ∈ Q, we add ((q1, q2, x),Int, (q1, i , x, q2), (q3, q3,0)) to δ(q,q ′). These set of
transitions, makes a non-deterministic jump (indicating end of the current context and
beginning of a new one).

3. For all q1 ∈ Q, we add ((q1, q ′, x)),Zero, (q1, i , x, q ′),e). These set of transitions ends the
cluster when required state with empty stack is reached.

Correctness of such a construction is easy to see from the following Lemma.

Lemma 36. Any string w = (q1, i , x1, q ′
1).(q2, i , x2, q ′

2). . . . .(qm , i , xm , q ′
m) ∈ L(P (q, q ′),e) iff there

is a context sequence of the form σ =< π1,π2, · · · ,πm >i , such that Abs(σ) ∈ Sq,q ′

i and w =
Abs(σ).

Proof. For this, we first prove the following Claim that relates the run of Pi to run of M .

Claim 5. For any γ1,γ2 ∈ (Γ \ {⊥})∗ and x ∈ [0,1], ((p, p,0),γ1⊥) ε−→∗
Pi (q,q ′)((p, q, x),γ2⊥) (us-

ing transitions only from 1) iff there is a context of stack-i π= c−→∗
M c ′ such that State(c) = p,

State(c ′) = q, Stacki (c) = γ1⊥, Stacki (c ′) = γ2⊥ and for all j 6= i , Stack j (c) = Stack j (c ′) = ⊥.
Further if x = 1 then there is a c ′′ with State(c ′′) = f such that π can be written as π =
c−→∗c ′′−→∗c ′

Proof. (⇒) We prove this by induction on the length of the computation. The base case
being zero length computation is trivial. For the inductive case, we assume that ((p, p,0),
γ1⊥)−→∗

Pi (q,q ′)((p, q, x),γ2⊥) is of size greater than zero. Then the computation can be split
as

((p, p,0),γ1⊥)−→∗
Pi (q,q ′)((p, q ′, y),γ′2⊥)

τ→Pi (q,q ′) ((p, q, x),γ2⊥)

By induction, we have a run of the form

(p,⊥i−1,γ1⊥,⊥n−i )−→∗
M (q ′,⊥i−1,γ′2⊥,⊥n−i )

Let τ = ((p, q ′, y),Push(α), (p, q, x)) (rest of the cases are similar and easy). Such a transition
was added in the first place due to the existence of a transition in M of the form (q ′,Pushi (α),
q). Moreover, if y = 0 and x = 1 then we have q = f or q ′ = f . From these, we can extend the
run as follows.

(p,⊥i−1,γ1⊥,⊥n−i )−→∗
M (q ′,⊥i−1,γ′2⊥,⊥n−i ) → (q,⊥i−1,γ2⊥,⊥n−i )

(⇐)
We again prove this direction by inducting on the length of the computation. Base case of

length zero computation is trivial. For inductive case, we assume (p,⊥i−1,γ1⊥,⊥n−i )−→∗(q,
⊥i−1,γ2⊥,⊥n−i ) is a computation of length greater than zero. Hence we can split this com-
putation as

(p,⊥i−1,γ1⊥,⊥n−i )−→∗(q ′,⊥i−1,γ′2⊥,⊥n−i )
τ→ (q,⊥i−1,γ2⊥,⊥n−i )

For some q ′ ∈Q and γ′2 ∈ (Γ\ {⊥})∗. By induction, we have a run of the form

((p, p,0),γ1⊥)−→∗
Pi (q,q ′)((p, q ′, y),γ′2⊥)



94 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

Let τ = (q ′,Pushi (α), q) (the other cases are similar). If y = 0 and q = f or q ′ = f then
we have the transition ((p, q ′,0),Push(α), (p, q,1)) ∈ δ(q,q ′). If y = 0 and q 6= f and q ′ 6= f then
we have the transition of the form ((p, q ′,0),Push(α), (p, q,0)) ∈ δ(q,q ′). If y = 1, we have the
transition ((p, q ′,1),Push(α), (p, q,1)) ∈ δ(q,q ′). Now using one of these transitions, we can get
the required run.

((p, p,0),γ1⊥)−→∗
Pi (q,q ′)((p, q, x),γ2⊥)

Now, proof of the Lemma 36 is an immediate consequence of the following Claim 5 and the
transitions from 2,3. This completes the proof of Lemma 36.

This completes the proof of 35.

Given a pushdown automata P and an integer k, one can easily construct an finite state
automaton B accepting the set of k length words accepted by P , i.e. L(B) = {w | |w | ≤ k ∧w ∈
L(P )}. This can easily be obtained by converting the given pushdown automaton to a context
free grammar and then simulating all the derivations of length bounded by k. The size of
such a finite state automaton is at most exponential in k.

Corollary 1. Lk
i (q, q ′) = {w | w ∈ Sq,q ′

i ∧|w | ≤ k} i.e. the set of all k-clusters of stack i is effec-
tively regular. The complexity of such a construction is at most exponential in k.

We now show how to construct a Büchi automata recognising the abstractions of a k
scope-bounded infinite computation that has infinitely many contexts. Towards construct-
ing the Büchi automata, we first fix the finite state automaton obtained from corollary 1. Let
Bi (q, q ′) be the finite state automata recognising the language Lk

i (q, q ′). Let Bi be an au-
tomata such that L(Bi ) =⋃

q,q ′∈Q L(Bi (q, q ′)) i.e. consolidated automata recognising all inter-

face languages between all pairs of states for stack-i , let Bi = (QBi , (Q×{i }×[0,1]×Q),δBi , qBi
0 ,

F Bi ). Further we will, w.l.o.g. assume that the initial is not present in the set of final states.

Lemma 37. Given an MPDS M = (n,Q,Γ,∆, s0,γ0) and a state f ∈Q, the problem of checking
whether there is a well-formed word w such that

1. w ∈ Shuffle({Abs(σ1)}, . . . , {Abs(σn)}), where for each i ∈ [1..n],σi is a sequence of k clusters
of stack i (with at least two of them being infinite)

2. There are infinitely many j ∈N such that w[ j ] ∈ (Q × [1..n]× {1}×Q)

can be reduced to the emptiness problem for a Büchi automaton B whose size is O((k|M|)dkn)
for some constant d.

Proof. For any X ⊆ [1..n], let LX = {w | w ∈ Shuffle({Abs(σ1)}, . . . , {Abs(σn)})∧∃∞j ∈N,w[j] ∈
(Q × [1..n] × {1} × Q)}. It is the set of all well formed words in shuffle of clusters σ1, · · ·σn ,
such that for each i ∈ X , σi is an infinite sequence of k clusters and for each j ∉ X ,σ j is
an finite sequence of k clusters. Clearly, what we require is a Büchi automata B such that
L(B) = ⋃

X⊆[1..n],|X |>1 LX . We show how to construct such a Büchi automata recognising the



6.4. MODEL CHECKING LTL ON BOUNDED SCOPE EXECUTIONS 95

language LX , for some fixed X . Then the required B automaton can easily be obtained by
taking union over all such X .

The idea to construct BX , is to run the Bi ( for all i ∈ [1..n]) automatas in parallel and
stitch up the k-clusters obtained to form a well-formed word. We also need to ensure that, in
any execution, those components outside of X terminate eventually and those in X execute
infinitely often.

Ensuring that components outside of X terminate eventually is done by setting up a spe-
cial state ⊥⊥⊥. Now the Büchi acceptance condition can be setup in such a way that for all
components not in X , only ⊥⊥⊥ is seen infinitely often.

For components in X , we need to ensure that every one of them is executed infinitely
often. This is done by ensuring that for every j ∈ X , the final state and initial state of B j

is seen infinitely often. For this, we assume an implicit ordering on the elements of X say
X = {x1, · · ·xm}. The Büchi system we construct will remember as part of its state space, the
last element of X that has visited a final state. Further the Büchi acceptance condition will
ensure that each of these elements are repeated in the state infinitely often.

The automata needs to accept sequence of abstractions that has to be well formed. Given
any abstraction of the form (p1, i , x, p2), by target state we mean the state p2 and by source
state, we mean the state p1. The accepted sequence of abstractions is ensured to be well
formed by storing in the state space the target state of the last seen abstraction and accepting
the next abstraction only if its source state matches the stored state. The construction is
formalised below.

The automata BX = (QBX , (Q × {i }× [0,1]×Q),δBX , qBX
0 ,F BX ) is defined as

1. The set of states of BX are QBX =QB1 ∪ {⊥⊥⊥}×·· ·×QBn ∪ {⊥⊥⊥}×Q × X × [0,2]. Informally, the
states include the product of states of all Bi ( i ∈ [1..n]) and a special ⊥⊥⊥ which will be used
by the indices i ∉ X , to indicate completion of the finite computation. We further record
the last seen target state in the abstraction sequence seen so far (as (n +1)’st component),
this information will be used in ensuring that the sequence is well formed. We also have a
component to ensure that each element in X is seen infinitely often. Lastly we have in the
tuple, flags [0..2] to record if f was visited. As we will see later, it also serves the purpose of
ensuring that each element in X is seen infinitely often.

2. The initial state of BX is qBX
0 = (qB1

0 , · · · , qBn
0 , s0, x1,0).

3. The set of final states of BX are F BX = {(q1, · · · , qn , p, xm ,2) | p ∈ Q, ∀i ∈ [1..n] \ X , qi =⊥∧
qxm ∈ F Bxm }. The final state ensures that all the components that were outside of X have
terminated. Further as we will see later, such a final state ensures that between any two
appearances of it, each component in X has made progress and that we have seen state f
at least once.

4. The transition relation δBX is defined as below.

a.1 If (qi , (p, i ,b, p ′), q ′
i ) ∈ δBi then we add for all states (q1, · · · , qi , · · · , qn , p, x, z) ∈ QBX , the

transition ((q1, · · · , qi , · · · , qn , p, x, z), (p, i ,b, p ′), (q1, · · · , q ′
i , · · · , qn , p ′, x, y)) ∈ δBX , where

y = b ∨ z ( is 1 if either of b, z is 1). Such a transition simulates one move of δBi . It further
records in flag y whether f was seen.

a.2 For every i ∉ X and for all qi ∈ F Bi , we add ((q1, · · · , qn , p, x, z), ε, (q1, · · · , qi−1,⊥, qi+1,



96 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

· · · , qn , p, x, z)) ∈ δBX signifying possible end of the finite computation. We also add the
transition from final state to initial state, this will start a new cluster for this thread. ((q1,

· · · , qi , · · · , qn , x, y), ε, (q1, · · · , q
Bxi
0 , · · · , qn , x, y)) ∈ δBX

a.3 For every xi ∈ X , xi 6= xm and for all qxi ∈ F Bxi we add ((q1, · · · , qxi , · · · , qn , xi , y), ε, (q1, · · · ,

q
Bxi
0 , · · · , qn , xi+1, y)) ∈ δBX . This will ensure that we have transitioned from the final to

initial state for xi ∈ X .
a.4 We also add for all qxm ∈ F Bxm , ((q1, · · · , qn , xm ,1),ε, (q1, · · · , qn , xm ,2)) to δBX and ((q1, · · · ,

qxm , · · · , qn , xm ,2),ε, (q1, · · · , q
Bxm
0 , · · · , qn , x1,0)) to δBX . Note that by adding the special

state with flag 2 and making it the final state, we are forcing the automaton to move from
xm to x1. This ensures that each of the elements in X are seen infinitely often.

To establish correctness of the construction, we will prove the following Lemma.

Lemma 38. w ∈ L(B) iff the following holds

1. w is well formed
2. For each i ∈ [1..n], there is a sequence σi of clusters of the stack i such that w ∈

Shuffle({Absqf (σ1)}, . . . , {Absqf (σn)}).
3. There are infinitely many indices j ∈N such that w[ j ] ∈Q × [1..n]× {1}×Q.

Proof. (⇒)

1. Let w ∈ L(B), it is easy to see why w is well formed. Firstly notice that all moves on the
letters from w are by using the transition in a.1. In each of these transitions, the target
state of previously seen input is recorded (i.e. if the previously seen input is (p, i ,1, p ′) then
p ′ is recorded in the (n +1)’st component of the state). Further notice that the transition
can be fired only if the previously recorded target state matches the source state of the
input currently read (i.e. the transition is enabled on input (p, i ,1, p ′) only if the (n +1)’st
component of the current state is p). From this it is easy to see that for any input w that
is accepted, the source state of w[i ] for every i matches with the target state of w[i −1].
Hence any word w that is accepted, is well formed.

2. Follows directly from the fact that we chose |X | > 1 and from the following easy to see
Claim. Here, we will use w ↓i to mean w ↓(Q×{i }×[0,1]×Q)

Claim 6. If w ∈ L(BX ) then for all i ∈ X , we have w ↓i∈ L(Bi )ω and for all i ∉ X , we have
w ↓i∈ L(Bi )∗.

3. Since w ∈ L(B), it satisfies Büchi condition specified. Hence there are infinitely many
positions where state in F B is visited. Between any two visits to these final states, the last
element of the tuple resets to 0 and changes to 1 before going back to 2. Clearly there was
at least one abstraction which was form Q × [1..n]× {1}×Q between any two visits to final
state.

(⇐)
For this direction, we are given w ∈ (Q × [1..n]× [0,1]×Q)ω such that

• w is well formed
• w ∈ Shuffle({Abs(σ1)}, . . . , {Abs(σn)}), where σi is a sequence of k cluster of stack i .



6.4. MODEL CHECKING LTL ON BOUNDED SCOPE EXECUTIONS 97

• There are infinitely many indices j ∈N such that w[ j ] ∈Q × [1 . . .n]× {1}×Q

We show that there is a corresponding accepting run in BX for w , where X ⊆ [1..n] is the set of
indices such that X = {x |σx is infinite}. We will now show inductively that for any i ∈N, there

is a run of the form πi = qB
0

w ′−−→∗
(q1, · · · , qn , x j , z, q), where w ′ = w[1 . . . i ], for each x ∈ X , we

have qBx
0

w ′↓x−−−−→
∗

qx and for y ∉ X , if w ′ ↓y 6= w ↓y then q
By

0
w ′↓y−−−−→

∗
qy else qy =⊥⊥⊥ . We also have

for every i < j , πi to be a prefix of π j .
Base case is trivial.
For any j , let π j = qB

0
w ′−−→∗

(q1, · · · , qn , x j , z, p) (with w ′ = w[1 . . . j ]) be the run given by the
induction hypothesis. We extend such a run to j +1. We will assume that w[ j +1] = (p, i , s,
p ′).

Note that for each t ∈ [1..n], w ′ can be split as ut
1, · · · .ut

`
for some ` ∈N such that for each

u j , j ∈ [1..`− 1], we have u j ↓t∈ L(Bt ) (except for u`, all other words are from the language

of Bt ). Further for u`, we have a run of the form qBt
0

u`↓t−−−→∗
qt . This follows from the nature

of w we have assumed and the fact that, for t ∉ X , we have σt ↓t∈ L(Bt )∗ and for t ∈ X , we
have σt ↓t∈ L(Bt )ω. Now for i , we can split w ′ as w ′ = ui

1 · · ·ui
`

. Let the run on Bi over ui
`

.(p,

i , s, p ′)↓i be of the form qBi
0

u`.(p,i ,s,p ′)↓i−−−−−−−−−−→
∗

q ′
i , where the last transition used is (qi , (p, i , s, p ′),

q ′
i ) ∈ δBi . By definition we have the transition ((q1, · · · , qi , · · · , qn , x j , z, p), (p, i , s, p ′), (q1, · · · ,

q ′
i , · · · , qn , x j , y, p ′)) ∈ δB . Hence we can extend the run on w ′.(p, i , s, p ′) as

π′ = qB
0

w ′−−→∗
(q1, · · · , qi , · · · , qn , x j , z, p)

(p,i ,s,p ′)−−−−−−→(q1, · · · , q ′
i , · · · , qn , x j , y, p ′)

where y = z ∨b. Further,

• if i ∉ X and w ′.(p, i , s, p ′)↓i=σi then, we terminate the execution of component i

π′ = qB
0

w ′.(q,i , f ,q ′)−−−−−−−−−→
∗

(q1, · · · , q ′
i , · · · , qn , x j , y, p ′) →

(q1, · · · , qi−1,⊥⊥⊥, qi+1 · · · , qn , x j , y, p ′)

• if q ′
i ∈ F Bi and x j = i 6= xm then, we extend the run as

π′ = qB
0

w ′.(p,i , f ,p ′)−−−−−−−−−→
∗

(q1, · · · , q ′
i , · · · , qn , x j , y, p ′) → (q1, · · · , qBi

0 , · · · , qn , x j+1, y, p ′)

• if q ′
i ∈ F Bi and i ∉ X then, we extend the run as

π′ = qB
0

w ′.(p,i , f ,p ′)−−−−−−−−−→
∗

(q1, · · · , q ′
i , · · · , qn , x j , y, p ′) → (q1, · · · , qBi

0 , · · · , qn , x j , y, p ′)

• If i = xm , q ′
i ∈ F Bi and y = 1 then, we extend the run as

π′ = qB
0

w ′.(p,i ,s,p ′)−−−−−−−−−→
∗

(q1, · · · , q ′
i , · · · , qn , xm ,1, p ′) →

(q1, · · · , q ′
i , · · · , qn , x1,2, p ′) → (q1, · · · , qBi

0 , · · · , qn , x1,0, p ′)

Firstly note that in our construction, for each j ∈ N we are extending the run that was
obtained inductively for j −1 and together they define a single infinite run. By definition of



98 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

our X , all components outside X do not have an infinite sequence of clusters. Hence for all
the components in the state corresponding to any y ∉ X will reach ⊥⊥⊥ eventually. For every
component x in X , w ↓x is a concatenation of an infinite sequence of clusters. Each such
cluster is accepted by a Bx automata. From these, it is easy to see that the constructed run is
accepting in BX . This completes the proof of Lemma 38.

Size of each of Bi is O(k.|M|dk ), where d ∈ N is some constant. Hence size of |B | =
O(k|M|dkn). This completes the proof of Lemma 37.

Now what is left to consider is a k scope-bounded computation of an MPDS M , say
π = π1 •π2 • · · ·πm that can be decomposed into finitely many contexts ending in an infi-
nite context. As in previous case, we would like to know when a well formed word w ∈
(Q × [0..n]× [0,1]×Q)ω characterises the abstraction of an infinite k scope-bounded com-
putation. Firstly, w.l.o.g we assume that the infinite context in such computations occurs
only for stack-1 (i.e. Context(πm) = 1). Notice that for any k scope-bounded computation
π, by definition, for each j ∈ [2 . . .n], Comp j (π) =< σ1σ2 · · ·σm j > j ( where each σ1, · · · ,σm j

are k clusters), and Comp1(π) =<σ1,σ2, · · ·σmi ,ρ >1,( where each σ1, · · · ,σmi are k clusters),
ρ =<π′

1,π′
2 · · · ,π′

`
>i is a sequence of contexts, where ` ≤ k and π′

`
is an infinite context.

Using this information, in the following Lemma, we characterise the existence of k scope-
bounded run as a well-formed infinite word of the form w ∈ (Q × [0..n]× [0,1]×Q)ω.

Lemma 39. Given an MPDS M, there is an infinite k-scope-bounded computationπ=π1•π2•
· · ·πm that can be decomposed into finitely many contexts (ending in a infinite context) visiting
infinitely often the state f if and only if there is a well formed word w ∈ (Q × [0..n]× [0,1]×Q)ω

such that

• There are infinitely many indices j ∈N such that w[ j ] ∈Q × [1..n]× {1}×Q
• For every i ∈ [1..n], there is a finite sequence σi of k clusters of the stack i , further for

stack-1, there is is a sequence of at most ` ≤ k contexts < π′
1,π′

2 · · · ,π′
`
>1, with π′

`
be-

ing an infinite context such that w ∈ Shuffle({Abs(< σ1,π′
1, · · · ,π′

`−1 >1)}, {Abs(σ2)}, . . . ,
{Abs(σn)}).Abs(π′

`
).

Proof. The proof of this Lemma is very similar to proof of 33. Hence we omit the same.

We now show that checking existence of such a well formed word can be reduced to
checking emptiness on an Büchi pushdown automata.

Lemma 40. Given an MPDS M = (n,Q,Γ,∆, q0,γ0) and a final state f , the problem of checking
whether there is an infinite word w ∈ (Q × [0..n]× [0,1]×Q)ω such that

• w is well-formed
• There are infinitely many indices j ∈N such that w[ j ] ∈Q × [1..n]× {1}×Q
• For every i ∈ [1..n], there is a finite sequence σi of k clusters of the stack i , further for

stack-1, there is ρ such that ρ =< π1,π2 · · · ,π` >1 is a sequence of ` ≤ k contexts, with π`
being an infinite context such that w ∈ Shuffle({Abs(< σ1,π1, · · · ,π`−1 >1)}, {Abs(σ2)}, . . . ,
{Abs(σn)}).Abs(π`).



6.4. MODEL CHECKING LTL ON BOUNDED SCOPE EXECUTIONS 99

can be reduced to the emptiness problem for a Büchi pushdown automaton. The size of such a
Büchi pushdown automaton will be O((k|M|)dkn) for some constant d.

Proof. As in the proof of Lemma 37 , it is possible to construct a finite state automaton Bi

accepting exactly all the finite words of the form Abs(σ), where σ is a cluster of size at most
k of the stack i ∈ [1..n]. On the other hand, we can construct a Büchi pushdown automaton
P accepting the set of infinite words of the form Abs(< π1,π2, · · · ,π` >1), where π1, · · · ,π` is a
sequence of contexts of the first stack such that π` is an infinite context and `≤ k. Finally, we
can use standard automaton constructions, to show that we can construct a Büchi pushdown
P that accepts all the well-formed words w satisfying the required properties. The details are
formalised below.

In the below construction, we will use B∗
i to denote the automata obtained by adding an

epsilon transition from final states to the initial state of Bi automaton i.e. B∗
i = (QBi , (Q×{i }×

[0,1]×Q),δB∗
i , qBi

0 ,F Bi ), where δB∗
i = δBi ∪ {( f ,ε, qBi

0 )| f ∈ F Bi }, note that L(B∗
i ) = L(Bi )∗.

The required Büchi pushdown automata is given by P = (QP , (Q × [1..n]× [0,1]×Q),Γ,δP ,
qP

0 , f P ). where

• QP = (QB∗
1 ∪Q × [1..k])×QB∗

2 ∪ {⊥}×·· ·×QB∗
n ∪ {⊥}×Q × [0,1]) is the set of control states (we

will assume that only stack-1 can have infinite context). The first n components in the state
are for simulating the Bi automata ( and additionally the pushdown system during the last
k context execution, in case of stack-1). The penultimate component is used to ensure that
the word accepted is well-formed. The last component is used during the execution of the
k-context of stack-1.

• Γ is the set of stack alphabet of MPDS M.
• qP

0 = (qB1
0 , qB2

0 , · · · , qBn
0 , qM

0 ,0) is the initial state.
• f P = (( f ,k),⊥⊥⊥, · · · ,⊥⊥⊥,1) is the final state.
• The transition relation δP is given as follows.

b.1 For all i ∈ [1..n], if (qi , (q, i , x, q ′), q ′
i ) ∈ δB∗

i then we add for all j 6= i , q j ∈QB∗
j the transi-

tions ((q1, · · · , qi−1, qi , · · · , qn , q,0),Int, (q, i , x, q ′), (q1, · · · , q ′
i , · · · , qn , q ′,0)) ∈ δP . We sim-

ulate each B∗
i in a well formed manner.

b.2 For every i ∈ [2..n], qi ∈ F B∗
i , we add for all p ∈ (QB∗

1 ∪Q × [1..k −1]) and qi ∈ QB∗
i , we

add ((p, q2 · · · , qi , · · · , qn , q,0),Int,ε, (p, q2, · · · , qi−1,⊥⊥⊥, qi+1, · · · , qn , q,0)) ∈ δP , to end the
finite cluster sequence.

b.3 Further we add for all q1 ∈ F B∗
1 , ((q1, q2 · · · , qn , q,0),Int, ε , ((q1,1), q2, · · · , qn , q1,1)) ∈ δP

to denote the end of finite cluster sequence and beginning of the last sequence involv-
ing k contexts for stack-1.

b.4 For every transition of the form (q,1,Push1(α), q ′) ∈∆, we add the following transitions.
We also add similar transitions for Pop1,Int1,Zero1 operations.

– for each i < k and for all j > 1, s j ∈ QB∗
j ∪ {⊥⊥⊥}, the transitions (((q, i ), s2, · · · , sn , p,1),

Push(α),ε, ((q ′, i ), s2, · · · , sn , p,1)) ∈ δP . These set of transitions simulate the last se-
quence of stack-1 contexts, upto the very last infinite context.

– The transitions (((q,k),⊥⊥⊥, · · · ,⊥⊥⊥, q,1),Push(α), (q,1, x, q ′), ((q ′,k),⊥⊥⊥, · · · ,⊥⊥⊥, q ′,1)) ∈ δP ,
where x = 1 if q = f and x = 0 otherwise. These transitions simulate the last infinite
context.



100 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

b.5 We add for all i ∈ [2..n], si ∈QB∗
i ∪ {⊥⊥⊥} and j ≤ k, (((q1, j ), s2, · · · , sn , q,0),Int,ε, ((q1, j ), s2,

· · · , sn , q,1)) ∈ δP . These set of transitions mark beginning of context π′
j .

b.6 We add for all j < k and i ∈ [2..n], si ∈ QB∗
i ∪ {⊥⊥⊥}, the transition (((q, j ), s2, · · · , sn , q ′,1),

Int, (q ′,1, x, q), ((q, j +1), s2, · · · , sn , q,0)) ∈ δP for all q ∈Q. These set of transitions mark
end of context π′

j .
b.7 We further add for all q ∈ Q, j ≤ k, the transitions (((q, j ),⊥⊥⊥, · · · ,⊥⊥⊥, q,1),Int,ε, (q,k),⊥⊥⊥,

· · · ,⊥⊥⊥, q,0) ∈ δP . These set of transitions mark the beginning of the infinite context.

We prove in sequel, the correctness of our construction. The following Lemma relates
an infinite run in the constructed pushdown system to an infinite context in the multi-
pushdown system.

Lemma 41. Given any configuration c = (((q,k),⊥⊥⊥n−1, q,1),γ⊥) of P, an infinite word w ∈
Lω(P,c) iff there is an infinite contextπ starting from (q,γ⊥,⊥n−1) of stack 1, such that Abs(π) =
w.

Proof. This directly follows from the construction of the pushdown system, where states of
the form ((q,k),⊥⊥⊥n , p,1) simulates an infinite context of MPDS, move by move.

Lemma 42. w ∈ L(P ) iff w = u.v such that u ∈ Shuffle({Abs(σ1,<π1, · · · ,π`−1 >1)}, {Abs(σ2)},
. . . , {Abs(σn)}), v = Abs(π`), where π1,π2 · · · ,π`,` ≤ k are context of stack-1 (with π` being an
infinite context) and σi , i ∈ [1..n] is finite sequence of k-clusters of stack-i .

Proof. (⇒)
Suppose w ∈ L(P ), clearly there is a run π = ((qB1

0 , qB2
0 , · · · , qBn

0 , qM
0 ,0),⊥) u−→∗

(((q,`− 1),

⊥⊥⊥n−1, q, x),γ⊥) → (((q,k),⊥⊥⊥n−1, q,1),γ⊥) v−→∗
. . . for some x ∈ [0,1] and ` ≤ k. Clearly by

Lemma 41, we have a computation π` in M starting from (q,γ⊥,⊥, · · · ,⊥) such that Abs(π`) =
v . We will show that there are σ1, · · ·σn ,π1, · · · ,π`−1 such that u ∈ Shuffle({Abs(<σ1,π1, · · · ,
π`−1 >1)}, {Abs(σ2)}, . . . , {Abs(σn)}). For this, we will present below a set of very easy to see
claims. Here, the proofs are omitted since they are either straight forward or very similar to
the ones we saw in Lemma 37.

Claim 7. For any w ∈ L(P ), w is well formed.

Claim 8. If w ∈ L(P ), then for any i 6= 1 and we have that w ↓i∈ L(B∗
i )

Claim 9. For any w = u1.u2.v such thatπ= ((qB1
0 , qB2

0 , · · · , qBn
0 , qM

0 ,0),⊥) u1−−→∗
((q1, · · · , qn , p,0),

⊥) → (((p,1), q2, · · · , qn , p,1),⊥) u2−−→∗
(((q, j ),⊥⊥⊥n−1, q, x),⊥) → (((q,k),⊥⊥⊥n−1, q,1),γ⊥) v−→∗

. . .
for some j < k, qi ∈QB∗

i , p, q ∈Q, we have that u1↓1∈ L(B∗
1 )

Claim 10. For all j > 1, s j ∈ QB∗
i ∪ {⊥⊥⊥}, q, q ′ ∈ Q, we have (((q, i ), s2, · · · , sn , q,1),γ⊥) ε−→∗

P ((q ′,

i ), s2, · · · , sn , q,1),γ′⊥)
(q,1,x,q ′)−−−−−−−→

∗
P (((q ′, i ), s2, · · · , sn , q ′,0),γ′⊥) iff there is a context πi = (q,γ⊥,

γ2⊥, · · · ,γn⊥)−→∗
M(q ′,γ′⊥,γ2⊥, · · · ,γn⊥) for all γ1, · · · ,γn ∈ (Γ\ {⊥})∗.

From Claim 8, clearly there is a finite sequence of clusters σi for each i ∈ [2..n] such that
Abs(σi ) = u ↓i . From Claim 9 and 10, we have σ1,π1 · · · ,π`−1 and u1,u2 such that u1 ↓1=



6.4. MODEL CHECKING LTL ON BOUNDED SCOPE EXECUTIONS 101

Abs(σ1), u2↓1= Abs(<π1,π2 · · · ,π`−1 >1). Hence we have that u ∈ Shuffle({Abs(<σ1,π1, · · · ,
π`−1 >1)}, {Abs(σ2)}, . . . , {Abs(σn)}).

(⇐)
Let w = u.v be well formed sequence of interfaces such that u ∈ Shuffle({Abs(< σ1,π1,

· · · ,π`−1 >1)}, {Abs(σ2)}, . . . , {Abs(σn)}), v = Abs(π`), whereπ1,π2 · · · ,π` are contexts of stack-1
and σi , i ∈ [1..n] is a finite sequence of clusters of stack-i .

Firstly note that it is enough to show that there is a computation

π= ((q
B∗

1
0 , · · · , q

B∗
n

0 ,0, qM
0 ),⊥) u−→∗

P (((q,`),⊥⊥⊥n−1, q, x),γ⊥)

for some ` < k. Since combining this with the transition (((q,`),⊥⊥⊥n−1, q, x),Int,ε, (((q,k),
⊥⊥⊥n−1, q,1)) and Lemma 41, will give us the desired run. Towards this, we will inductively
show that for every prefix u′ of u (i.e. u′ = u[1 . . . j ] for some j )), there is a run of the form

((q
B∗

1
0 , · · · , q

B∗
n

0 ,0, qM
0 ),⊥) u′−−→∗

P ((s, q2, · · · , qn , q,0),γ⊥) (where u′ = u[1 . . . j ])) and the following
properties hold.

• For i ∈ [2..n], if u′↓i 6=σi then q
B∗

i
0

u′↓i−−−→
∗

qi else if u′↓i=σi then qi =⊥⊥⊥
• if u′ ↓1 is a prefix of Abs(σ1) then we have that s = q1, q

B∗
1

0
u′↓i−−−→

∗
q1 and γ= ε. Else if u′ ↓1 is

equal to Abs(<σ1,π1, · · · ,π j−1,π j >1), for some j < k, then s = (State(Target(πj)), j+1) and
γ= Stack(Target(πj))

We will now show how to construct such a run.

• Base case being run of length 0 is simple.
• Let u′(p, i , y, p ′) be any prefix of w , with i 6= 1. Let

((q
B∗

1
0 , · · · , q

B∗
n

0 ,0, qM
0 ),⊥) u′−−→∗

((q, q2, · · · , qn ,0, p),γ.⊥)

be the run got by induction. Such a run can be extended to u′a (where a = (p, i , y, p ′)) as
follows.

π′ = ((q
B∗

1
0 , · · · , q

B∗
n

0 ,0, qM
0 ),⊥) u′−−→∗

((q, q2, · · · , qn ,0, p),γ.⊥)
a→

((q, q2, · · · , q ′
i , · · · , qn ,0, p ′),γ⊥) where q ′

i = δB∗
i (qi , a)

Further, if u′.a ↓i= Abs(σi ) (note that in this case, q ′
i ∈ F B∗

i since w ′.a ↓i∈ L(B∗
i )) then we

will use the transition in b.2 and let the extended run to be

π′ = ((q
B∗

1
0 , · · · , q

B∗
n

0 ,0, qM
0 ),⊥) u′−−→∗

((q, q2, · · · , qn ,0, p),γ⊥)
a→

((q, q2, · · · , q ′
i , · · · , qn ,0, p ′),γ⊥) → ((q, q2, · · · , qi−1,⊥⊥⊥, qi+1, · · · , qn ,0, p ′),γ⊥)

• In case of u′a, with a = (p,1, x, p ′) being the prefix, there there are two distinct possibilities.
i.e. u′.a ↓1 is a prefix of Abs(σ1) or u′.a ↓1= Abs(<σ1,π1, · · · ,π j >1) for some j < k. We will
show how to extend in each of these two cases.

– The case where u′.a ↓1 is a prefix of Abs(σ1) is similar to one discussed above for a = (p,
j , y, p ′) with j ∈ [2..n].



102 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE

– We will now consider the case where u′.a↓1= Abs(<σ1,π1, · · · ,π j >1) for some j < k. We
have two cases to consider, namely j = 1 and j > 1. We only consider the case where
j = 1 (since case where j > 1 is similar and straight forward.). For this, let the run got by
induction be as follows.

((q
B∗

1
0 , · · · , q

B∗
n

0 ,0, qM
0 ),⊥) u′−−→∗

((q, q2, · · · , qn ,0, p),γ.⊥)

clearly γ = ε. Let π1 = (q,⊥,γ2, · · · ,γn)−→∗
M (q ′,γ′⊥,γ2, · · · ,γn). Then by Claim 10, we

have a run of the form (((q,1), q2, · · · , qn ,1, p),⊥)−→∗(((q ′,1), q2, · · · , qn ,1, p),γ′⊥). Com-
bining this with the transition in b.3 of the form ((q, q2, · · · , qn ,0, p),Int,ε, ((q,1), q2, · · · ,
qn ,1, p), we get the following run, which completes the proof.

((q
B∗

1
0 , · · · , q

B∗
n

0 ,0, qM
0 ),⊥) u′−−→∗

((q, q2, · · · , qn ,0, p),⊥) →
(((q,1), q2, · · · , qn ,1, p),⊥)−→∗(((q ′,1), q2, · · · , qn ,1, p),γ′⊥)

a→ (((q ′,1), q2, · · · , qn ,0, p),γ′⊥)

This completes the proof of Lemma 42

This completes the proof of Lemma 40

Now, the required Büchi pushdown system to complete the proof of Theorem 15 is ob-
tained by taking union of the Büchi automata and the Büchi pushdown automata that we
constructed above.

6.4.2 LTL Model checking

We consider in this section the linear-time model checking problem for MPDS’s under scope-
bounding. We consider that we are given ω-regular properties expressed in linear-time
propositional temporal logic (LTL) [122]. Let us fix a set of atomic propositions Prop, and
let k ∈N be a natural number. The k scope-bounded model-checking problem is the follow-
ing: Given a formula ϕ (in LTL) with atomic propositions from Prop, and a MPDS M = (n,
Q,Γ,∆, q init,γ0) along with a labeling function Λ : Q → 2Prop associating to each state q ∈ Q
the set of atomic propositions that are true in it, check whether all infinite k-scope-bounded
computations of M from the initial configuration c init

M satisfy ϕ.
To solve this problem, we adopt an automata-based approach similar to the one used in

[40] to solve the analogous problem for pushdown systems. We construct a Büchi automaton
B¬ϕ over the alphabet 2Prop accepting the negation of ϕ [141, 140]. Then, we compute the
product of the MPDS M and the Büchi automaton B¬ϕ to obtain a MPDS M¬ϕ with a Büchi
accepting set of states F and leaving us with the task of checking if any of its its k scope-
bounded runs is accepting. Hence, we can reduce our model-checking problem to the k
scope-bounded repeated reachability problem for MPDSs, which, by Theorem 15, can be
solved.



6.5. CONCLUSION 103

Theorem 16. The problem of scope-bounded model checking LTL properties of multi-
pushdown systems is EXPTIME-complete.

The lower bound of Theorem 16 follows immediately from the fact that the model-
checking problem for LTL for pushdown systems (i.e., MPDS with only one stack) are
EXPTIME-complete [40].

For the upper bound, it is well known that, given a MPDS M and an ω-regular formula
ϕ, it is possible to construct a MPDS M ′ and a set of repeating states F of M ′ such that the
problem of scope-bounded model checking of M w.r.t. the formula ϕ is reducible to the k-
scope-bounded repeated state reachability problem of a MPDS M ′ w.r.t. F . Moreover, the size
of M ′ is exponential in the size ofϕ and polynomial in the size of M and k. Applying Theorem
15 to the MPDS M ′ and F , we obtain our complexity result.

6.5 Conclusion

In this chapter, we established that the repeated reachability problem and the model check-
ing linear-time properties (expressed as formulas of LTL ) against scope-bounded executions
of multi pushdown system are decidable in EXPTIME. Model checking LTL properties are also
EXPTIME-COMPLETE.



104 CHAPTER 6. LINEAR TIME MODEL CHECKING UNDER BOUNDED SCOPE



Chapter 7

Adjacent ordered MPDS

7.1 Introduction

In this chapter, we introduce a restricted variant of multi-pushdown system called the ad-
jacent ordered multi-pushdown system (AOMPDS). Informally, an adjacent ordered multi-
pushdown system allows pop operations only on the least non-empty stack (active stack)
and restricts every other operation to the least non-empty stack or its adjacent stacks. In this
chapter, we will show that for such systems, the control state reachability problem is EXP-
TIME COMPLETE. This is significantly better than the 2-ETIME complexity required for solving
the control state reachability problem under the ordered restriction or the bounded-phase
restriction. We also note that such a system allows transfer of content from the least non-
empty stack to the next stack (adjacent higher numbered stack). This is not possible under
the bounded-context restriction. In fact, to the best of our knowledge, it is the first restriction
that allows transferring the contents of a stack and yet has an EXPTIME procedure to solve the
control state reachability problem.

We next provide a EXPTIME procedure to solve the repeated reachability problem on such
systems. As an application of this, we also get a procedure to model check LTL properties
against the runs of an adjacent ordered MPDS. We note that in case of both bounded-phase
and bounded-context infinite executions, the run eventually degenerates to effectively using
only a single stack. Even though under bounded-phase restriction, an infinite run can in-
volve pushing elements infinitely often onto multiple stacks, eventually the content of only
one stack can effectively be read. Ordered restriction that we discussed about earlier, allows
infinite runs effectively involving multiple stacks. However the complexity required to model
check LTL properties against such a restriction is very high (2ETIME-COMPLETE). Similar to
bounded-scope restriction that we saw earlier, AOMPDS allows infinite runs involving multi-
ple stacks, and yet has EXPTIME complexity.

Later in this chapter, we illustrate the power of AOMPDS using some applications. We
first show that reachability on recursive programs communicating via queues [138], whose
connection topology is a forest can be reduced to reachability on an AOMPDS with at most
polynomial blowup. We also show that bounded-phase reachability on an MPDS can be re-
duced to reachability on AOMPDS, with at most exponential blowup.

105



106 CHAPTER 7. ADJACENT ORDERED MPDS

7.2 Adjacent ordered multi-pushdown system

In this section, we use a slightly different model of MPDS, where in a move it is possible to
examine the top of each stack and modify more than one stack at a time (i.e. the ability to
re-write). Such a definition of MPDS has been used in literature earlier [14, 16]. This simpli-
fies our constructions and proofs. As in the case of pushdown systems, such a definition is
equivalent to the one which uses only push/pop operations. In section 7.5, we describe how
AOMPDS an also be seen as a restriction on the behaviours of the push-pop style MPDS used
elsewhere in this thesis.

Definition 9. An Adjacently Odered Multi-PushDown System (AOMPDS) is a tuple A = (n,Q,
Γ,∆, q0,γ0) where:

• n ≥ 1 is the number of stacks,
• Q is the non-empty set of states,
• Γ is the stack alphabet containing the special symbol ⊥ to mark the bottom of stack,
• q0 ∈Q is the initial state,
• γ0 ∈ Γ is the initial stack symbol,
• ∆⊆ ((Q × (Γε)n)× (Q × (Γ∗)n)) is the transition relation such that if ((q,γ1,γ2, . . . ,γn), (q ′,α1,
α2, . . . ,αn)) is in∆ then , there is an index i ∈ [1..n] such that γ1 = ·· · = γi−1 =⊥, γi ∈ (Γ\{⊥}),
and γi+1 = ·· · = γn = ε and further one of the following properties holds:

– Operate on the stack i :
For all j < i , we have α j =⊥ , for all j > i , we have α j = ε and αi ∈ (Γ\ {⊥})∗ with |αi | ≤ 2.
We will refer to such transitions as ∆(i ,i )

– Push on the stack j = i −1 :
α j ∈ (Γ · {⊥}), we have αi = ε, for all k such that k 6= j and k < i , we have αk = ⊥ and for
k > i , we have αk = ε. We will refer to such transitions as ∆(i ,i−1)

– Push on the stack j = i +1 :
αi = ε, for all k < i , we have αk =⊥, for all k such that j 6= k and k > i , we have αk = ε and
α j ∈ Γ. We will refer to such transitions as ∆(i ,i+1)

A configuration of an AOMPDS A is a (n+1) tuple (q, w1, w2, · · · , wn) with q ∈Q, and w1,
w2, . . . , wn ∈ (Γ\ {⊥})∗⊥. We will use C (A ) as in case of MPDS to denote set of configurations
of the AOMPDS A . The initial configuration c init

A
of the AOMPDS A is (q0,⊥, . . . ,⊥,γ0⊥). If

t = ((q,γ1, . . . ,γn), (q ′,α1, . . . ,αn)) is an element of ∆, then (q,γ1w1, . . . ,γn wn)
t→A (q ′,α1w1,

. . . ,αn wn) for all γ1w1, . . . ,γn wn ∈ (Γ\ {⊥})∗⊥.

7.2.1 Reachability on AOMPDS

Theorem 17. The reachability problem for Adjacent Ordered Multi-Pushdown System is
EXPTIME-COMPLETE.

Upper Bound: Let A = (n,Q,Γ,∆, q0,γ0) be an AOMPDS with n > 1 (the case where n = 1
boils down to the reachability of pushdown systems which is well-known to be in PTIME).
The proof of EXPTIME-containment is through an inductive construction that reduces the



7.2. ADJACENT ORDERED MULTI-PUSHDOWN SYSTEM 107

reachability problem for A to the reachability problem for a pushdown system with only an
exponential blow up in size. The key step is to show that we can reduce the reachability prob-
lem for A to the reachability problem on an (n−1)-AOMPDS. The feature of our reduction is
that there is no blowup in the state space and the size of the stack alphabet increases quadrat-
ically in the number of states. A non-linear blow up in the number of states will result in a
complexity higher than EXPTIME.

We plan to use a single stack to simulate both the first and second stacks of A . It is useful
to consider runs of A to understand how this works. Any run ρ of A starting at the initial con-
figuration naturally breaks up into segments σ0ρ1σ1 . . .ρkσk where the segments ρi contain
configurations where stack 1 is non-empty while in any configuration in the σi ’s, the stack 1
is empty. Clearly the content of stack 1 at the beginning of ρi contains exactly two symbols,
and we assume it to be ai⊥. We further assume that ρi begins at control state qi and the
segment σi in state q ′

i . What is the contribution of the segment ρi , which is essentially the
run of a pushdown automaton starting and ending at the empty stack configuration, to this
run?

Firstly, it transforms the local state from qi to q ′
i . Secondly, a word wi is pushed on to

stack 2 during this segment. It also, consumes the value ai from stack 1 in this process, but
that is not relevant to the rest of the computation. To simulate the effect of ρi it would thus
suffice to jump from state qi to q ′

i and push the word wi on stack 2. There are potentially
infinitely many possible runs of the form ρi that go from qi to q ′

i while removing ai from
stack 1 and thus infinite possibilities for the word that is pushed on stack 2. However, it is
easy to see that this set of words L(qi , ai , q ′

i ) is a CFL. If the language L(qi , ai , q ′
i ) is a regular

language, we could simply summarize this run by depositing a word from this language on
stack 2 and then proceed with the simulation of stack 2. However, since it is only a CFL this
is not possible. Instead, we have to interleave the simulation of stack 2 with the simulation of
stack 1, using stack 2, and there is no a priori bound on the number of switches between the
stacks in such a simulation.

To simulate the effect of ρi , we jump directly to q ′
i and push a non-terminal symbol (from

the appropriate CFG) that generates the language L(qi , ai , q ′
i )R (reverse, because stacks are

last in first out). Now, when we try to simulate σ′
i , we might encounter a nonterminal on top

of stack 2 instead of a terminal symbol belonging to stack 2. In this case, we rewrite the non-
terminal using one of the rules of the CFG applicable to this nonterminal. In effect, we pro-
duce a left-most derivation of a word from L(qi , ai , q ′

i ) in a lazy manner, interspersed within
the execution involving stack 2, generating terminals only when they need to be consumed.
This is the main idea in the construction that is formalized below.

We define∆1 =∆(1,1)∪∆(1,2),∆i =∆(i ,i )∪∆(i ,i+1)∪∆(i ,i−1) for all 2 ≤ i < n, and∆n =∆(n,n)∪
∆(n,n−1).

We construct a context-free grammar GA = (NT,(Γ\{⊥}),P ) from the AOMPDS A . The set
of non-terminals is NT = (Q×(Γ\{⊥})×Q). The set of productions P is defined as the smallest
set of rules satisfying:

1. For every two states p, p ′ ∈Q, and every transition ((q,γ,ε, . . . ,ε), (q ′,γ1γ2,ε, . . . ,ε)) in∆ such
that γ,γ1,γ2 ∈ (Γ\ {⊥}), we have (q,γ, p) ⇒GA

(q ′,γ1, p ′)(p ′,γ2, p)
2. For every state p ∈ Q, and every transition ((q,γ,ε, . . . ,ε), (q ′,γ′,ε, . . . ,ε)) in ∆ such that γ,



108 CHAPTER 7. ADJACENT ORDERED MPDS

γ′ ∈ (Γ\ {⊥}), we have (q,γ, p) ⇒GA
(q ′,γ′, p)

3. For every transition ((q,γ,ε, . . . ,ε), (q ′,ε,ε, . . . ,ε)) in ∆ such that γ ∈ (Γ \ {⊥}), we have (q,γ,
q ′) ⇒GA

ε

4. For every transition ((q,γ,ε, . . . ,ε), (q ′,ε,γ′,ε, . . . ,ε)) in ∆ such that γ,γ′ ∈ (Γ \ {⊥}), we have
(q,γ, q ′) ⇒GA

γ′.
Then, it is easy to see that the context-free grammar summarizes the effect of the first

stack on the second one. Formally, we have:

Lemma 43. The context free language LGA
((q,γ, q ′)) is equal to the set of words {wR ∈ (Γ \

{⊥})∗ | ∃ρ ∈∆∗
1 . (q,γ⊥, w2, . . . , wn)

ρ−→A (q ′,⊥, w w2, . . . , wn)}.

The proof of the above Lemma is straight forward and very similar to the classical result of
converting a pushdown to a context free grammer, hence we omit the same. We are now ready
to show that reachability problems on A can be reduced to reachability problems on an (n−
1)-AOMPDS N . Further, the number of states of N is linear in |Q|, size of the stack alphabet
of N is O(|Q|2.|Γ|) and the number of transitions is O(|Q|3.|Γ|.|∆|). The upper-bound claimed
in Theorem 17 then follows by simple induction.

Let F ⊆Q be the set of states whose reachability we are interested in, we show how to con-
struct (n −1)-AOMPA N such that the reachability question on A can be reduced to reach-
ability question on N . Formally, N is defined by the tuple (n −1,Q,Γ∪NT,∆′, q0,γ0) where
∆′ is defined as the smallest set satisfying the following conditions:

1. For any transition ((q,⊥,γ2, . . . ,γn), (q ′,⊥,α2, . . . ,αn)) ∈∆, we have ((q,γ2, . . . ,γn), (q ′,α2, . . . ,
αn)) ∈∆′

2. For any transition ((q,⊥,γ2,ε, . . . ,ε), (q ′,γ⊥,ε, . . . ,ε)) ∈ ∆(2,1), we have ((q,γ2,ε, . . . ,ε), (q ′′, (q ′,
γ, q ′′),ε, . . . ,ε)) ∈∆′ for all q ′′ ∈Q

3. For any production rule X ⇒GA
w and state q ∈Q, we have ((q, X ,ε, . . . ,ε), (q, wR ,ε, . . . ,ε)) ∈

∆′.

Lemma 44. A state f ∈ F is reachable in A iff f is reachable in N .

The fact that even a single contiguous segment of moves using stack 1 in A may now be
interleaved arbitrarily with executions involving other stacks in N , makes the proof some
what involved. Towards the proof, we define a relation between the configurations of N and
A systems. For any configuration c ∈C (A ) and d ∈C (N ), we say cRd iff one of the following
is true:

1. d is of the form (q,⊥, w3, · · · , wn) and c is of the form (q,⊥,⊥, w3, · · · , wn)
2. d is of the form (q,η1v1η2v2 · · ·ηm vm⊥, w3, · · · , wn) and c is of the form (q,⊥,

u1v1u2v2 · · ·um vm⊥, w3, · · · , wn) where v1,u1, v2,u2, . . . , vm ,um ∈ (Γ \ {⊥})∗, η1,η2, . . . ,ηm ∈
NT∗ and ηk ⇒∗

GA
uR

k for all k ∈ [1..m].

Thus, cRd verifies that it is possible to replace the nonterminals appearing in stack 2 in
d by words they derive (and by tagging an additional empty stack for the missing stack 1) to
obtain c. We now show that this relation faithfully transports runs (from the initial configu-
ration) in both directions. This is the import of Lemmas 46 and 47, which together guarantee
that the state reachability in A reduces to state reachability in N . We will start by stating the



7.2. ADJACENT ORDERED MULTI-PUSHDOWN SYSTEM 109

following simple Lemma. The proof of the Lemma follows directly from the fact that we can
simply perform a left most derivation of the CFG.

Lemma 45. Let c1 ∈C (A ) be a configuration of A such that c i ni t
A

−→∗
A c1. For every configura-

tion d1 ∈C (N ) such that c1Rd1, if c1 is of the form (q,⊥, aw2, w3, . . . , wn) for some a ∈ (Γ\{⊥}),
then there is a configuration d2 ∈C (N ) such that c1Rd2, d1−→∗

N d2, and d2 is of the form (q,
aw ′

2, w3, . . . , wn).

Proof. If d1 is already of the form (q, aw ′
2, w3, . . . , wn) then we have nothing to prove, else

since c1Rd1, we have d1 = (q,η1v1η2v2 · · ·ηn vn , w3, . . . , wn) for some ηi ∈ NT∗, such that
ηi ⇒∗

GA
uR

k and u1v1u2v2 · · ·un vn = aw2. Since η1 ⇒∗ uR
1 , there is a derivation η1 ⇒∗ η

′R
1 a ⇒∗

uR
1 . Combining this with production rule 3, we get d1−→∗

N
d2 = (q, aη′1v1η2v2 · · ·ηn vn , w3, . . . ,

wn), clearly c1Rd2.

Lemma 46. Let c1,c2 ∈ (Q × {⊥}× (Stack(A ))n−1) be two configurations such that c i ni t
A

−→∗
A c1

and c i ni t
A

−→∗
M c2. If c1

ρ−→A c2, with ρ ∈∪n
i=3∆i ∪(∆(2,1)∆

∗
1 )∪∆(2,2)∪∆(2,3), then for every config-

uration d1 ∈ C (N ) such that c1Rd1, there is a configuration d2 ∈ C (N ) such that c2Rd2 and
d1−→∗

N d2.

Proof. Let c1,c2 ∈ C (A ) be two configurations such that c i ni t
A

−→∗
A c1 and c i ni t

A
−→∗

A c2. Let

c1
ρ−→A c2, with ρ ∈∪n

i=3∆i ∪ (∆(2,1)∆
∗
1 )∪∆(2,2) ∪∆(2,3). Let d1 ∈C (N ) such that c1Rd1.

• Case ρ ∈∪n
i=3∆i By the definition of AOMPDS we know that the first and second stack of A

and the first stack of N are empty in the configuration c1 and d1 respectively. This implies
that c1 is d1 extended with an empty stack 1. Moreover, since c1

ρ−→M c2, we have that c2

is of the form (q,⊥, w2, . . . , wn) with w2 ∈ Stack(A ). Then, we take d2 = (q, w2, . . . , wn) and
from the definition of N we have d1

ρ−→N d2. Clearly c2Rd2.
• Case ρ ∈∆(2,2) Here we have two cases to deal with depending on whether top of stack 1 of

N is a nonterminal or from Γ.

– Let us assume that d1 is of the form (q, aw2, w3, · · · , wn) where a ∈ (Γ \ {⊥}), w2, w3, . . . ,
wn ∈ Stack(A ). This implies that c1 is of the form (q,⊥, aw ′

2, w3, · · · , wn). Let us assume
that the result of firing the transition ρ ∈∆(2,2) is the configuration c2 which will be of the
form (q,⊥,uw ′

2, w3, . . . , wn) where u ∈ (Γ \ {⊥})∗. Let d2 be the configuration (q,uw2, w3,
· · · , wn) of N . Since c1Rd1, we have c2Rd2. Moreover, from the definition of N we have
d1

ρ−→N d2.
– Let us assume that d1 is of the form (q, X w2, w3, . . . , wn) where X ∈ NT is a nonterminal

symbol. Then by Lemma 45, there is a configuration d ′
1 such that d1−→∗

N
d ′

1, c1Rd ′
1 and

the top symbol of the first stack of d ′
1 is a. Then, we apply the previous sub-case to d ′

1.

• Case ρ ∈∆(2,3) This case proceeds exactly as the previous one except that values pushed are
on stack 3 instead of stack 2.

• Case ρ ∈∆(2,1)∆
∗
1 . Let t ∈∆(2,1) such that ρ = tρ′ for some ρ′. Let us assume that t is of the

form ((q,⊥,γ,ε, . . . ,ε), (q ′,γ′⊥,ε,ε, . . . ,ε)). Then there exists a configuration c ∈ C (A ) such

that c1
t→A c and c

ρ′−−→A c2. Let us assume that c1 and c2 are of the form (q,⊥,γw2, w3, . . . ,



110 CHAPTER 7. ADJACENT ORDERED MPDS

wn) and (q ′′,⊥,uw2, w3, . . . , wn) respectively. Since c1
t→A c, we have that c = (q ′,γ′⊥, w2,

w3, . . . , wn).
Without loss of generality, we will assume that d1 does not contain a non-terminal as top of
stack (otherwise by Lemma-45, we can get to a configuration with this property which can
be reached from d1, preserving R). Hence, d1 is of the form (q,γw ′

2, w3, . . . , wn). Now let
d2 = (q ′′, (q ′,γ′, q ′′)w ′

2, w3, . . . , wn). Clearly, d1−→N d2. Moreover, we have that c2Rd2 since
uR ∈ LGA

((q ′,γ′, q ′′)) by Lemma 43.

Lemma 47. Let d1,d2 ∈ C (N ) be two configurations of N such that c i ni t
N −→∗

N d1
t→N d2 for

some t ∈ ∆′. Then for every configuration c2 ∈ C (A ) such that c2Rd2, there is a configuration
c1 ∈C (A ) such that c1Rd1 and c1−→∗

A c2.

Proof. Let d1,d2 ∈C (N ) be two configurations of N such that c i ni t
N

−→∗
N d1

t→N d2 for some

t ∈∆′. Let c2 ∈C A
1 such that c2Rd2.

• Case t of the form ((q,⊥,γ3, . . . ,γn), (q ′,⊥,α3, . . . ,αn)). This implies that d1 and d2 are
of the form (q,⊥, w3, . . . , wn) and (q ′,⊥, w ′

3, . . . , w ′
n). Thus c2 is of the form (q ′,⊥,⊥, w ′

3,
. . . , w ′

n). Let t ′ be a transition of M of the form ((q,⊥,⊥,γ3, . . . ,γn), (q ′,⊥,⊥,α3, . . . ,αn))
(from the definition of N , we know that such transition exists). Then, let c1 be the
configuration of A defined as follows: (q,⊥,⊥, w3, . . . , wn). Then it is easy to see that

c1Rd1 and c1
t ′→A c2.

• Case t of the form ((q,⊥,γ,ε, . . . ,ε), (q ′,γ′⊥,ε, . . . ,ε)). This implies that d1 and d2 are of
the form (q,⊥,γw3, . . . , wn) and (q ′,γ′⊥, w3, . . . , wn). Thus c2 is of the form (q ′,⊥,γ′⊥,
w3, . . . , wn). Let t ′ be a transition of A of the form ((q,⊥,⊥,γ,ε, . . . ,ε), (q ′,⊥,γ′⊥,ε, . . . ,
ε)) (from the definition of N , we know that such transition exists). Then, let c1 be the
configuration of A defined as follows: (q,⊥,γ′⊥, w3, . . . , wn). Then it is easy to see that

c1Rd1 and c1
t ′→A c2.

• Case t of the form ((q,γ,ε, . . . ,ε), (q ′,ε,γ′,ε, . . . ,ε)). This implies that d1 and d2 are of the
form (q,γw2, w3, . . . , wn) and (q ′, w2,γ′w3, w4, . . . , wn). Thus c2 is of the form (q ′,⊥,u,
γ′w3, w4, . . . , wn). Let t ′ be a transition of A of the form ((q,⊥,γ,ε, . . . ,ε), (q ′,⊥,ε,γ′,ε,
. . . ,ε)) (from the definition of N , we know that such transition exists). Then, let c1 be
the configuration of A defined as follows: (q,⊥,γu, w3, w4, . . . , wn). Then it is easy to

see that c1Rd1 and c1
t ′→A c2.

• Case t of the form ((q,γ,ε, . . . ,ε), (q ′,α,ε, . . . ,ε)). This implies that d1 and d2 are of the
form (q,γw2, w3, . . . , wn) and (q ′,αw2, w3, w4, . . . , wn). Thus c2 is of the form (q ′,⊥,αu,
w3, w4, . . . , wn). Then let c1 = (q ′,⊥,γu, w3, w4, . . . , wn) and t ′ = ((q,⊥,γ,ε, . . . ,ε), (q ′,⊥,

α,ε, . . . ,ε). Clearly t ′ is a transition in A , c1
t ′→A c2 and c1Rd1.

• Case t of the form ((q, X ,ε, . . . ,ε), (q ′, wR ,ε,ε, . . . ,ε)) with X ⇒GM w . This implies that d1

and d2 are of the form (q, X w2, w3, . . . , wn) and (q ′, wR w2, w3, . . . , wn). Thus c2 is of the
form (q ′,⊥,u, w3, w4, . . . , wn). Let c1 = c2. Then it is easy to see that c1Rd1 and c1 →∗

A
c2.



7.2. ADJACENT ORDERED MULTI-PUSHDOWN SYSTEM 111

• Case t of the form ((q,γ,ε, . . . ,ε), (q ′′, (q ′,γ′, q ′′),ε, . . . ,ε)). This implies that d1 and d2 are
of the form (q,γw2, w3, . . . , wn) and (q ′′, (q ′,γ′, q ′′)w2, w3, . . . , wn). Thus c2 is of the form
(q ′′,⊥,uu′, w3, . . . , wn) such that uR ∈ LGA

((q ′,γ′, q ′′)) and (q ′,⊥,u′, w3, . . . , wn)R(q ′, w2,
w3, . . . , wn). From Lemma 43, we know that there exists ρ′ ∈∆∗

1 such that (q ′,γ′⊥,u′, w3,

. . . , wn)
ρ′−−→

∗
A (q ′′,⊥,u ·u′, w3, . . . , wn).

Let t ′ be a transition of A of the form ((q,⊥,γ,ε, . . . ,ε), (q ′,γ′⊥,ε, . . . ,ε)) (from the def-
inition of N , we know that such transition exists). Then, let c1 be the configuration
of A defined as follows: (q,⊥,γu′, w3, . . . , wn). Then it is easy to see that c1Rd1 and

c1
t ′→A (q ′,γ′⊥,u′, w3, . . . , wn)

ρ′−−→
∗

A c2 = (q ′′,⊥,uu′, w3, . . . , wn).

Proof of Lemma 44

Proof. ⇒ Suppose f is reachable in A , then there is a compuation of the form
c init
A

−→∗c1−→∗c2−→∗ · · ·−→∗cn , such that State(cn) = f and each ci ∈ (Q × {⊥}× (Stack(A ))n−1).
Firstly note that c init

A
Rc init

N
. Now using Lemma 46, we can find d1,d2, · · ·dn such that ci Rdi

and di−→∗di+1 for all i ∈ [1..n]. From this we have that c init
N

−→∗d1−→∗d2 · · ·−→∗dn . Further from
definition of R, we have that State(dn) = f .

⇐
Now suppose that f is reachable in N . Then there is a computation of the form c init

N
→

d1 → d2 →···→ dn such that State(dn) = f . Let dn = ( f ,γ2, · · ·γn), we let cn = ( f ,⊥,γ2, · · · ,γn),
clearly cnRdn . Now using Lemma 47 we can find cn−1, · · · ,c1,c0 such that ci Rdi for all i ∈ [1..n]
and c0Rc init

N
, such that c0−→∗c1−→∗c2 · · ·−→∗cn . Further c0 = c init

A
follows from the definition of

R.

Complexity

Clearly the number of states of N remains the same (|Q|), size of the stack alphabet of N

is bounded by O(|Q|2.|Γ|) and the number of transitions is bounded by O(|Q|3.|∆|). Since we
repeat this procedure n times, the final pushdown system that we construct has state size
as |Q|, the stack size as O(|Q|2n .|Γ|) and the transition size as O(|Q|3n .|∆|). This gives us the
desired upper bound.

7.2.2 Hardness result

Lemma 48. Given an AOMPDS A = (n,Q,Γ,∆,γ0) and a state q ∈Q, the problem of deciding
whether q is reachable from the initial configuration is EXPTIME-HARD

Proof. The emptiness of the intersection of a PDA with n finite automata is known to be
EXPTIME-HARD ([80]). We reduce this problem to the reachability problem on an AOMPDS.

Let P be a pushdown automaton and Bi ,2 ≤ i ≤ n be finite automata. We assume that
Bi do not contain ε-transitions.



112 CHAPTER 7. ADJACENT ORDERED MPDS

We assume that the pushdown automaton P recognizes the context-free language L, and
the n −1 finite state automata B2, . . . ,Bn recognize the regular languages L2, . . . ,Ln respec-
tively.

The simulation proceeds as follows: The AOMPDS A first starts the simulation of the
pushdown automaton P using its first stack. An ε-labeled transition of P is simulated by a
transition on the first stack while the other stacks remain unchanged. A labeled transition
of P with an input symbol a is simulated by a transition on the first stack, followed by a
transition that pushes the input symbol a into the second stack. At the end of this phase, we
have that the first stack of A is empty and that the second stack of A contains a word uR

such that u ∈ L. Then, A starts the simulation of the finite state automaton B2 in order to
check that u ∈ L2. A transition of the form (q, a, q ′) of B2 is simulated by a transition of A

that moves the current state from q ′ to q while popping the stack symbol a from the second
stack and pushing a into the third stack (this can be achieved by popping a and storing it in
state space). At the end of this phase, we have that the first and second stacks of A are empty
and that the third stack of A contains the word u such that u ∈ L ∩L2. Next, A starts the
simulation of the finite state automaton B3 in order to check that u ∈ L3. A transition of the
form (q, a, q ′) of B3 is simulated by a transition of A that moves the current state from q to
q ′ while popping the stack symbol a from the third stack and pushing a into the fourth stack.
We can see that at the end of this phase, we have that the first, second, and the third stacks of
A are empty and that the fourth stack of A contains the word uR such that u ∈ L ∩L2 ∩L3.
The simulation go on in a similar manner as in the previous cases to check that, for every
i ∈ [4..n], we have u ∈ Li .

7.3 LTL Model Checking on AOMPDS

In this section, we show that given an LTL formula, model checking it against runs of adjacent
ordered multi-pushdown system is EXPTIME-COMPLETE.

Let ϕ be an w-regular formula built from a set of atomic propositions Prop, and let A =
(n,Q,Γ,∆, q0,γ0) be an AOMPDS with a labeling function Λ : Q → 2Prop associating to each
state q ∈Q the set of atomic propositions that are true in it. In the following, we are interested
in solving the model checking problem which consists of checking whether all the infinite runs
starting from c i ni t

A
satisfy the formula ϕ.

To solve this problem, we adopt an approach similar to [40] and we construct a Büchi
automaton B¬ϕ over the alphabet 2Prop accepting the negation ofϕ [141]. Then, we compute
the product of the AOMPDS A and of the Büchi automaton B¬ϕ to obtain an AOMPDS A¬ϕ
with a set of repeating states F . Now, it is easy to see that the original problem can be reduced
to the reachability problem which checks whether there is an infinite run of A¬ϕ starting from
c i ni t
A¬ϕ

that visits infinitely often a state in F . We will use the following Theorem from [14] which

shows how to reduce the repeated state reachability problem for OMPDSs to the reachability
problem for OMPDSs.

Theorem 18 ([14]). Let M = (n,Q,Γ,∆, q0,γ0) be an OMPDS and q f be a state of M. There is



7.3. LTL MODEL CHECKING ON AOMPDS 113

an infinite run starting from c i ni t
M that visits infinitely often the state q f if and only if there are

i ∈ [1..n], q ∈Q, and γ ∈ Γ\ {⊥} such that:

• c i ni t
M −→∗

M (q, (⊥)i−1,γw, wi+1, . . . , wn) for some w, wi+1, . . . , wn ∈ Γ∗.

• (q, (⊥)i−1,γ⊥, (⊥)n−i )
ρ1−−→M (q f , w1, w2, . . . , wn)

ρ2−−→M (q, (⊥)i−1,γw ′
i , w ′

i+1, . . . , w ′
n) for some

w1, . . . , wn , w ′
i , . . . , w ′

n ∈ (Γ\{⊥})∗⊥, ρ1 ∈∆′∗ andρ2 ∈∆′+ where∆′ contains all the transitions
of the form ((q, (⊥) j−1,γ j ,ε, . . . ,ε), (q,α1, . . . ,αn)) ∈∆ such that 1 ≤ j ≤ i and γ j ∈ (Γ\ {⊥}).

Now, we are ready to state our results for AOMPDSs:

Theorem 19. Let M = (n,Q,Γ,∆, q0,γ0) be an AOMPDS and q f be a state of M. Then checking
whether there is an infinite run starting from c i ni t

M that visits infinitely often the state q f can
be solved in time O(|M |)pol y(n).

Proof. From Theorem 18, we know that checking whether there is an infinite run starting
from c i ni t

M that visits infinitely often the state q f can be reduced to checking whether there
exist i ∈ [1..n], q ∈Q, and γ ∈ Γ\ {⊥} such that:

1. c i ni t
M −→∗

M (q, (⊥)i−1,γw, wi+1, . . . , wn) for some w, wi+1, . . . , wn ∈ (Γ\ {⊥})∗⊥.

2. (q, (⊥)i−1,γ⊥, (⊥)n−i )
ρ1−−→M (q f , w1, w2, . . . , wn)

ρ2−−→M (q, (⊥)i−1,γw ′
i , w ′

i+1, . . . , w ′
n) for

some w1, . . . , wn , w ′
i , . . . , w ′

n ∈ (Γ\ {⊥})∗, ρ1 ∈∆′∗ and ρ2 ∈∆′+.

Let us fix an index i ∈ [1..n], a state q , and a stack symbol γ ∈ Γ\ {⊥}.
Checking whether c i ni t

M −→∗
M (q, (⊥)i−1,γw, wi+1, . . . , wn) for some w, wi+1, . . . , wn ∈ (Γ \

{⊥})∗ can be easily reduced to the reachability problem of an AOMPDS M1 (whose size is
linear in M) that proceeds into two steps. In the first step, M1 mimics the behavior of M .
Then, nondeterministically, checks if the current state is q and the top most of the i -th stack
is γ, and if it is the case M1 moves its state to a special state f ∉Q and starts emptying all its
stacks (from i to n). Thus, we have c i ni t

M −→∗
M (q, (⊥)i−1,γw, wi+1, . . . , wn) for some w, wi+1, . . . ,

wn ∈ Γ∗ if and only if M1 can reach the configuration ( f ,⊥, . . . ,⊥) from cM i ni t
1

.

Now, we can show in similar way that checking whether (q, (⊥)i−1,γ⊥, (⊥)n−i )
ρ1−−→M (q f ,

w1, w2, . . . , wn)
ρ2−−→M (q, (⊥)i−1,γw ′

i , w ′
i+1, . . . , w ′

n) for some w1, . . . , wn , w ′
i , . . . , w ′

n ∈ Γ∗, ρ1 ∈
∆′∗ and ρ2 ∈∆′+, can be reduced to the reachability problem of an AOMPDS M2 (whose size is
linear in M) that proceeds as follows: First, M2 starts by reaching the configuration (q, (⊥)i−1,
γ⊥, (⊥)n−i ) from its initial one (using some transitions not belonging to M). Then M2 moves
its current state from q to a copy (q, false). Now M2 can start simulating M while restricting
its behavior to the set of transitions in ∆′ and replacing any state q ′ of M by its copy state (q ′,
false). M2 checks if the current state is (q f , false). At this point, for every transition ∆′ of the
form ((q f ,γ1, . . . ,γn), (q2,α1, . . . ,αn)), M2 has a transition of the form (((q f , false),γ1, . . . ,γn),
((q2, true),α1, . . . ,αn)). This transition is to ensure thatρ2 ∈∆′+ (i.e., the traceρ2 is not empty).
After performing one of such transitions, M2 continues the simulation of M restricted to the
set of transitions in ∆′ and replacing any state q ′ of M by its copy state (q ′, true). Finally, in
non-deterministic way, M2 checks if its current state is (q, true) and the topmost stack symbol
of its i -stack is γ, and if it is the case, he moves to a special state f ∉Q and starts emptying all



114 CHAPTER 7. ADJACENT ORDERED MPDS

its stacks (from i to n). Then, we have (q, (⊥)i−1,γ, (⊥)n−i )
ρ1−−→M (q f , w1, w2, . . . , wn)

ρ2−−→M (q,
(⊥)i−1,γw ′

i , w ′
i+1, . . . , w ′

n) for some w1, . . . , wn , w ′
i , . . . , w ′

n ∈ Γ∗, ρ1 ∈ ∆′∗ and ρ2 ∈ ∆′+ if and
only if the configuration ( f ,⊥, . . . ,⊥) is reachable by M2 from cM i ni t

2
.

Finally, we can use the constructions given in previous section to show that checking
whether the configuration ( f ,⊥, . . . ,⊥) is reachable in Mk (with k ∈ {1,2}) from cM i ni t

k
can be

solved in time O(|M |)pol y(n).

As an immediate corollary, we obtain:

Corollary 2. The model checking problem for the linear-time temporal logic on runs of AOM-
PDS is EXPTIME-COMPLETE.

7.4 Applications of AOMPDS

7.4.1 An application to Recursive Queuing Concurrent Programs

La Torre et al. [138], study the decidability of control state reachability in networks of concur-
rent processes communicating via queues. Each component process may be recursive, i.e.,
equipped with a pushdown store, and such systems are called recursive queuing concurrent
programs (RQCP) in [138]. Further, the state space of the entire system may be global or we
may restrict each process to have its own local state space (so that the global state space is the
product of the local states). In the terminology of [138] the latter are called RQCPs without
shared memory.

An architecture describes the underlying topology of the network, i.e., a graph whose ver-
tices denote the processes and edges correspond to communication channels (queues). One
of the main results in [138] is a precise characterization of the architectures for which the
reachability problem for RQCP’s is decidable. Understandably, given the expressive power of
queues and stacks, this class is very restrictive. To obtain any decidability at all, one needs
the well-queuing assumption, which prohibits any process from dequeuing a message from
any of its incoming channels as long as its stack is non-empty. They show that, even under
the well-queuing assumption, the only architectures for which the reachability problem is
decidable for RQCPs without shared memory are the so called directed forest architectures.
A directed tree is a tree with an identified root and where all edges are oriented away from
the root towards the leaves. A directed forest is a disjoint union of directed trees. They use a
reduction to the reachability problem for bounded-phase MPDSs and obtain a double expo-
nential decision procedure.

We now show that this problem can be reduced to the reachability problem for AOMPDS
and obtain an EXPTIME upper-bound.1 The reduction is sketched below. An EXPTIME upper-
bound is also obtained via tree-width bounds [112] (Thm. 4.6).

1 The argument in Theorem 17 can also be adapted to show EXPTIME-HARDNESS.



7.4. APPLICATIONS OF AOMPDS 115

Theorem 20. The control state reachability problem for RQCPs with a directed forest architec-
ture, without shared memory and under the well-queuing assumption can be solved in EXP-
TIME.

Proof. We only consider the directed tree architecture and the result for the directed forest
follows quite easily from this. An observation, from [138], is that it suffices to only consider
executions with the following property: if q is a child of p then p executes all its steps (and
hence deposits all its messages for q) before q executes. We fix some topologically sorted or-
der of the tree, say p1, p2, . . . , pm . The AOMPDS we construct only simulates those executions
of the RQCP in which all moves of pi are completed before pi+1 begins its execution. We call
such a run of the RQCP as a canonical run. The number of stacks used is 2m−1. The message
alphabet is Γ× {1, . . . ,m}∪⋃

1≤i≤mΣi , where Γ is the communication message alphabet and
Σi is the stack alphabet of process pi . We write Γi to denote Γ× {i }.

As we simulate a canonical run ρ of the RQCP in the order p1, . . . , pm , the invariant we
maintain is that, at the beginning of the simulation of process pi , the contents of stack 2i −1
is some α so that α ↓Γi is the contents of the unique input channel to pi as pi begins its
execution in ρ. Thus, we can simulate pi ’s contribution to ρ, by popping from stack 2i − 1
when a value is to be consumed from the input queue. If top of stack 2i −1 does not belong
ot Γi , then we transfer it to stack 2i . When pi sends a message to any other process p j in
ρ (which must be one of its children in the tree) we simulate it by tagging the message with
the process identity and pushing it on stack 2i . Finally, as observed in [138], the stack for
pi can also be simulated on top of stack 2i −1 since a value is dequeued only when its local
stack is empty (according to the well-queuing assumption). At the end of the simulation of
process pi , we empty any contents left on stack 2i −1 (transferring elements of Γ× {i +1, . . . ,
m} to stack 2i ). Finally, we copy stack 2i onto stack 2i +1 and simulate process pi+1 using
stack 2i +1 (thus ensuring that there is no reversal of the contents of the queues). The state
space is linear in the size of the RQCP and hence we conclude that the reachability problem
for RQCPs can be solved in EXPTIME using Theorem 17.

7.4.2 An application to bounded-phase reachability

Recall that a Phase of a stack i ∈ [1..n] is a computation that involves pops ( and zero test )

only from stack-i i.e. it is a computation of the form π= c0
t1→ c1

t2→··· in which Trace(π) ∈∆↓i .
Where ∆↓i =∆∩ (Q × (op \

⋃
j 6=i ∪a∈Γ{Pop j (a)}∪ {Zero j })×Q). We will refer to such a compu-

tation as i -run to mean that is a 1-phase computation of stack-i . Now, a run c
ρ−→∗

M c ′ is a k-
phase run if we may write ρ = ρ1.ρ2. . . .ρk with ρi ∈∆∗, c = c0

ρ1−−→∗
M c1

ρ1−−→∗
M c2 . . .

ρk−−→∗
M ck =

c ′ and each ci
ρi+1−−−→∗

M ci+1 is a 1-phase run. We say that such a run is a good k-phase run if

k ≤ n and for all 1 ≤ i ≤ k, ci
ρi+1−−−→∗

M ci+1 is an i -run in which the stacks 1,2. . . (i −1) are empty
in every configuration.

The (good) k-phase reachability problem is to decide for a MPDS M , a number k and a
state q ∈ Q, whether there is a l-phase run (good l-phase run) (q0,⊥,⊥, . . . ,γ0⊥)−→∗

M (q,α1,
α2, . . . ,αn) with αi ∈ (Γ\ {⊥})∗⊥ for some l ≤ k. The k-phase reachability problem is shown to
be 2-ETIME-Complete in [137]. We provide a reduction of this problem to the reachability
problem for AOMPDSs, providing a simple proof of decidability for BPMPDSs and illustrating



116 CHAPTER 7. ADJACENT ORDERED MPDS

the expressive power of AOMPDS. We first observe that the k-phase reachability problem can
be transformed to a good k-phase reachability problem.

Lemma 49. Let M = (n,Q,Γ,∆, q0,γ0) be a simple MPDS, k an integer and q ∈Q. Then, the k-
phase reachability problem for q in M can be reduced to the good k-phase reachability problem
for some q ′ in a simple MPDS M ′ = (k + 1,Q ′,Γ∪ {#},∆′, q ′

0,γ0) where |Q ′| = O(|Q|.nk ) and
|∆′| = O(|∆|.n2k ). Further, every run of M ′ is actually a good l-phase run for some l ≤ k.

Proof. The automaton begins by guessing a sequence s1, s2, . . . , sk , 1 ≤ s j ≤ n, of stacks that
would be used in the k-phase run that is to be simulated. Notice that any stack s may appear
more than once in this sequence (or even not at all). We inductively ensure that when this
automaton begins its i th phase, the contents of stack i are exactly the contents of stack si at
the beginning of phase i of the k-phase run of M which is being simulated.

A move of M , during phase i may push values into not only stack si but also the other
stacks. The activity on stack si is simulated accurately using stack i . Further, we simply dis-
regard the values pushed on any stack s that does not appear among si+1, . . . , sk since these
values will never be used. Finally, any value pushed on to a stack s that appears among si+1,
. . . , sk is pushed on stack j where j is the smallest number such that s j = s. At the end of the
simulation of phase i , if stack si does not appear among si+1, . . . , sk then we simply empty its
contents before switching to simulating phase i +1 using stack i +1. If stack si is used again
and j is the least number greater than i with s j = si then we transfer the contents of stack i
to stack j via stack i +1 (so that the order is not reversed).

Next, we show that any good k-phase reachability problem for any simple MPDS M can
be reduced to the reachability problem for an AOMPDS M ′. Thus, using the EXPTIME com-
plexity of AOMPDS, we get a 2-EXPTIME algorithm for BPMPDS.

Lemma 50. Any good k-phase reachability problem for an MPDS M = (n,Q,Γ,∆, q0,γ0) can
be reduced to the reachability problem for an AOMPDS M ′ = (2n−1,Q ′,Γ′,∆′, q ′

0,γ′0) where:
|Q ′| = O(|Q|.2O(n)), |∆′| = O(2O(k).|∆|) and |Γ′| = O(2O(k).|Γ|).

Proof. (sketch) Observe that in a good k-phase run, during the i th phase values are popped
only from stack i , which is also the leftmost nonempty stack. Further values are pushed only
on stacks numbered i or higher. To simulate such a run using an AOMPDS we should ensure
that the values are pushed only on stacks i or i +1 (or i −1, but given the nature of a good
k-phase run this will be unnecessary). Our strategy is to push the values meant for all the
stacks other than i into stack i +1, after appropriately tagging them with the identity of their
destination. This naive strategy has some problems. Firstly, when operating on stack i in
phase i we will encounter values meant for other stacks (with a tag identifying the destination
stack j , j > i ). We simply transfer these values as and when they are encountered to stack
i +1. The second problem is that when values tagged with stack j are eventually transferred
to stack j during phase j − 1, they may not occur in the right order. One reason for this
reordering is that as we transfer contents from stack i to stack i + 1, the values meant for
a future stack j get reversed in order. This is a relatively minor issue which can be handled by
inserting an additional stack, if necessary, to carry out one more reversal.



7.5. ADJACENT ORDERED RESTRICTION 117

A more serious problem that results in an exponential increase in the number of stacks
is the following — phase i in M may involve pushing values on stack j , j > i and we instead
tag it with j and push it on stack i +1. However, it is quite possible that inside stack i there
might be values for stack j pushed during earlier phases which will be uncovered later and
transferred to stack i +1, resulting in shuffling the values meant for stack j that are generated
by i and those that are only transferred by i . To get round this we need to keep several copies
of each stack, one for each stack whose phase may push values into this stack.

If the number of phases (and stacks) in M is just 1 or 2 then there is no problem as the
aforementioned shuffling does not occur for trivial reasons. Suppose M has 3 stacks (and
phases). Then we keep two copies of stack 3 which call say 3.1 and 3.2. We assume the order
of the stacks is 1,2,3.2,3.1. Whenever a value is to be pushed onto stack 3 during phase 1, it
is marked as destined for 3.1 and pushed on stack 2. During phase 2 any value destined for
stack 3 is marked as destined for stack 3.2 and pushed on to the next stack (which is also 3.2).
The phase corresponding to stack 3 is now broken up into two phases – first a phase on stack
3.2 and another on stack 3.1. The phase change from stack 3.2 to stack 3.1 takes place only
when stack 3.2 is empty. Notice that this precisely captures the fact that any value pushed by
phase 1 on stack 3 is accessible only after every value pushed by phase 2 on stack 3 has been
removed. Observe that if M has 4 stacks then we will need 4 copies of stack 4 (4.3.2,4.3.1,
4.2,4.1 in that order) where the any value meant for stack 4 during a phase on stack i ∈ {1,
2,3.2,3.1}) is marked as destined for stack 4.i . Thus, if there were n phases (and stacks) we
construct end up with an AOMPDS with 2n−1 phases and stacks. It also turns out that the
number of stacks between any stack i and its consumers (stacks of the form j .i , j ∈ [1..n]) is
always even. Thus no additional reversal is needed.

7.5 Adjacent ordered restriction

In this section we will introduce a restriction called adjacent ordered restriction on runs of
MPDS. We then show that solving reachability problem on AOMPDS is same as solving reach-
ability on MPDS under such a restriction. We first recall the definition of Act (Indicating the
currently active i.e. the least nonempty stack). We defined it as, if c ∈ Q ×⊥ j−1 × (Γ+⊥)×
(Γ∗⊥)n− j , then Act(c) = j and if c ∈Q × {⊥}n , then Act(c) = n.

Definition 10. Given an MPDS M = (n,Q,Γ,∆, q0,γ0), for any two configurations c,c ′ ∈C (M),
with Act(c) = j , the one step execution π= c τ−→M c ′ is said to be an adjacent ordered execution
iff τ is a push, internal or a pop operation and one of the following holds.

1. τ ∈ (Q×∪a∈ΓPop j (a)∪Int j ×Q)∩∆, i.e. the internal transitions (designated for stack-j ) and
the pop operations are allowed on least non-empty stack.

2. Any push operation from ∆ can be performed only on least non-empty stack or its adjacent
stacks.

b.1 If 1 < j < n, then τ ∈ (Q ×∪a∈Γ,k∈[ j−1.. j+1]Pushk (a)×Q)∩∆
b.2 If j = n then τ ∈ (Q ×∪a∈Γ,k∈[n−1,n]Pushk (a)×Q)∩∆
b.3 If j = 1 then τ ∈ (Q ×∪a∈Γ,k∈[1,2]Pushk (a)×Q)∩∆



118 CHAPTER 7. ADJACENT ORDERED MPDS

Given any finite computation of an MPDS M, it is said to be adjacent ordered computation

if every one step computation in it is adjacent ordered i.e. π = c0
τ1→ c1

τ2→ ··· τn→ cn is said to be

adjacent ordered if for all i ∈ [1..n −1], ci
τi+1→ ci+1 is adjacent ordered. The definition can be

extended to the infinite case in straight forward manner.

Adjacent ordered reachability problem asks whether a given configuration can be reached
from the initial configuration through an adjacent ordered execution. We show below that
given an MPDS M , we can construct in polynomial time an AOMPDS A such that the adja-
cent ordered reachability on M can be reduced to reachability on A . For this purpose, we
will first fix our MPDS to be M = (n,Q,Γ,∆, q0,γ0). The required AOMPDS is given by A = (n,
QA ,ΓA ,∆A , s,⊥̄⊥⊥), where

• QA =Q ∪ {s} is the finite set of states.
• ΓA = Γ∪→

Γ ∪←
Γ ] {⊥̄⊥⊥} is the stack alphabet, where ⊥̄⊥⊥ is a new symbol ,

→
Γ = {→a | a ∈ Γ} and

←
Γ = {←a | a ∈ Γ}. The symbol ⊥̄⊥⊥ will be pushed onto the last stack (as an initial symbol) and

will never be popped. The stack alphabet
→
Γ and

←
Γ will be used to move symbols on to right

and left stacks adjacent to the least nonempty stack.
• s is the new initial state and will be used to push γ0, the intial stack symbol of M and enter

the state q0, the initial state of M .
• The transition relation ∆A is described below.

a.1 From the start state s, there is a transition to push γ0 and move to q0 i.e. we have ((s,
⊥n−1,⊥̄⊥⊥), (q0,⊥n−1,γ0⊥̄⊥⊥)) ∈∆A

a.2 The following transitions are used to simulate the transitions in 1 from definition 10

1. For all i ∈ [1..n] and (q,Popi (a), q ′) ∈ ∆ we add ((q,⊥i−1, a,εn−i ), (q ′,⊥i−1,εn−i+1)) ∈
∆A

2. For all i ∈ [1..n] and (q,Inti , q ′) ∈∆we add for all a ∈ Γ∪⊥̄⊥⊥, the transitions ((q,⊥i−1, a,
εn−i ), (q ′,⊥i−1, a,εn−i )) ∈∆A

a.3 For all i ∈ [1..n] and (q,Pushi (b), q ′) ∈∆ , the following transitions are added to simulate
the transitions in 2 from definition 10

1. For all a ∈ Γ∪ ⊥̄⊥⊥, the transitions ((q,⊥i−1, a,εn−i ), (q ′,⊥i−1,ba,εn−i )) ∈ ∆A . These
transitions allows pushes on least nonempty stack.

2. If i < n, then for all a ∈ Γ∪⊥̄⊥⊥, the transitions ((q,⊥i , a,εn−i−1), (q ′,⊥i ,
←
b a,εn−i−1)) ∈

∆A . These transitions pushes a symbol tagged with direction that will be transferred
to lower numbered stack, using transitions from a.4.

3. If i > 1 then, for all a ∈ Γ ∪ ⊥̄⊥⊥, the transitions ((q,⊥i−2, a,εn−i+1), (q ′,⊥i−2,
→
b a,

εn−i+1)) ∈ ∆A . These transitions pushes a symbol tagged with direction that will be
transferred to higher numbered stack, using transitions from a.4.

a.4 We also add the following transitions to transfer the right and left symbols to its respec-
tive stack.

1. For all i < n, and all →a ∈→
Γ, we add ((q,⊥i−1,→a ,εn−i ), (q,⊥i−1,ε, a,εn−i−1)

2. For all i > 1, and all ←a ∈←
Γ, we add ((q,⊥i−1,←a ,εn−i ), (q,⊥i−2, a,εn−i+1)

We will now prove the following Lemma, which states that our construction preserves



7.5. ADJACENT ORDERED RESTRICTION 119

reachability.

Lemma 51. For any configuration c = (q,γ1⊥, · · ·γn⊥) ∈ C (M), we have an adjacent ordered
computation c init

M −→∗
M c iff c init

A
−→∗

A d, where d = (q,γ1⊥, · · ·γn⊥̄⊥⊥⊥) ∈C (M).

Proof. (⇒) We prove this direction by inducting on the length of the run. The base case is a
zero length run. In this case, we use the transition a.1 to get the required run in A .

For the inductive case, we assume a run c init
M −→∗

M c of length greater than one. Clearly

such a run can be split as c init
M −→∗

M c ′ τ→ c. Let j = Act(c ′) and c ′ = (q ′,γ′1⊥, · · ·γ′n⊥). Inductively
there is a run of the form c init

A
−→∗

A d ′ where d ′ = (q ′,γ′1⊥, · · ·γ′n⊥̄⊥⊥⊥). We show how to extend
such a run for each possible choice of τ that is adjacent ordered.

− Suppose τ was of the form τ= (q ′,Pop j (a), q) then we use the transition 1. in a.2 to extend
the run.

− Suppose τ was of the form τ= (q ′,Int j , q) then we use the transition 2. in a.2 to extend the
run.

− Suppose τwas of the form τ= (q ′,Push j (a), q) then we use the transition 1. in a.3 to extend
the run.

− Suppose τ was of the form τ = (q ′,Push j−1(a), q) then we use the transition 2. in a.3 fol-
lowed by transition in a.4 to extend the run.

− Suppose τ was of the form τ = (q ′,Push j+1(a), q) then we use the transition 3. in a.3 fol-
lowed by transition in a.4 to extend the run.

(⇐)
Firstly let S = {(q,γ1⊥, · · · ,γn⊥̄⊥⊥⊥)|(q,γ1⊥, · · · ,γn⊥) ∈C (M)}. For this direction, we induct

on the number of times a configuration from S is seen in the run. For the base case, suppose
the number of times a configuration from S is seen is 1, clearly such a run is of the form
c init
A

−→∗
A (q0,⊥n−1,γ0⊥̄⊥⊥⊥). But note that (q0,⊥n−1,γ0⊥) = c init

M . From this we get the required
run in M .

For induction case let us assume a run c init
A

−→∗
A d such that d ∈ S and the number of

times the configuration from S is seen is greater than one. Then such a run can be split as
c init
A

−→∗
A d ′−→∗

A d , where in π′ = d ′−→∗
A d , there are no intermediate configurations from

S. Let d ′ = (q ′,γ′1⊥, · · · ,γ′n⊥̄⊥⊥⊥), then from induction hypothesis, we have a run of the form
c init

M −→∗
M c ′, where c ′ = (q ′,γ′1⊥, · · · ,γ′n⊥). Let Act(c ′) = i , then γ′1, · · · ,γ′i−1 = ε. By the defini-

tion of the transitions of A, the run π′ is of length at most 2. We consider various possible
choices of π′ and show that in each case, we can correspondingly extend the run of M .

− Suppose that the transition used in π′ was ((q ′,⊥i−1, a,εn−i , (q,⊥i−1,εn−i−1), from 1. in a.2.
Then clearly by construction, we know that there is a transition of the form (q ′,Popi (a,
q) ∈ ∆. Further it is clear that firing such a transition from c ′ confirms to the adjacent
ordered restriction. Using this we can extend the run in M to get the required run.

− The case where the transition used in π′ was ((q ′,⊥i−1, a,εn−i , (q,⊥i−1, a,εn−i ) from 2. in
a.2, is similar.

− We consider the case where the transitions used was from 2. from a.3, of the form ((q ′,⊥i , a,

εn−i−1, (q,⊥i ,
←
b a,εn−i−1), followed by the transition from a.4 of the form ((q,⊥i ,

←
b ,εn−i−1),

(q,⊥i−1,b,εn−i )). Then clearly by construction, we have (q ′,Pushi−1(b), q) ∈ ∆. Further it



120 CHAPTER 7. ADJACENT ORDERED MPDS

is clear that firing such a transition from c ′ confirms to the adjacent ordered restriction (
since Act(c ′) = i ). Using this we can extend the run in M to get the required run.

− Rest of the cases are similar and easy and hence we omit the same.

From the above construction and the Lemma 51, the following Theorem is immediate.

Theorem 21. Given an MPDS M = (n,Q,Γ,∆, q0,γ0), we can construct an AOMPDS A such
that for any configuration c ∈C (M), there is an adjacent ordered computation π= c init

M −→∗
M c

iff there is a computation π′ = c init
A

−→∗
A c.

7.6 Conclusion

In this chapter, we introduced a new restriction called adjacent ordered restriction on the
executions of the MPDS. We went on to show that reachability under such a restriction is EX-
PTIME COMPLETE. We also showed how to solve the repeated reachability problem and hence
also the problem of model checking LTL formulas over runs of the MPDs with such a restric-
tion. We went on to show that the model introduced has many applications. Towards this, we
showed how to reduce the reachability on a recursive queueing concurrent program to reach-
ability on an AOMPDS. We also showed how to get an alternative algorithm for deciding the
bounded-phase reachability through reachability on AOMPDS. Since the model of AOMPDS
was formalised differently, we also proposed a restriction called the adjacent ordered restric-
tion on the runs of the MPDS model and showed that reachability under such a restriction
can be captured by the AOMPDS model.



Chapter 8

Accelerations on multi-pushdown
systems

8.1 Introduction

In this chapter we will present a new kind of under-approximation technique by means of
accelerating loops. The idea of accelerating loops is similar in spirit to global model checking
problem. In global model checking problem, the aim is to compute from ( a representation
of ) initial set of configuration I , ( a representation of ) the set of all reachable configurations
from I (denoted Post∗(I )). There are many useful applications of global model checking, the
most obvious one being reachability. Note that our description of global model-checking
does not require that the representations of the initial set I and the reachable set post∗(I )
be the same. For eg. for PDSs, whether we use finite sets or regular sets for the initial set of
configurations, the final set can be described effectively as a regular set. However, if both sets
use the same description, then we say that the representation is stable. Stability is an useful
property as it permits us to compose (and hence iterate finitely) the algorithm.

For PDSs if the initial set of configurations is a regular language then the set of reachable
configurations is a computable regular language ([40, 71]). The model we are considering
here is a multi-pushdown system, which we already know is Turing powerful. Hence the
only hope is to achieve this by some under-approximation technique. The configuration of
a MPDS can be represented as a tuple of words giving the current state and the contents of
the each of the stacks. We can then represent sets of configurations by recognizable or regular
languages [34]. Given a recognizable language representing the set of initial configurations,
the set of configurations that may be reached via runs with at most k-context switches is also
a (computable) recognizable language [124]. Thus, the global model checking problem under
bounded context setting is decidable and this has many applications, including the obvious
one — reachability can be decided.

Another well known technique used in the verification of infinite state systems is that of
loop accelerations. It is similar in spirit to global model checking but with different applica-
tions. The idea is to consider a loop of transitions (a finite sequence of transitions that lead
from a control state back to the same control state). The aim is to determine the effect of it-

121



122 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

erating the loop. That is, to effectively construct a representation of the set of configurations
that may be reached by valid iterations of the loop. Loop accelerations turn to be a very useful
(e.g., [43, 31, 39, 13, 33, 89, 38, 37, 69, 32, 109, 110, 88, 68]) in the analysis of a variety of infinite
state systems.

We propose to use accelerations as an under-approximation technique in the verification
of MPDSs. We take this further by proposing a technique that composes the iterations of
such loops with context bounded runs to obtain a new decidable under-approximation for
MPDSs. Observe that there is no bound on the number of context switches under loop itera-
tions while a context bounded run permits unrestricted recursive behaviours, not permitted
by loop iterations, thus complementing each other.

We begin by showing that both regular sets as well as rational sets of configurations are
stable w.r.t. bounded context executions. Next we show that this does not extend to iterations
of loops. We show that under iterations of a loop, the post∗ of a regular set of transitions is
always rational while that of a rational set need not be rational. We then address the ques-
tion of a representation that is stable w.r.t. loop accelerations. Towards this we propose a
new representation for configurations called n-CSRE inspired by the CQDDs [43] and the
class of bounded semilinear languages [49]. This forms a very expressive class, for eg. the 1-
dimensional version is equivalent to the class of semilinear bounded languages (see [49]). We
show that n-CSREs are closed under union, intersection and concatenation. Furthermore, we
have the decidability of the emptiness, membership problem as well as the inclusion prob-
lem for n-CSREs. Then, we show that n-CSREs are indeed stable w.r.t iteration of loops. This
result also has the pleasant feature that the construction is in polynomial time. However,
n-CSREs are not stable w.r.t bounded context executions.

As a final step we introduce a joint generalization of both loop iterations and bounded
context executions called bounded context-switch sets. We show that the class of languages
defined by n-dimensional constrained automata (the most general class considered here
and a n-dimensional version of Parikh automata) is stable w.r.t accelerations via bounded
context-switch sets. Since membership is decidable for this class, we obtain a decidability of
reachability under this generous class of behaviours. Observe that the class of n-dimensional
constrained automata is not closed under intersection and that the inclusion problem is un-
decidable.

8.2 Acceleration

Given a set of configurations C ⊆ C (M) and a set of sequences of transitions Θ ⊆ ∆∗, the
acceleration problem for M , with respect to C and Θ, consists in computing the set of con-
figurations c ′ such that c σ−−→M c ′ where c ∈C and σ ∈Θ∗. We use PostΘ∗(C ) to denote the set
{c ′ |c σ−−→M c ′ , c ∈C , σ ∈Θ∗}. Observe that the global reachability problem is the acceleration
problem with the set of initial configurations as C andΘ=∆. We first show that global model
checking under context bounded restriction can be seen as acceleration problem. Before
that, we will first recall some properties of rational and regular languages (see, e.g., [34]).



8.2. ACCELERATION 123

8.2.1 Properties of rational languages

Recall that a n-dim language is rational if it is the language of some n-tape automaton [34].
A n-dim language L is regular if it is a finite union of products of n rational 1-dim languages.
First, the class of recognisable languages, for any dimension n ≥ 1, is closed under boolean
operations. On the other hand, for every n ≥ 2, the class of n-dim rational languages is closed
under union and concatenation but not under complementation or under intersection. How-
ever, the emptiness and membership problems for rational languages are decidable and fur-
ther the inclusion problem is also decidable for recognisable languages. The inclusion prob-
lem is undecidable for rational languages.

We describe some additional closure properties of rational languages that are well known
and will prove useful. Rational languages are effectively closed under the permutation of in-
dices: Let A be a n-tape automaton over Σ1, . . . ,Σn . Given a mapping h : [1..n] → [1..n], it
is possible to construct a n-tape automaton h(A), linear in the size of A, such that (w1, ...,
wn) ∈ L(A) iff (wh(1), . . . , wh(n)) ∈ L(h(A)). Rational languages are also effectively closed under
projection: Given a set of indices ι = {i1 < i2 < . . . im} ⊂ [1..n], we can construct an automa-
tonΠι(A), linear in size of A, such that L(Πι(A)) = {(wi1 , wi2 , . . . , wim ) | (w1, w2, . . . , wn) ∈ L(A)}.
Rational languages are also closed under composition operation : Let A be as before and let
A′ be a rational language over Σ′

1,Σ′
2, . . . ,Σ′

m . Let i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m} be two indices
s.t. Σ′

j = Σi . Then, it is possible to construct a (n +m −1)-tape automaton A ◦(i , j ) A′, whose

size is O(|A|.|A′|), accepting (w1, . . . , wn , w ′
1, . . . , w ′

j−1, w ′
j+1, . . . , w ′

m) iff (w1, . . . , wn) ∈ L(A) and

(w ′
1, . . . , w ′

j−1, wi , w ′
j+1, . . . , w ′

m) ∈ L(A′), i.e. the composition corresponding to the synchro-

nization of the i th tape of A with the j th tape of A′.

8.2.2 Context-Bounding as an acceleration problem

In the following, we show that context-bounding analysis [124, 119, 106, 95] for an MPDS M =
(n,Q,Γ,∆, q0) can be formulated as an acceleration problem w.r.t. the class of rational/regular
configurations. Given two configuration c,c ′ ∈ C (M) and k ∈ N, the k-context reachability
problem consists in checking whether there is a sequence of transitionsσ ∈∆∗

i1
∆∗

i2
· · ·∆∗

ik
, with

i1, i2, . . . , ik ∈ [1..n], such that c σ−−→∗
M c ′. The decidability of the k-context reachability prob-

lem can be seen as an immediate corollary of the decidability of the membership problem
for rational languages and the following result:

Theorem 22. Let i ∈ [1..n]. For every regular (rational) set of configurations C , the set
Post∆∗

i
(C ) is regular (rational) and effectively constructible.

The set Post∆∗
i
(C ) has been shown to be regular and effectively constructible when C is

regular in [124]. In the following, we prove Theorem 22 for the case when C is rational. We
write Mi for the PDS (Q,Γ,∆i , q0) simulating the behavior of M only on the stack i . First we
recall a result established in [51, 107].

Lemma 52. It is possible to construct, in polynomial time in the size of Mi , a 4-tape finite state
automaton T (i ), over Q,Γ,Q,Γ, such that (q,u, q ′, v) ∈ L(T (i )) iff (q,u) σ−−→∗

Mi (q ′, v) for some
sequence σ ∈∆∗

i .



124 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

Proof. Before going into the proof,we will recall the definition of a γ run that we introduced
earlier. We say π = (q,α)−→∗

γ(q ′,β) iff γ is the longest prefix of stack in all the configuration
that occurs in π.

Let U = {(q, a, q ′) | (q, a) σ−−→∗
Mi (q ′,ε) , a ∈ Γ , σ ∈∆∗

i } be set such that if (q, a, q ′) ∈ U then
there is a run that starts at q , consumes a from stack and reaches q ′ without involving a zero
test, similarly let V = {(q, a, q ′) | (q,ε) σ−−→∗

Mi (q ′, a) , a ∈ Γ , σ ∈ ∆∗
i } and let W = {(q, q ′) | (q,

⊥) σ−−→∗
Mi (q ′,⊥),σ ∈∆∗

i }. Observe the set U , V and W are effectively constructible in polyno-
mial time by reduction to the reachability problem for pushdown systems.

Clearly if (q,u)−→∗
Mi (q ′, v) then there is a configuration (q ′′, w), q ′′ ∈Q, w ∈ (Γ\⊥)∗⊥ such

that (q,u)−→∗
w (q ′′

1 , w)−→∗
w (q ′′

2 , w)−→∗
w (q ′, v) i.e. any run can be split into decreasing part and

an increasing part and a possible zero test part in between. This also means that, u = u′w and
v = v ′w ( note that w can just be ⊥). Hence it is easy to see that L(T (i )) = {(q,uw, q ′, v w) |
(q,u)−→(q ′′,ε)∧ (q ′′,ε)−→(q ′, v)∧w ∈ Γ+⊥}∪ {(q,u⊥, q ′, v⊥) | (q,u⊥)−→∗(q ′′

1 ,⊥)∧ (q ′′
2 ,⊥)−→∗(q ′,

v⊥)∧ (q ′′
1 ,⊥)−→∗(q ′′

2 ,⊥)}.
We will now give the construction of T (i ). The states of T (i ) are QT (i ) = {s}∪ (Q × (Q ∪

{0}))∪ {e, f }. The initial state is s and the final state is f . The states of T (i ) contains two
component, the first component is used to simulate the decreasing phase and the second
component to simulate the increasing phase. From the initial state on reading state from the
first tape, updates it in the first component of the state i.e. we add for all q ∈ Q, (s, (q,ε,ε,ε),
(q,0)) ∈ δT (i ). Subsequently it starts simulating moves of decreasing phase, i.e. we add ((q,0),

(ε, a,ε,ε), (q ′,0)) ∈ δT (i ) if (q, a, q ′) ∈U . It is easy to see that (q,0) (ε,u,ε,ε)−−−−−−→T (i )(q ′,0) is a run in
T (i ) iff (q,u)−→Mi (q ′,ε).

We add transition that guesses the intermediate point from where the automata starts
simulating the increasing phase from there onwards. To this effect, we add for all q ′ ∈ Q,
((q,0), (ε,ε, q ′,ε), (q, q ′)) ∈ δT (i ). To simulate the increasing phase, we add for all (q ′, a, q ′′) ∈
V , transition ((q, q ′′), (ε,ε,ε, a), (q.q ′)) ∈ δT (i ). As in previous case, it is easy to see that (q,

q ′) (ε,ε,ε,v)−−−−−−→T (i )(q, q ′′) iff (q ′′,ε)−→Mi (q ′, v). Finally we add for all q ∈ Q, ((q, q), (ε,ε,ε,ε),e) ∈
δT (i ) and for all a ∈ Γ\{⊥}, (e, (ε, a,ε, a),e) ∈ δT (i ) and (e, (ε,⊥,ε,⊥), f ) ∈ δT (i ), these transitions
guesses the intermediate point (for the case where there is no zero test) and checks if the
word below is same in even stacks.

We also add for all (q, q ′) ∈W , the transition ((q, q ′), (ε,⊥,ε,⊥), f ) (for the case where there

is zero test). It is easy to see that if ((q, q ′) (ε,⊥,ε,⊥)−−−−−−→ f then we have (q,⊥)−→∗
Mi (q ′,⊥).

The correctness of the construction follows from the fact that, there is an accepting run
form s, iff it one of the following forms.

s
(q,ε,ε,ε)→ (q,0) (ε,u,ε,ε)−−−−−−→∗

(q ′′,0)
(ε,ε,q ′,ε)→ (q ′′, q ′) (ε,ε,ε,v)−−−−−−→∗

(q ′′, q ′′) → e (ε,w⊥,ε,w⊥)−−−−−−−−−→∗
f

or

s−→(q,0) (ε,u,ε,ε)−−−−−−→∗
(q ′′

1 ,0)
(ε,ε,q ′,ε)−−−−−−→

∗
(q ′′

1 , q ′) (ε,ε,ε,v)−−−−−−→∗
(q ′′

1 , q ′′
2 ) (ε,⊥,ε,⊥)−−−−−−→ f

It is easy to see that the former case is true iff (q,uw⊥)−→∗
Mi (q ′′, w⊥)−→∗

Mi (q ′, v w⊥) and
the latter case is true iff (q,u⊥)−→∗

Mi (q ′′
1 ,⊥)−→∗

Mi (q ′′
2 ,⊥)−→∗

Mi (q ′, v⊥).



8.2. ACCELERATION 125

Observe that Lemma 52 relates any possible starting configuration (q,u) with any config-
uration (q ′, v) reachable from (q,u) in Mi . Let us assume now that we are given a (n+1)-tape
automaton A = (P,Q,Γ, . . . ,Γ,δ, p0,F ) accepting the set C . In the following, we show how to
compute a (n +1)-tape finite state automaton A′ accepting the set Post∆∗

i
(C ). To do that, we

proceed as follows: We first compose A with T (i ), synchronsing the second tape of T (i ) (con-
taining the stack contents at the starting configuration) with the (i +1)-th tape of A, to con-
struct a (n +4)-tape automaton A1 = A ◦(i+1,2) T (i ). We also need to synchronize the starting
states (i.e. the first tape of A with the first tape of T (i )). This can be done by intersecting A1

with the (regular) language
⋃

q∈Q {q}× (Γ∗)n × {q}×Q ×Γ∗. Let A2 be the automaton resulting
from the intersection operation. Then, we project away the starting control state (occurring
on tapes 1 and n+2) and the content of the i +1-th tape to we obtain the (n+1)-tape automa-
ton A3 = Πι(A2) where ι = ([1..n] \ {1, i +1,n +2}). This is almost what is needed except that
the new content of the stack i occurs at the last position instead of position i +1 and the con-
trol state occurs at penultimate position instead of the first position. We rearrange this using
the permutation operation. We let A′ = h(A3) where h is defined as follows: (1) h(1) = n, (2)
h( j ) = j −1 for all j ≤ i , (3) h(i +1) = n +1, and (4) h( j ) = j −2 for all j > i .

Observe that the size of A′ is polynomial in |A|. As an immediate consequence of this re-
sult and the fact that the membership problem for rational/regular languages can be checked
in polynomial time, we can deduce that the k-context reachability problem can be decided
in polynomial in the size of M and exponential in k (as in [124]).

8.2.3 Accelerating Loops: Case of regular/rational sets

In this section, we address the acceleration problem for the iterative execution of a sequence
of transitions in the control graph of a MPDS M = (n,Q,Γ,∆, s). More precisely, given a se-
quence of transitions θ ∈∆∗ and a set of configurations C ⊆C (M), we are interested in char-
acterising the set Postθ∗(C ). In sequel, when we consider a sequence of transitions, we will
assume that there are no zero test ( unless mentioned other wise ). We will also assume all the
sequences we consider are state wise compatible. By statewise compatible, we mean, given
any sequence (q1,op1, q ′

1)(q2,op1, q ′
2) · · · (qm ,opm , q ′

m), we have for all i ∈ [1..m], qi+1 = q ′
i .

Note that in case we are accelerating loops and if there are zero tests, only finitely many con-
figurations can be reached. In fact if we can successfully iterating such a loop arbitrary num-
ber of times, we will end up in the same configuration each time.

Computing the effect of a sequence of transitions

Let M = (n,Q,Γ,∆) be an MPDS and σ ∈ ∆∗ a sequence of transitions of the form (q0,op0,
q1)(q1,op1, q2) · · · (qm−1,opm−1, qm). Intuitively, we associate to each stack i a pair (ui , vi )
such that the effect of executing the sequence σ on stack i is popping the word ui and then
pushing the word vi on to it (i.e. the stack content is transformed from ui w to vi w for some
w). To this end, for every i ∈ [1..n], we introduce a partial function Effi : (Γ∗×Γ∗×∆∗)* (Γ∗×
Γ∗) (we will let the function map to ⊥⊥⊥ when it is not defined). Roughly speaking, assuming
that we have already computed the effect of a transition sequence σ on stack i to be (u, v),
i.e. to pop u and push v , Effi (u, v, t ) computes the effect of σ.t on stack i . In the below



126 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

definition, given any transition of the form τ= (q,op, a, q ′), we let Op(τ) = op. Given u, v ∈ Γ∗
and t ∈∆, we define Effi ((u, v), t ) as follows:

• if Op(t ) = Popi (a) for some a ∈ Γ then

– Effi ((u,ε), t ) = (u ·a,ε),
– If v = a · v ′ for some v ′ ∈ Γ∗ then Effi ((u, v), t ) = (u, v ′),
– Otherwise Effi ((u, v), t ) =⊥⊥⊥.

• if Op(t ) = Pushi (a) for some a ∈ Γ, then Effi ((u, v), t ) = (u, a · v)
• If Op(t ) = Inti or t ∈∆\∆i , then Effi ((u, v), t ) = (u, v).

We extend the definition of Effi to sequence of transitions as expected: For every two
words u, v ∈ Γ∗, we have

1. Effi ((u, v),ε) = (u, v),
2. For every σ′ ∈ ∆∗ and t ∈ ∆, we have Effi ((u, v),σ′ · t ) = Effi (Effi ((u, v),σ′), t ) if Effi ((u,

v),σ′) 6= ⊥⊥⊥ is defined, and Effi ((u, v),σ′ · t ) =⊥⊥⊥ otherwise.

Our aim is to compute the complete effect of some sequenceσ on stack i and this is given
by Effi ((ε,ε),σ). We shall refer to this as Summ(i ,σ). The next lemma formalizes our intuition
about Summ and characterizes precisely when a sequence of transitions σ may be executed
and computes its effect on all the stacks (if it is executable).

Lemma 53. Let c = (p, w1, . . . , wn) and c ′ = (p ′, w ′
1, . . . , w ′

n) be two configurations of M. c σ−−→∗
c ′

such thatσ ∈∆∗ iff for every i ∈ [1..n], we have wi = ui u′
i and w ′

i = vi u′
i for some ui , vi ,u′

i ∈ Γ∗
such that Summ(i ,σ) = (ui , vi ).

Proof. (⇒)
We will prove this lemma by induction on the length of the run.
Base case |σ| = 0: For the base case we consider the zero length run. Summ(i ,ε) is defined as
Eff((ε,ε),ε) = (ε,ε). Hence holds trivially.
Length greater than 0, case σ.τ :
Let c σ−−→c ′′ τ−→c ′ with c = (p, w1, . . . , wn), c ′′ = (p ′′, w ′′

1 , · · · , w ′′
n) and c ′ = (p ′, w ′

1, . . . , w ′
n). By

induction, we have Summ(i ,σ) = (ui , v ′′
i ), with wi = ui u′

i and w ′′
i = v ′′

i u′
i . Firstly note that, for

all j 6= i we have w ′′
j = w ′

j and Summ( j ,στ) = (u j , v ′′
j ). Hence it is enough to only relate w ′

i and

w ′′
i .

• Case where Op(τ = Inti ) is easy since, by definition Summ(i ,στ) = (ui , v ′′
i ) and we have by

nature of τ, w ′′
i = w ′

i .
• Case where Op(τ) = Pushi (a), by definition of Summ, we have that Summ(i ,σ.τ) = (ui , a.v ′′

i )
and by nature of τ, we have w ′

i = a.w ′′
i .

• Case where Op(τ) = Popi (a), firstly by nature of τ, we have a.w ′
i = w ′′

i . We have two cases
to consider
1) Where v ′′

i = ε in this case, note that w ′′
i = u′

i = au′′
i and w ′

i = u′′
i . From this, we also have

wi = ui .u′
i = ui .a.u′′

i . Also by definition we get Summ(i ,σ.τ) = (ui a,ε).
2) Where vi 6= ε, in this case we have aw ′

i = w ′′
i = v ′′

i u′
i , hence v ′′

i is of the form v ′′
i = avi and

w ′
i = vi ui . Further by definition, we have that Summ(i ,στ) = (ui , vi ).

(⇐)



8.2. ACCELERATION 127

For all i ∈ [1..n], let Summ(i ,στ) = (ui , vi ) and let Summ(i ,σ) = (ui , v ′′
i ), we will assume by

induction, the existence of a run c σ−−→∗
c ′′ such that c = (p, w1, . . . , wn), c ′′ = (p ′′, w ′′

1 , · · · , w ′′
n)

such that for all i ∈ [1..n], we have wi = ui u′
i and w ′′

i = v ′′
i u′

i . Further by definition, we have
for all j 6= i , Summ( j ,στ) = (u j , v ′′

j ). Now consider στ. By assumption, we are given στ that is
state wise compatible.

• Case where τ= (p ′′,Inti , p ′) ∈∆i is straight forward. From the definition of transition rela-
tion, we have c−→∗c ′′ → (p ′, w ′′

1 , · · · , w ′′
n). We have by definition, Summ(i ,στ) = (ui , v ′′

i ). Hence
the result follows.

• Case where τ= (p ′′,Pushi (a), p ′) then Summ(i ,στ) = (ui , av ′′
i ), hence vi = av ′′

i . Clearly from

definition of transition relation c ′′ τ−→c ′ where c ′ = (p ′, w ′′
1 , · · · , aw ′′

i , w ′′
i+1, · · · , w ′′

n). Note that
by induction, we have w ′′

i = v ′′
i u′

i , from this it is easy to see that w ′
i = aw ′′

i = av ′′
i u′

i .
• Case where τ = (p ′′,Popi (a), p ′) and vi = ε then Summ(i ,στ) = (ui .a,ε). We have by induc-

tion hypothesis, wi = ui au′
i and w ′′

i = au′
i . Since top of stack is a, we have c ′′i

τ−→c ′i where
c ′ = (p ′, w ′′

1 , · · · ,u′
i , · · · , w ′′

n).
• Case where Op(τ) = Popi (a) and vi 6= ε then , clearly vi = av ′′

i and hence w ′′
i = avi u′

i . Now
since we have an a on top of stack, we have c ′′−→c ′, with wi = vi u′

i .

Now, we will characterize Summ(i ,σ j ) with j ≥ 1, i.e., the effect of iterating the sequence
σ j -times, in terms of Summ(i ,σ) for all i ∈ [1..n]. Observe that if Summ(i ,σ) =⊥⊥⊥, then Summ(i ,
σ j ) =⊥⊥⊥ for all j ≥ 1. Hence, let us assume that Summ(i ,σ) = (ui , vi ) for some words ui , vi ∈ Γ∗.
First, let us consider the case when the sequence σ can be iterated twice and compute its
effect on all the stacks. Now, using the definition of Summ it is not difficult to conclude that
Summ(i ,σσ) is defined iff either vi is a prefix of ui or ui is a prefix of vi . We can in fact say
more. If the former holds we let xi be the unique word such that ui = vi xi and yi = ε. In
case of the latter we let yi be the unique word such that vi = ui yi and xi = ε. Then, we
have Summ(i ,σσ) = (u′

i , v ′
i ) for all i ∈ [1..n] where u′

i = ui xi and v ′
i = vi yi . We define a partial

function Iter : ([1..n] ×∆∗) * (Γ∗ × Γ∗) such that Iter(i ,σ) is the pair (xi , yi ) as defined
above when Summ(i ,σσ) is defined, and Iter(i ,σ) =⊥⊥⊥ otherwise. We can now generalize this
computation of Summ to any number of iterations of σ as shown below.

Lemma 54. Let i ∈ [1..n]. If Summ(i ,σσ) is well-defined then Summ(i ,σ j ) is well-defined for

all j ≥ 1. Furthermore, Summ(i ,σ j ) = (ui x j−1
i , vi y j−1

i ) with Summ(i ,σ) = (ui , vi ) and Iter(i ,
σ) = (xi , yi ).

Proof. Firstly we will assume that Summ(i ,θ) is well-defined. Given any summary sequence of
transitions,σ= τ1 · · ·τm , we define a set Nest(σ) ⊆ [1..m] as follows. For any j ∈ [1..m−1] and
for any a ∈ Γ, if τ j = (q1,Pushi (a), q2) and τ j+1 = (q3,Popi (a), q4) for some q1, q2, q3, q4 ∈ Q,
then j , j +1 ∈ Nest(σ). For any k, j ∈ [1..m], if k +1 ∈ Nest(σ) and j −1 ∈ Nest(σ) and τk =
(q1,Pushi (a), q2) and τ j = (q3,Popi (a), q4) for some q1, q2, q3, q4 ∈ Q, then k, j ∈ Nest(σ).
Clearly Nest(σ) captures all the intermediate positions of σ that are well matched. We define
for all i ∈ [1..m − 1], if i ∈ Nest(σ) or Op(τi ) = Int j for some j ∈ [1..n], then Unmatched(i ,
σ) = Unmatched(i +1,σ) , Unmatched(i ,σ) = τi .Unmatched(i +1,σ) otherwise and for i = m, if



128 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

i ∈ Nest(σ) then Unmatched(m,σ) = ε , Unmatched(i ,σ) = τi otherwise. Clearly Unmatched(1,
σ) gives us set of transitions in σ that are not well matched. Given a transition τ,we will use
Γ(τ) to return the stack alphabet of the operation.

The following lemma states that in any sequence of transition, Summ(i ,θ) is well defined
iff barring the transitions that are well-matched, all transitions that pop elements from stack
occur before ones that push into the stack. This is directly follows from the definition of Summ.

Lemma 55. Given a sequence of transitions θ that are state wise compatible, Summ(i ,θ) is
well defined iff Unmatched(1,θ ↓∆i ) ∈ (Q ×∪a∈ΓPopi (a)×Q)∗.(Q ×∪a∈ΓPushi (a)×Q)∗. Let
Unmatched(1,θ↓∆i ) =αi .βi where αi ∈ (Q ×∪a∈ΓPopi (a)×Q)∗ and βi ∈ (Q ×∪a∈ΓPushi (a)×
Q)∗. Infact we can easily show that Summ(i ,θ) = (Γ(αi ),Γ(βi )R )

Proof. (⇐) We will induct on the length of the transition sequence θ. If |θ| = 0 then there
is nothing to prove. For the induction case, we will assume that θ = σ.τ, let Unmatched(1,
σ↓∆i ) = αβ ∈ (Q ×∪a∈ΓPopi (a)×Q)∗.(Q ×∪a∈ΓPushi (a)×Q)∗. We will further assume that
α = τ j1τ j2 · · ·τ jn and β = τ′j1

τ′j2
· · ·τ′jm

. From the induction hypothesis, we have Summ(i ,σ) =
(ui , v1), where ui = Γ(α) and vi = Γ(β)R .

• case there Op(τ) = Pushi or Op(τ) = Inti is simple and straight forward.
• case where Op(τ) = Popi ,

– If β = ε, then clearly Unmatched(1,στ ↓∆i ) = ατ such that ατ ∈ (Q ×∪a∈ΓPopi (a)×Q)∗,
from this we know vi = ε. Now by definition, Summ(i ,στ) = Γ(α)Γ(τ).

– If β is not ε then clearly τ matches with τ′jm
(otherwise Unmatched(1,στ↓∆i ) will not be

in the required form), hence Unmatched(1,στ↓∆i ) = αβ′ where β′ = τi
j1
τi

j2
· · ·τi

jm−1
. Now

clearly vi = av ′
i , where v ′

i = Γ(β′), from this and definition of Summ, we have Summ(i ,στ) =
(ui , v ′

i )

(⇒)
Again we will show by induction on length of transition sequence θ. If |θ| = 0 then there

is nothing to prove. For the induction case, we will assume that θ =σ.τ, Let Summ(i ,στ) = (ui ,
vi ) and Summ(i ,σ) = (u′

i , v ′
i ).

• case where Op(τ) = Pushi or Op(τ) = Inti is simple and straight forward.
• case where Op(τ) = Popi and v ′

i = ε, then we have vi = ε and ui = u′
iΓ(τ). By induction, we

have Unmatched(1,σ↓∆i ) =α such thatα ∈ (Q×∪a∈ΓPopi (a)×Q)∗ and Γ(α) = u′
i . Now from

this and the definition of Unmatched, the result follows.
• case where Op(τ) = Popi and v ′

i 6= ε, then we have u′
i = ui and Γ(τ)vi = v ′

i . By induction,
we have Unmatched(1,σ↓∆i ) = αβ such that Γ(α) = ui and Γ(β)R = v ′

i . From this it is easy
to infer that β = β′τ′, where τ′ ∈ Q ×Push(Γ(τ))×Q. From this we know that τ′,τ are well
matched. Now from this and the definition of Unmatched, the result follows.

It is also easy to see that Summ(i ,θ.θ) is well defined iff Unmatched(1,θ.θ ↓∆i ) ∈ (Q ×
∪a∈ΓPopi (a) × Q)∗.(Q × ∪a∈ΓPushi (a) × Q)∗. But Unmatched(1,θ.θ ↓∆i ) = Unmatched(1,
αi .βi .αi .βi ). Hence we have that either Γ(αi ) is prefix of Γ(βi )R or Γ(βi )R is a prefix of Γ(αi ).



8.2. ACCELERATION 129

If Γ(αi ) is prefix of Γ(βi ) then αi .βi .αi .βi = αi .β1
i .β2

i .αi .βi where Γ(β2
i )R = Γ(αi ). clearly

β2
i .αi is well matched hence we have Unmatched(1,αi .βi .αi .βi ) =αi .β1

i .βi and Summ(i ,θ.θ) =
(ui , vi .xi ), where xi = Γ(β1

i )R . In general, it is easy to see that (αi .βi ) j = (αi .β1
i .β2

i ) j−1.αi .βi

with Unmatched(1, (αi .βi ) j ) = (αi .(β1
i ) j−1.βi ) and Summ(i ,θ j ) = (ui , vi .x j−1

i )
Similarly, If Γ(βi ) is prefix of Γ(αi ) thenαi .βi .αi .βi =αi .βi .α1

i .α2
i .βi where Γ(βi )R = Γ(α1

i )
and βi .α1

i is well matched. Hence Unmatched(1,αi .βi .αi .βi ) = αi .α2
i .βi , in general we have

(αi .βi ) j =αi .βi .(α1
i .α2

i .βi ) j−1. Hence the result follows.

Acceleration of regular/rational sets of configurations by loops

In the following, we first show that the class of regular (resp. rational) sets of configurations
is not closed under Postθ∗ . Then, we show that the image by Postθ∗ of any regular set of
configurations is a rational one.

Theorem 23. There is is an MPDS M = (n,Q,Γ,∆), a regular (resp. rational) set of its configu-
rations C and a transition sequence θ ∈∆∗ such that the set of configurations Postθ∗(C ) is not
regular (resp. rational).

Proof. Let us first show that the set of regular languages is not closed wrt. acceleration of
simple sequence of transitions. To do that, consider an MPDS M = (2, {q, q ′}, {a,b},∆) where
∆ only contains the following two transitions (q,Push1(a), q ′) and (q ′,Push2(b), q). Let θ = (q,
Push1(a), q ′)(q ′,Push2(b), q). It is easy to see that Postθ∗({(q,ε,ε)}) = {(q, ai ,bi ) | i ∈N} which
is not regular.

Now let us show the non-closure of rational languages. Consider an MPDS M = (2, {q, q ′},
{a,b},∆) where ∆ only contains the following two rules (q,Push1(b), q ′) and (q ′,Pop2(a), q).
Let θ = (q,Push1(b), q ′)(q ′,Pop2(a), q) and C = {(q, ai , ai ) | i ∈N}. Observe that C is a rational
set of configurations. It is easy to see that Postθ∗(C ) = {(q,b j ai , ai− j ) |0 ≤ j ≤ i } which is not
rational.

However, whenever C is a regular set of configurations the set Postθ∗(C ) has a simple
description. In what follows we fix a MPDS M = (n,Q,Γ,∆).

Theorem 24. For every regular set of configurations C and transition sequence θ ∈∆∗, the set
Postθ∗(C ) is rational and effectively constructible.

Proof. Let θ be a sequence of transitions of the form (q0,op0, q ′
0)(q1,op1, q ′

1) · · · (qm ,opm ,
q ′

m). Since Postθ∗(C1 ∪C2) = Postθ∗(C1)∪Postθ∗(C2), we can assume w.l.o.g that C is of the
form {q}×L1×·· ·×Ln where each L j is an 1-dim rational language over Γ accepted by a finite
state automaton A j for all j ∈ [1..n]. The proof proceeds by cases.

Case 1: Let us assume q ′
i 6= qi+1 for some i ∈ [1..m −1] or q0 6= q . In this case the sequence of

transitions cannot be executed and hence Postθ∗(C ) =C .

Case 2: Let us assume q0 6= q ′
m , q0 = q and q ′

i = qi+1 for all i ∈ [1..m − 1]. In this case,
the sequence of transitions can not be iterated more than once and so we have Postθ∗(C ) =



130 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

Postθ(C )∪C . We now examine the set Postθ(C ). First, let us assume that Summ(i ,θ) = ⊥⊥⊥ for
some i ∈ [1..n]. Then Postθ(C ) =; and hence Postθ∗(C ) =C .

Let us assume now that Summ(i ,θ) = (ui , vi ) is well-defined for all i ∈ [1..n]. We can apply
Lemma 53, to show that Postθ(C ) = {q ′

m}×L′
1×·· ·×L′

n where for every i ∈ [1..n], L′
i = {w ′

i | ∃wi ∈
Γ∗. w ′

i = vi .wi ∧ui wi ∈ Li }. It is easy to see that L′
i is an 1-dim rational language and can be

accepted by an automaton A′
i whose size is polynomial in the size of Ai and the length of θ.

Case 3: Let us assume q0 = q ′
m , q0 = q and q ′

i = qi for all i ∈ [1..m]. In this case, the se-
quence of transitions forms a loop in the control flow graph of M and hence the sequence
may possibly be iterated. Observe that if the function Summ(i ,θ) =⊥⊥⊥ for some i ∈ [1..n], then
Postθ∗(C ) =C . Hence, let us assume that Summ(i ,θ) = (ui , vi ) for all i ∈ [1..n] so that it is well-
defined for each i .

Lemma 54 suggests that we should examine when Summ(i ,θθ) is defined for all i . Indeed,
if Summ(i ,θθ) is undefined for some i ∈ [1..n], then Postθ∗(C ) = Postθ(C )∪C (which can be
computed as shown in the previous case). So, let us further assume that Summ(i ,θθ) is well-
defined for all i ∈ [1..n]. Hence, the function Iter(i ,σ) is also well-defined. Let us assume
that Iter(i ,σ) = (xi , yi )

Now, we can combine Lemma 54 with Lemma 53 to give a characterization of when a
sequence θ is iterable and its effect.

Lemma 56. Let j ≥ 1 and c = (p, w1, . . . , wn) and c ′ = (p ′, w ′
1, . . . , w ′

n) be two configurations of

M. c θ j−−→c ′ iff for every i ∈ [1..n], we have wi = ui x j−1
i w ′′

i and w ′
i = vi y j−1

i w ′′
i for some w ′′

i ∈ Γ∗
with ui , vi , xi and yi s are defined as above.

Proof. The proof follows directly from lemma-54 and lemma-53. We will prove this inducting
on j

base case j = 1: Base case directly follows from lemma-53 which states, c θ−→c ′ with wi =
ui w ′′

i and w ′
i = vi w ′′

i iff Summ(i ,θ) = (ui , vi ).

case j ≥ 1 : By lemma-54 if Summ(i ,θθ) is defined then Summ(i ,θ j ) = (ui x j−1
i , vi y j−1

i ) is

defined for all j > 1, where (xi , yi ) = Iter(i ,θ). Now applying lemma-53, we get that c θ j−−→c ′

iff for every i ∈ [1..n], we have wi = ui x j−1
i w ′′

i and w ′
i = vi y j−1

i w ′′
i such that Summ(i ,θ j ) =

(ui x j−1
i , vi y j−1

i ).

With this lemma in place, let L be the (2n+1)-dim language defined as the set containing
exactly the words of the form

(q,u1x j−1
1 w1, v1 y j−1

1 w1,u2x j−1
2 w2, v2 y j−1

2 w2, . . . ,un x j−1
n wn , vn y j−1

n wn)

with j ≥ 1 and wi ∈ Γ∗ and where ui , vi , xi and yi s are defined as above. Observe that each
element of L relates a pair of configurations such that from the first we can execute the se-
quence θ a finite number of times to reach the second. The starting configuration is given
by the first and all the even numbered positions, while the ending configuration is given by
all the odd numbered positions (including the first). As a matter of fact elements of L relates
exactly all such pairs in this manner. This language L is rational and we can easily compute



8.2. ACCELERATION 131

an (2n + 1)-tape automaton A whose size is polynomial in the size of θ and polynomial in
the size of M . To compute an (n + 1)-tape automaton A′ accepting Postθ+(C ), we proceed
as follows: First, we define the regular language L′ = {q}×L1 ×Γ∗× ·· · ×Ln ×Γ∗. Then, we
compute an (2n + 1)-tape automaton A′′ accepting precisely the language resulting of the
intersection of the regular language L′ and L. This allows us to restrict the starting config-
urations to be precisely those from C . The size A′′ is exponential in the number of stacks
and polynomial in the size of θ, and the finite state automata A1, . . . , An . Finally, we need to
project away the tapes concerning the starting stack configurations. We let then A′ =Πι(A′′)
with ι= {2i +1 | i ∈ [0..n]}. We note that this step does not result in any blow up and thus the
size of A′ is exponential in the number of stacks and polynomial in the size of θ and A1, . . . ,
An .

Since Postθ∗(C ) =C ∪Postθ+(C ) and the class of rational / regular languages is closed un-
der union, this completes the proof of Theorem 24.

8.2.4 Constrained Simple Regular Expressions

We now introduce the class of (1 dimensional) Constrained Simple Regular Expressions
(CSRE) and prove some closure properties. CSRE definable languages form an expressive
class equivalent to the bounded semi-linear languages defined in [49] and the class of lan-
guages accepted by 1-CQDD introduced in [43]. To deal with configuration sets of MPDS we
need n dimensional CSREs and so we lift these results to that setting. We then show that the
CSRE definable sets of configurations form a stable collection under acceleration by loops. As
in previous section, we will assume that the loops do not have zero tests. However, this class
is not stable w.r.t. bounded context runs. We begin by recalling some basics about Presburger
arithmetic.

Presburger arithmetic

Presburger arithmetic is the first-order theory of natural numbers with addition, subtraction
and order. We recall briefly its definition. Let V be a set of variables. We use x, y, . . . to denote
variables in V . The set of terms in Presburger arithmetic is defined as follows: t ::= 0 |1 |x | t −
t | t + t . The set of formulae of the Presburger arithmetic is defined to be ϕ ::= t ≤ t |¬ϕ |ϕ∨
ϕ |∃x.ϕ.

We use the standard abbreviations: ϕ1∧ϕ2 =¬(ϕ1∨ϕ2),ϕ1 ⇒ϕ2 =¬ϕ1∧ϕ2, and ∀x.ϕ=
¬∃x.¬ϕ. The notions of free and bound variables, and quantifier-free formula are as usual.
An existential Presburger formula is one of the form ∃x1∃x2 . . .∃xn .ϕ where ϕ is a quantifier-
free formula. We shall often write positive boolean combinations of existential Presburger
formulas in place of an existential Presburger formula. Clearly, by an appropriate renaming
of the quantified variables, any such formula can be converted into an equivalent existential
Presburger formula. We write FreeVar(ϕ) ⊆ V to denote the set of free variables of ϕ. Given a
function µ from FreeVar(ϕ) toN, the meaning of µ satisfiesϕ is as usual and we write µ |=ϕ to
denote this. We write ϕ(x1, x2, . . . , xk ) to denote a Presburger formula ϕ whose free variables
are (contained in) x1, . . . , xk . Such a formula naturally defines a subset of Nk given by {(i1,



132 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

i2, . . . , ik ) | µ |= ϕ(x1, x2, . . . , xk ) where µ(x j ) = i j ,1 ≤ j ≤ k}. We say that a subset S of Nk is
definable in Presburger arithmetic if there is a formula ϕ that defines it.

Constrained Simple Regular Expression (CSRE)

A Constrained Simple Regular Expression (CSRE) e over an alphabet Σ is defined as a tuple
of the form e = (w1, . . . , wm ,ϕ(x1, x2, . . . , xm)) where w1, . . . , wm is a non-empty sequence of
words over Σ, and ϕ is an existential Presburger formula. The language defined by the CSRE
e, denoted by L(e), is the set of words of the form w i1

1 w i2
2 · · ·w im

m such that ϕ holds for the
function µ defined by µ(x j ) = i j for all j ∈ [1..m]. The size of e is defined by |e| = |w1 · · ·wm |+
|ϕ|. CSREs define the same class of languages as CQDDs [43] (see [49]), however they have a
much simpler presentation avoiding automata altogether and as we shall see quite amenable
to a number of operations. We will now present a lemma that will be useful for proving some
properties of CSRE.

Lemma 57. Given two sequences of words v1, . . . , v` and u1, . . . ,uk over Γ, it is possible to con-
struct, in polynomial time in |v1v2 . . . v`u1u2 . . .uk |, an existential Presburger formulaϕ(x1, x2,

. . . , x`, y1, y2, . . . , yk ) such that µ |=ϕ iff vµ(x1)
1 · · ·vµ(x`)

`
= uµ(y1)

1 · · ·uµ(yk )
k .

Proof. To prove this lemma, we we will reduce the problem to computing an existential Pres-
burger formula recognizing the Parikh image of a pushdown automaton P = (Q,Σ,Γ,∆, q0,
F ). Then, we use the following Proposition 25 to show that such an existential Presburger
formula can be constructed in polynomial time.

Proposition 25. [142] Given a pushdown automaton P = (Q,Σ,Γ,∆, q0,F ), it is possible to
construct, in polynomial time in the size of P , an existential Presburger formula φ such that
FreeVar(φ) =Σ and Parikh(L(P )) = {µ | µ |=φ}.

The pushdown automaton P is defined as follows. The set of states Q is defined as the set
{q0, q1, . . . , q`, q`+1, q`+2 . . . , q`+k } with F = {q`+k }. The input alphabetΣ is defined by the set of
variables x1, x2, . . . , x` and y1, y2, . . . , yk . The pushdown works in phases: In the first phase, the
pushdown automaton is at the state q0 and can push the reverse of the word v1 (denoted vR

1 )
into its stack while outputting x1 (i.e., (q0,Push(vR

1 ), x1, q0) ∈∆). In nondeterministic manner
the pushdown can decide to move to the simulation of the second phase by moving its state
from q0 to q1 (i.e., (q0,Int,ε, , q1) ∈∆).

In a phase i , with 1 < i ≤ `, the pushdown automaton P is at the state qi−1 and and can
push the reverse of the word vi (denoted vR

i ) into its stack while outputting xi (i.e., (qi−1,
Push(vR

i ), xi , qi−1) ∈ ∆). In nondeterministic manner the pushdown can decide to move to
the simulation of the second phase by moving its state from qi−1 to qi (i.e., (qi−1,Int,ε, qi ) ∈
∆).

In the phase `+1, the pushdown automaton is at the state q` and can start popping the
reverse of the word uk (denoted uR

k ) from its stack while outputting yk (i.e., (q`,Pop(uR
k ), xi ,

q`) ∈∆). In nondeterministic manner the pushdown can decide to move to the simulation of
the next phase `+2 by moving its state from q` to q`+1 (i.e., (q`,Int,ε, q`+1) ∈∆).



8.2. ACCELERATION 133

In a phase i , with `+1 < i ≤ `+k, the pushdown automaton P is at the state qi−1 and
and can pop the reverse of the word uk+`+1−i (denoted uR

k+`−i ) from its stack while out-
putting yk+`+1−i (i.e., (qi−1,Pop(uR

k+`+1−i ), yk+`+1−i , qi−1) ∈∆). In nondeterministic manner
the pushdown can decide to move to the simulation of the next phase by moving its state
from qi−1 to qi (i.e., (qi−1,Int,ε, qi ) ∈∆).

Finally, the set ∆ is defined as the smallest set satisfying the above condition.
Let ϕ be the formula recognizing the Parikh image of the pushdown automaton P con-

structed as stated in Proposition 25. Then it is easy to see that µ |= ϕ iff vµ(x1)
1 · · ·vµ(x`)

`
=

uµ(y1)
1 · · ·uµ(yk )

k .

Next, we present some closure and decidability results for the class of CSRE definable lan-
guages. These results can be also deduced from [49] since CSREs define bounded semilinear
languages.

Lemma 58. The class of languages defined by CSREs is closed under intersection, union and
concatenation. The emptiness, membership and inclusion problems for CSREs are decidable.

Proof. Let us assume two CSRE e1 = (v1, v2, . . . , v`,ϕ1(x1, x2, . . . , x`)) and e2 = (u1,u2, . . . ,uk ,
ϕ2(y1, y2, . . . , yk )). We assume w.l.o.g. that xi 6= y j for all i and j .

• [Concatenation] Let e1 · e2 be the CSRE expression defined by the tuple (v1, v2, . . . , v`,u1,
. . . ,uk ,ϕ(x1, . . . , x`, y1, . . . , yk )) where ϕ = ϕ1(x1, . . . , x`)∧ϕ2(y1, . . . , yk ). It is easy to see that
L(e1 ·e2) = L(e1) ·L(e2) and that the size of e1 ·e2 is linear in |e1|+ |e2|.

• [Union] Let e1 + e2 be the CSRE expression defined by the tuple (v1, v2, . . . , v`,u1, . . . ,
uk ,ϕ(x1, . . . , x`, y1, . . . , yk )) such that ϕ = (ϕ1(x1, . . . , x`) ∧∧1≤ j≤k y j = 0) ∨ (ϕ2(y1, . . . , yk ) ∧
∧1≤i≤`xi = 0) It is easy to see that L(e1 + e2) = L(e1)∪L(e2) and that the size of e1 + e2 is
linear in |e1|+ |e2|.

• [Intersection] We show there is a CSRE accepting L(e1)∩L(e2). Let e1 = (v1, . . . , v`,ϕ1(x1,
. . . , xk )) and e2 = (u1, . . . ,uk ,ϕ2(y1, . . . , yk )) with xi 6= y j for i , j . Let ϕ3(x1, . . . , x`, y1, . . . , yk )
be the existential Presburger formula obtained by the application of Lemma 57 to the two
sequences of words v1, . . . , v` and u1, . . . ,uk . Then the CSRE expression e1 ∩ e2 defined to
be (v1, . . . , v`,ϕ(x1, . . . , x`)) withϕ=∃y1.∃y2. . . . .∃yn .ϕ3(x1, . . . , x`, y1, . . . , yk )∧ϕ1(x1, . . . , x`)∧
ϕ2(y1, . . . , yk ) defines the intersection of the languages defined by e1 and e2 and that the size
of e1 ∩e2 is linear in |e1|+ |e2|.

The emptiness and membership can be easily shown to be decidable and NP-complete. A
lower bound for these two problem can be obtained by a straightforward reduction from
the satisfiability problem of the class of existential Presburger formula.

• [Inclusion] Let us now show that the inclusion problem is also decidable. The lemma is
an immediate corollary of the following three results: (1) for any CSRE expression e, it is
possible to effectively construct a bounded Parikh automaton accepting L(e) (see [49] for
the bounded Parikh automaton definition), (2) for any bounded Parikh automaton, it is
possible to construct a bounded deterministic automaton recognizing the same language



134 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

(see Theorem 11, Corollary 12 and Section 5.3 in [49] for the bounded Parikh automaton
definition), and (3) the class of deterministic Parikh automata is closed under intersection
and complement and its emptiness problem is decidable (see [48]).

From Lemma 56 it is clear that in order to compute the effect of the iteration of a sequence
θ on the content of stack i , one has to left-quotient the content of stack i by the sequence

ui x j−1
i and then add the sequence vi y j−1

i (on the left). With this in mind we now examine
left-quotients of languages defined by CSREs w.r.t. iterations of a given word. First we state a
technical lemma.

Lemma 59. Let e be a CSRE over an alphabet Σ and w ∈Σ∗ be a word. Then, we can construct,
in polynomial time in |w | + |e|, a CSRE e ′ = (w,u1,u2, . . . ,uk ,ϕ(y, y1, y2, . . . , yk )) such that for
every i ∈N, L(ei ) = {w ′ |w i w ′ ∈ L(e)} where ei = (ε,u1,u2, . . . ,uk , (y = i ∧ϕ(y, y1, y2, . . . , yk ))).

Proof. Let us assume that the CSRE e is of the form (w1, w2, . . . , wn ,φ(x1, x2, . . . , xn)). Prefixes
of the form w j may end in the middle of an occurance of some wi and so, in order to compute
left-quotients, it is useful to expand this CSRE into union of a set of more elaborate ones,
taking into account the position of such splits. For every i ∈ [1..n] and u, v ∈ Σ∗ such that
wi = uv , we define the CSRE sp(i ,u, v) as follows:

(w1, . . . , wi ,u, v, wi , wi+1, . . . , wn ,φ∧ψ(i ,u,v)(x1, . . . , x ′
i , xu , xv , x ′′

i , xi+1, . . . , xn))

where
ψi ,u,v = (xi = x ′

i +x ′′
i +xu +xv )∧ ((xu = xv = 0)∨ (xu = xv = 1))

We note that the size of ψi ,u,v is constant. It is easy to see that L(e) = ⋃
i∈[1..n]

⋃
wi=uv L(sp(i ,

u, v)).
Next, we use Lemma 57 to obtain a Presburger formula ϕ′

(i ,u,v)(y, x1, . . . , xi , xu) such that

µ |= ϕ(i ,u,v)(y, x1, . . . , xi , xu) iff wµ(x1)
1 wµ(x2)

2 . . . wµ(xi−1)
i−1 wµ(xi )

i uµ(xu ) = wµ(y). We modify the for-
mula to also insist that xu = 1, and refer to the resulting formula as ϕ(i ,u,v). The size of ϕ(i ,u,v)

is polynomial in |w1 . . . wi u| + |w |. Now, we combine the CSRE sp(i ,u, v) with the formula
ϕ(i ,u,v) as follows: Let sp ′(i ,u, v) be the following CSRE defined

(w, v, wi , wi+1, . . . , wn ,∃x1∃x2 . . .∃xi∃xu . φ∧ψ(i ,u,v) ∧ϕ(i ,u,v))

The free variables of the formula in sp ′(i ,u, v), in order, are y, xv , x ′′
i , xi+1, . . . , xn (n − i +3 in

all).
Notice that this CSRE sp ′(i ,u, v) defines the language consisting of words of the form

wµ(y)v w
µ(x ′′

i )
i wµ(xi+1)

i+1 . . . wµ(xn )
n such that there are µ(x1),µ(x2) . . .µ(xi ),µ(xu) ∈N such that

1) wµ(y) = wµ(x1)
1 wµ(x2)

2 . . . wµ(xi )
i u and

2) wµ(x1)
1 wµ(x2)

2 . . . wµ(xi )
i u.v.w

µ(x ′′
i )

i wµ(xi+1)
i+1 . . . wµ(xn )

n ∈ L(sp(i ,u, v)). Further, the sum of the
length of the words in sp ′(i ,u, v) is linear in the sum of the lengths of the words in e plus the
|w |, the number of variables increases at most by a constant, and the size of the formula is |φ|
plus the size of |ϕi ,u,v |+ |ψi ,u,v | (it increases additively by a polynomial in |w1...wi u|+ |w |.)



8.2. ACCELERATION 135

Next we show how to combine the various CSRE’s sp ′(i ,u, v), 1 ≤ i ≤ n, uv = wi into a
single CSRE with the desired property. We describe this for the case of two such CSREs and
the generalization to a collection is similar.

Given sp ′
(i ,u,v) and sp ′

(i ′,u′,v ;) we first relabel all the variables in the Presburger formulas
of the two CSREs to be disjoint leaving only the variable y as it is. So, let their respective free
variables be y, p1, p2, . . . pn−i+2 and y, q1, q2, . . . , qn−i ′+2. The resulting CSRE is then given by

(w, v, wi , wi+1, . . . , wn , v ′, wi ′ , . . . , wn ,χ(y, p1, p2, . . . , pn−i+2, q1, q2, . . . , qn−i ′+2))

where χ is

(φ∧ψi ,u,v ∧ϕ(i ,u,v) ∧ (
n−i ′+2∧

j=1
q j = 0))∨ (φ∧ψi ′,u′,v ′ ∧ϕ(i ′,u′,v ′) ∧ (

n−i+2∧
j=1

p j = 0))

=φ∧ ((ψi ,u,v ∧ϕ(i ,u,v) ∧ (
n−i ′+2∧

j=1
q j = 0))∨ (ψi ′,u′,v ′ ∧ϕ(i ′,u′,v ′) ∧ (

n−i+2∧
j=1

p j = 0))

This describes the language L(sp ′
(i ,u,v))∪L(sp ′

(i ′,u′,v ′)).
We can easily generalize this to combine all the sp ′

(i ,u,v)’s using a disjoint set of variables
(except y) for each of them in the similar manner. Let the sum of the length of the words w1,
. . . , wn in e be K . The resulting expression:

1. Has a variable y whose value may be set to the number of iterations of w by which we
desire to left quotient.

2. Whose sum of length of the words is polynomial in K +|w |
3. Whose number of variables increases by a polynomial in K +|w |
4. Whose formula has increased in length w.r.t. to φ by an addition whose size is polynomial

in K +|w |.
This completes the proof of the lemma.

The key point about the above lemma is that the left-quotient of L(e) w.r.t w i , for some
i ∈N, can be precisely identified as L(ei ). Thus, the CSRE (ε,u1,u2, . . . ,uk ,ϕ(y, y1, y2, . . . , yk ))
defines the left-quotient of L(e) w.r.t {w i | i ∈N}, giving us the following corollary.

Corollary 3. Let e be a CSRE over an alphabetΣ and w ∈Σ∗ be a word. Then, we can construct,
in polynomial time in |w |+ |e|, a CSRE e ′ such that L(e ′) = {w ′ |∃i ∈N. w i w ′ ∈ L(e)}.

Multi-Dimensional Constrained Simple Regular Expression

Let n ≥ 1. An n-dim CSRE e over an alphabet Σ is a of tuple of the form ((u1, . . . ,uk1 ), (uk1+1,
. . . ,uk2 ), . . . , (ukn−1+1, . . . ,ukn ),ϕ(x1, . . . , xkn )) where: (1) 1 ≤ k1 < k2 < ·· · < kn and (2) for every
i ∈ [1..kn], ui is a word overΣ. An n-dim CSRE e accepts the n-dim language, denoted by L(e),

consisting of the n-dim words of the form (ui1
1 · · ·uik1

k1
, · · · ,u

ikn−1+1

kn−1+1 · · ·u
ikn

kn
) such thatϕ holds for

the function µ defined by µ(x j ) = i j for all j ∈ [1..kn]. In order to simply the notations, we



136 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

sometimes write e as follows (u1,u2, . . . ,un,ϕ(x1,x2, . . . ,xn)) where ui = (uki−1+1, . . . ,uki ) and
xi = (xki−1+1, . . . , xki ) for all i ∈ [1..n]. In the following, we show that the class of n-languages
accepted by n-dim CSREs enjoys the same closure properties as the class of CSREs. Further-
more we have the same decidability results.

Lemma 60. Let n ≥ 1. The class of n-languages defined by n-CSREs is closed under inter-
section, union and concatenation. The emptiness problem , membership problem as well as
inclusion problem are decidable for n-dim CSREs.

Proof. The proofs are similar to the ones of Lemma 58. Consider two n-CSREs e1 = ((u1,
. . . ,u`1 ), . . . , (u`n−1+1, . . . ,u`n ),ϕ1(x1, . . . , x`n )) and e2 = ((v1, . . . , vk1 ), . . . , (vkn−1+1, . . . , vkn ),ϕ2(y1,
. . . , ykn )) with xi 6= y j for i , j . We will show that there is an CSRE accepting the language
L(e1) ·L(e2). Let e1 ·e2 be the CSRE expression defined by the tuple ((u1, . . . ,u`1 , v1, . . . , vk1 ),
. . . , (u`n−1+1, . . . ,u`n ,ukn−1+1, . . . ,ukn ),ϕ(x1, . . . , xk1 ,
y1, . . . y`1 , xk1+1, . . . , xk2 , y`1+1, . . . , y`2 , . . . , xkn , y`n−1+1, . . . , y`n )) whereϕ=ϕ1(x1, . . . , xkn )∧ϕ2(y1,
. . . , y`n ). It is easy to see that L(e1 ·e2) = L(e1) ·L(e2).

We will show that it is possible to reduce emptiness, membership and inclusion problems
to their corresponding ones for CSRE. The idea is to encode the n-dim CSRE as a CSRE using
a special symbol ] (not appearing in the alphabet) to separate all the different tapes. To that
aim, we define the function Encode that maps any n-dim CSRE to an CSRE. Let e = ((u1, . . . ,
uk1 ), . . . , (ukn−1+1, . . . ,ukn ),ϕ(x1, . . . , xkn )) be an n-dim CSRE over the alphabet Σ. We assume
that ] ∉Σ. Then we define Encode(e) to be the CSRE (u1, . . . ,uk1 ,], . . . ,],ukn−1+1, . . . ,ukn ,ϕ′(x1,
. . . , xk1 , y1, xk1+1, . . . , xk2 , y2, . . . ,
yn−1, xkn−1+1, . . . , xkn )) where ϕ′ =ϕ(x1, . . . , xkn )∧∧1≤i≤n−1 yi = 1. It is easy to see that, for any
n-dim word (w1, . . . , wn) and any n-dim CSREs e we have (w1, . . . , wn) ∈ L(e1) iff w1] · · ·]wn ∈
L(Encode(e1)). Hence, L(e1) =; iff L(Encode(e1)) =; and L(e1) ⊆ L(e2) iff L(Encode(e1)) ⊆
L(Encode(e2)). Thus, the emptiness, membership and containment problems are decidable.

Next we extend Lemma 59 to the case of n-dim CSREs — n-dim CSREs are closed un-
der left quotienting by simultaneous iterations of a tuple of words wi ,1 ≤ i ≤ n, one for each
component. Even more, this can be achieved by constructing an n-CSRE in which the num-
ber iterations may be set parametrically. The construction is also in polynomial time. Firstly
recall that we use u[i ← w] to denote the n-dim word (u1,u2, . . . ,ui−1, w,ui+1, . . . ,un).

Lemma 61. Let n ≥ 1. Let e be a n-dim CSRE over an alphabet Σ and w = (w1, . . . , wn),wi ∈Σ∗.
Then, we can construct, in polynomial time in |e| +∑

i |wi |, an n-dim CSRE e[w] = (u1, . . . ,
un ,ϕ(x1, . . . ,xn)) such that ui [1] = wi , for 1 ≤ i ≤ n and for every j ∈ N, L(e[w, j ]) = {v |v[i ←
w j

i v[i ]] ∈ L(e)}, where e[w, j ] = (u1[1 ← ε], . . . ,un[1 ← ε], (
∧

1≤i≤n xi [1] = j ∧ϕ(x1,x2, . . . ,xn))).

Proof. First suppose, we only quotient the 1st component by iterations of a w1. We can do
this by simply following the proof of Lemma 59 almost identically. In the resulting n-CSRE,
the increase in size is according to the items 2, 3 and 4 listed at the end of that proof. The
increase is additive, increasing by a polynomial in the sum of the lengths of the words in
u1 and |w1|, and provides a variable y1 (as indicated in item 1) to control the number of
iterations of w1 by which the first component is to be quotiented.



8.2. ACCELERATION 137

Repeating this now for the second component, again following the same line as in the
proof of Lemma 59 will result in an additive increase in size by a polynomial in the sum of
the lengths of the words in u2 and |w2| and provide a variable y2 to control the iterations
of w2 and so on. After n steps on is left with a CSRE which has only grown polynomially in
|u1|+ . . . |un |+ |w1|+ . . .+|wn |.

We can then existentially quantify the y2 . . . yn , add a conjunct of the form y1 = y2 ∧ y1 =
y3 . . . y1 = yn and drop the empty words corresponding to the positions referred to by y2, . . . ,
yn to arrive at the desired formula.

We now have all the technical ingredients necessary to study the stability of sets of con-
figurations defined by n-dim CSREs. We say that a set C of configurations of the MPDS M is
CSRE representable if there is a function f that maps any state q ∈Q of M to an n-dim CSRE
eq such that (q, w1, . . . , wn) ∈C iff (w1, . . . , wn) ∈ L( f (q)).

Acceleration of CSRE representable set of configurations

Let M = (n,Q,Γ,∆) be an MPDS. We now examine the sets Post∆∗
i
(C ) and Postθ∗(C ) where ∆i

is a set of transitions on the i -th stack of M and θ ∈∆∗ where C is a CSRE representable set of
configurations.

Theorem 26. For every transition sequence θ ∈∆∗, the class of CSRE representable sets of con-
figurations is effectively closed under Postθ∗ . Further post set can be computed in time polyno-
mial in the size of θ and |M |.

Proof. Let θ be a sequence of transitions of the form (q0,op0, q ′
0)(q1,op1, q ′

1) · · · (qm ,opm ,
q ′

m) and C be a CSRE representable set of configurations. Since Postθ∗(C1∪C2) = Postθ∗(C1)∪
Postθ∗(C2), we can assume w.l.o.g that C consists of configurations of the form (q, w1, . . . , wn)
for some fixed q ∈Q. Let f be a function from Q to n-dim CSREs such that L( f (p)) = {(w1, . . . ,
wn) | (q, w1, . . . , wn) ∈C } if p = q and L( f (p)) =; otherwise. Next, we assume that f (q) = (u1,
. . . ,un,ϕ(x1, . . . ,xn)). The proof proceeds by cases.

Case 1: Let us assume q ′
i 6= qi for some i ∈ [1..m] or q0 6= q . In this case the sequence of

transitions cannot be executed and hence Postθ∗(C ) =C .

Case 2: Let us assume q0 6= q ′
m , q0 = q and q ′

i = qi for all i ∈ [1..m]. In this case, the sequence
of transitions cannot be iterated more than once and so we have Postθ∗(C ) = Postθ(C )∪C .
We now examine the set Postθ(C ). First, let us assume that Summ(i ,θ) =⊥ for some i ∈ [1..n].
Then it is easy to see that Postθ(C ) =; and hence Postθ∗(C ) =C .

Let us assume now that Summ(i ,θ) = (ui , vi ) is well-defined for all i ∈ [1..n]. We can con-
struct a n-CSRE e ′ such that (q ′

m , w1, . . . , wn) ∈ Postθ∗(C ) iff (w1, . . . , wn) ∈ L(e ′) in two steps:
Let e1 = f (q)[(u1,u2, · · · ,un),1]. This left quotients component i by ui as required and the
size of e1 is polynomial in the size of θ, M and f (q). Let us assume that e1 is of the form ((ε,
w2, . . . , w`1 ), . . . , (ε, w`n−1+2, . . . , w`n ),ϕ′′(x1, . . . , x`n )). Next, we simultaneously add the content
vi to stack i , 1 ≤ i ≤ n as follows: Let the n-CSRE e ′ be ((v1,ε, w2, . . . , w`1 ), . . . , (vn ,ε, w`n−1+2,
. . . , w`n ), ϕ′(y1, x1, . . . , xk1 , . . . , yn , x`n−1+1, . . . , x`n )) where ϕ′ =ϕ′′∧∧

1≤h≤n yi = 1.



138 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

It is easy to see that Postθ∗(C ) is CSRE representable by the function f ′ defined as follows
f ′(q) = f (q), f ′(q ′

m) = e ′, and L( f ′(p)) =; for all p ∉ {q, q ′
m}. Observe that the construction of

Postθ∗(C ) is done in polynomial time in the sizes of θ, M and f (q).

Case 3: Let us assume q0 = q ′
m , q0 = q and q ′

i = qi for all i ∈ [1..m]. In this case, the se-
quence of transitions forms a loop in the control flow graph of M and hence the sequence
may possibly be iterated. Observe that if the function Summ(i ,θ) =⊥ for some i ∈ [1..n], then
Postθ∗(C ) =C . Hence, let us assume that Summ(i ,θ) = (ui , vi ) for all i ∈ [1..n] so that it is well-
defined for each i . Lemma 54 suggests that we should examine when Summ(i ,θθ) is defined
for all i . Indeed, if Summ(i ,θθ) is undefined for some i ∈ [1..n], then Postθ∗(C ) = Postθ(C )∪C
(which can be computed as shown in the previous case). So, let us further assume that Summ(i ,
θθ) is well-defined for all i ∈ [1..n]. Hence, the function Iter(i ,σ) is also well-defined. Let us
assume that Iter(i ,σ) = (xi , yi )

We then construct a n-CSRE e ′ such that (q ′
m , w1, . . . , wn) ∈ Postθ+(C ) iff (w1, . . . , wn) ∈

L(e ′) in a sequence of steps: First we construct the n-CSRE expression e1 = f (p)[(u1,u2, · · · ,
un),1]. Let us assume that e1 is of the form ((ε, w2, . . . , w`1 ), . . . , (ε, w`n−1+2, . . . , w`n ),ϕ1(x1, . . . ,
x`n )). Observe that the size of e1 is polynomial in the sizes of θ, M and f (q) and it simulta-
neously left quotients component i by ui . Now, we must simultaneously left-quotient the i th

component by x j
i , for a fixed j and then follow this by adding simultaneously y j

i to compo-
nent i (for the same j ) and then add simultaneously vi to component i (1 ≤ i ≤ n). To achieve
this we begin by applying Lemma 61 to e1 to construct the n-CSRE expression e2 = e1[(x1, . . . ,
xn)]. Observe that the size of e2 is also polynomial in the sizes of θ, M and f (q). Let us
assume that e2 is of the form ((ε, w ′

2, . . . , w ′
j1

), . . . , (ε, w ′
jn−1+2, . . . , w ′

jn
),ϕ2(z1, . . . , z jn )). We now

exploit the parametrized nature of e1[(x1, . . . , xn)] stated in Lemma 61. We let e ′ = ((v1, y1,ε,
w ′

2, . . . , w ′
j1

), . . . , (vn , yn ,ε, w ′
jn−1+2, . . . , w ′

jn
), ϕ′(t1, t ′1, z1, . . . , zk1 , . . . , tn , t ′n , z`n−1+1, . . . , z jn )) where

ϕ′ =ϕ2 ∧∧
1≤h≤n ti = 1∧ (z1 = z j1+1 =·· ·= zz jn−1+1 = t ′1 = t ′2 = ·· · = t ′n).

Finally, it is easy to see that Postθ∗(C ) is CSRE representable by the function f ′ such that
L( f ′(q)) = L( f (q))∪L(e ′), and L( f ′(p)) =; for all p ∉ {q}. Observe that the size of f ′(q) is still
polynomial in the sizes of θ, M and f (q).

Unfortunately, CSRE representable sets are not stable w.r.t. bounded context runs.

8.3 Acceleration of Bounded-Context-Switch Sets

In the following, we introduce the class of constrained rational languages (as an extension
of constrained (or Parikh) automata languages to the settings of multi-dimensional words
[91, 48]). We show that the class of constrained rational languages is stable with respect to
bounded-context runs and simple loops. Even better, we show that the class of constrained
rational languages is stable with respect to bounded-context-switch sets, a generalization
of loops and contexts. The following section is structured as follows: First, we give the for-
mal definition of the class of constrained rational language and state some of its properties.
Then, we present the class of bounded-context-switch. Finally, we show that the class of con-
strained rational languages is stable with respect to acceleration by bounded-context-switch
sets.



8.3. ACCELERATION OF BOUNDED-CONTEXT-SWITCH SETS 139

8.3.1 Constrained Rational Languages

A constrained automaton is a finite-state automaton augmented with a semi-linear set to
filter (or restrict) the accepting runs. We assume that this semi-linear set is described
by an existential Presburger formula. In the following, we extend this model to multi-
dimensional words. Let n ≥ 1 and Σ1, . . . ,Σn be n finite alphabets. Formally, a n-tape con-
strained finite-state automaton over Σ1, . . . ,Σn is defined as C = (A,ϕ) where A = (Q,Σ1, . . . ,
Σn ,δ, q0,F ) is a n-tape finite-state automaton and ϕ is an existential Presburger formula
such that FreeVar(ϕ) = δ. Furthermore, we assume w.l.o.g. that if (q,u, q ′) is in δ then
|u[1] · u[2] · · ·u[n] | ≤ 1. The language of C , denoted by L(C ), is the set of n-dim words w
for which there is an accepting run π of A over w such that Parikh(π) |=ϕ. A n-dim language
is constrained rational if it is the language of some n-tape constrained automaton. Let us
state some properties about the class of constrained rational languages. These properties can
be inferred from the properties of rational languages [34] and Parikh/constrained automata
[91, 48, 146].

Lemma 62. The class of constrained rational languages is closed under union and concatena-
tion but not under intersection. The emptiness and membership problems are decidable while
the emptiness of intersection problem is undecidable.

Proof. We will now prove the closures w.r.t. constrained rational languages.

• Union: Let A = (A,ϕ1) and B = (B ,ϕ2) be two constrained rational automata such that A =
(Q A ,Σ1, · · · ,Σn ,δA , q A

0 ,F A) and B = (QB ,Σ1, · · · ,Σn ,δB , qB
0 ,F B ). Without loss of generality,

we will assume that Q A ∩QB = ; and hence δA ∩δB = ;. We construct the constrained
rational automaton C = (C ,ϕ) such that L(C ) = L(A )∪L(B) as follows: C = (Q A∪QB ∪{s0},
Σ1, · · · ,Σn ,δC , s0,F A∪F B ) where δC = δA∪δB∪{(s0,εn , q A

0 ), (s0,εn , qB
0 )} andϕ=ϕ1∨ϕ2. The,

it is easy to see that L(C ) = L(B)∪L(A ). Note that the overall size of C is linear in size of
A and B.

• Concatenation: Let A = (A,ϕ1) and B = (B ,ϕ2) be two constrained rational automata
such that A = (Q A ,Σ1, · · · ,Σn ,δA , q A

0 ,F A) and B = (QB ,Σ1, · · · ,Σn ,δB , qB
0 ,F B ). Without loss

of generality, we will assume that Q A ∩QB = ; and hence δA ∩ δB = ;. We construct
the constrained rational automaton C = (C ,ϕ) such that L(C ) = L(A ) · L(B) as follows:
C = (Q A ∪QB∪,Σ1, · · · ,Σn ,δC , q A

0 ,F B ), δC = δA ∪δB ∪ {(q,εn , qB
0 ) | q ∈ F A} and ϕ = ϕ1 ∧ϕ2.

The correctness of the construction follows immediately from the construction. Note that
the over all size of C is linear in size of A and B.

• Emptiness: Emptiness follows directly from the fact that n-tape constrained automaton
A over Σ1,Σ2, . . . ,Σn can be seen as 1-tape constrained automaton B over the alphabet
(Σ1 ∪ {ε})× ·· · × (Σn ∪ {ε}) for which the emptiness problem is well-known to be decidable
[91, 48]).

• Membership: This follows immediately from the decidability of the emptiness problem
and the closure of the class of constrained languages wrt. intersection with regular lan-
guages (see Lemma 63). In fact any multi-dimensional language consisting of finite words
is regular.



140 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

• Undecidability of emptiness of intersection: This directly follows from the fact that empti-
ness of intersection of rational language is undecidable.

We can extend the permutation, projection and composition operations to the context of
constrained rational languages in the straightforward manner. We also show the same closure
properties as in the case of rational languages.

Lemma 63. The class of constrained rational languages is closed under permutation, projec-
tion, composition and intersection with regular languages.

Proof. We will now prove the claim of the above lemma:

• Permutation: Given a constrained rational automaton A = (A,ϕ) with A = (Q A ,Σ1, · · · ,Σn ,
δA , q A

0 ,F A), and a permutation h : [1..n] 7→ [1..n], we can construct another constrained
rational automaton B = (B ,ϕ′) with B = (Q A ,Σh(1), · · · ,Σh(n),δ

B , q A
0 ,F A) such that L(B) =

{(wh(1), wh(2), · · · , wh(n)) | (w1, w2, · · · , wn) ∈ L(A )}. The states, initial state and final states
of out B automaton are the same as that of A. Along with the transition relation δB , we
will also construct below a bijective function g : δA 7→ δB mapping the transitions of A to
that of B . This will be useful for constructing the Presburger formula. For any τ = (q, (a1,
· · · , an), q ′) ∈ δA , we add τ′ = (q, (ah(1), · · · , ah(n)), q ′) ∈ δB and let g (τ) = τ′. Let us assume
that ϕ(t1, t2, . . . , tm) where t1, t2, . . . , tm ∈ δA are the free variables of ϕ. Then the formula
ϕ′ as ϕ(t1/g (t1), t2/g (t2), . . . , tm/g (tm)). It is then easy to see that L(B) = {(wh(1), wh(2), · · · ,
wh(n)) | (w1, w2, · · · , wn) ∈ L(A )}. Note that the over all size of B is linear in size of A

• Projection: Given a constrained rational automaton A = (A,ϕ) with A = (Q A ,Σ1, · · · ,Σn ,
δA , q A

0 ,F A) and a set of indices ι = {i1 < i2 < . . . im} ⊂ {1, . . . ,n}, we can construct another
constrained rational automaton B = (B ,ϕ′) with B = (QB ,Σ2, · · · ,Σn ,δB , qB

0 ,F B ) such that
L(B) = {(wi1 , wi2 , · · · , wim ) | (w1, w1, · · · , wn) ∈ L(A )}. The states of B are given by QB =
Q A ∪ {pτ | τ ∈ δA}, i.e. we add |δA| new states to the automaton along with the states of A.
The initial state of B is the same as the initial state of A i.e. qB

0 = q A
0 . Similarly the final

state of B is the same as the final states of A i.e. F A = F B . Along with the transition relation,
we will also describe a function g : δA 7→ δB that will help us to construct the Presburger
formula. For any τ = (q, (a1, · · · , an), q ′) ∈ δA , we add τ1 = (q, (ai1 , · · · , aim ), pτ) ∈ δB and
τ2 = (pτ, (ε, · · · ,ε), q ′) ∈ δB . We let g (τ) = τ1. Now the Presburger formula ϕ′ is defined as
ϕ′ = ϕ(τ1/g (τ1),τ2/g (τ2), . . . ,τ`/g (τ`)), where τ1 · · ·τ` are the transitions of A. Note that
the complexity of such an construction is at most polynomial. The number states of B is
the sum |δA| and |A|. Furthermore, we have that δA can be in the order of Q2 ×Σ where
Σ=⋃

i∈[1..n]Σi .

• Composition: Let A = (A,ϕ1) and B = (B ,ϕ2) be two constrained rational automata such
that A = (Q A ,Σ1, · · · ,Σn ,δA , q A

0 ,F A) and B = (QB ,Σ1,Σ′
2, · · · ,Σ′

m ,δB , qB
0 ,F B ). Then, we can

construct a constrained rational automaton C = (C ,ϕ) such that C = (QC ,Σ1, · · · ,Σn ,Σ′
2,

· · · ,Σ′
m ,δC , qC

0 ,F C ) and L(C ) = {(w1, · · · , wn ,u2, · · · ,um) | (w1, · · · , wn) ∈ L(A )∧ (w1,u2, · · · ,
um) ∈ L(B)}. Observe that we assume that the composition between A and B is done over
the first tape since the class of constrained rational languages is closed under permutation.



8.3. ACCELERATION OF BOUNDED-CONTEXT-SWITCH SETS 141

The states of the automata C are given by QC =Q A×QB , the initial state is given by qC
0 = (q A

0 ,
qB

0 ) and the set of final states is given by F C = F A×F B . We will define the transition relation
δC along with two partial functions g : δC 7→ δA and h : δC 7→ δB . For every q, q ′ ∈ Q A , p,
p ′ ∈QB and a1 ∈Σ1, if τ1 = (q, (a1, · · · , an), q ′) ∈ δA and τ2 = (p, (a1,b2, · · · ,bm), p ′) ∈ δB then
we add τ′ = ((q, p), (a1, · · · , an ,b2, · · · ,bm), (q ′, p ′)) ∈ δC . We also let g (τ′) = τ1 and h(τ′) = τ2.
For any τ = (q, (ε, a2, · · · , an), q ′) ∈ δA , we add τ′ = ((q, p), (ε, a2, · · · , an ,εm−1), (q ′, p)) ∈ δC

and we let g (τ′) = τ. Similarly for any τ= (q, (ε,b2, · · · ,bm), q ′) ∈ δB , we add τ′ = ((q, p), (εn ,
b2, · · · ,bn), (q, p ′)) ∈ δC and we also let h(τ′) = τ. For any τ ∈ δA , we will refer to g−1(τ) to
mean g−1(τ) = {τ′ | τ′ ∈ δC ∧ g (τ′) = τ}. We use similar notation for h−1(τ) with τ ∈ δB .
Now the Presburger formula ϕ is defined as ϕ = ϕ1((τ/

∑
τ′∈g−1(τ)τ

′)τ∈δA ) ∧
ϕ1((τ/

∑
τ′∈h−1(τ)τ

′)τ∈δB ).

• Intersection with regular: Given a constrained rational automata A = (A,ϕ′) with A = (Q A ,
Σ1, · · · ,Σn ,δA , q A

0 ,F A) and a regular n-dim language L. Since the intersection operator is
distributive over the union operator and the closure of the class of rational languages under
union, we can assume w.l.o.g. that L is of the form L(A1)× L(A2)× ·· · × L(An) where for
every i ∈ [1..n], Ai = (Qi ,Σi ,δi , q i ni t

i ,Fi ) is a finite state automaton. Let A′
i = (Qi ,Σ1, . . . ,

Σn ,δ′i , q i ni t
i ,Fi ) be the n-tape automaton such that (1) δ′i ⊆ {ε}i−1 ×Σi ∪ {ε}n−i and (2) (q,

(εi−1, a,εn−i ), q ′) ∈ δ′i iff (q, a, q ′) ∈ δi . Then, it is easy to set that L ∩L(A ) = L(((((A ◦(1,1)

(A′
1, tr ue)) ◦(2,2) (A′

2, tr ue)) ◦(3,3) (A′
3, tr ue)) · · · ◦(n,n) A′

n)). Since the class of constrained the
class of constrained automata is closed under composition, we obtain that it is possible to
construct a constrained rational automaton A ′ such that L(A ′) = L ∩L(A ). Furthermore,
it is easy to see that the size of A′ is exponential in |A1|+ |A2|+ · · ·+ |An | and polynomial in
the size of A . Observe that in fact the complexity is polynomial in (|A1|+ |A2|+ · · ·+ |An |)n

and the size of A .

The complexity of permutation, projection, composition is at most polynomial in size
of input automata whereas the intersection with regular languages is at most exponential in
the size of the description of the regular language and polynomial in the size of constrained
rational automaton.

Acceleration of Bounded-Context-Switch Sets

Let M = (n,Q,Γ,∆) be an MPDS. A bounded-context-switch set over M is defined by a tuple
Λ = (τ0,τ1, . . . ,τ2m) with m ∈ N where (1) for every i ∈ [0..m], we have τ2i ⊆ ∆i j for some
i j ∈ [1..n] with i0 = i2m , and (2) for every i ∈ [0..(m−1)], |τ2i+1| = 1. The size ofΛ is defined as
the sum of the sizes of the finite sets τ j for all j ∈ [0..2m]. The set of sequences of transitions
recognized by Λ, denoted by L(Λ), is τ∗0τ1τ

∗
2 · · ·τ∗2m . Observe that when m = 0 and τ0 =∆i for

some i ∈ [1..n], L(Λ) corresponds to a context associated to the stack i . And whenever τ2i =;
for all i ∈ [0..m], L(Λ) is a sequence of transitions. Thus, bounded-context-switch sets gener-
alize both loops and contexts. Observe that dropping one of τ2i+1 from the definition ofΛwill
allow the simulation of unbounded unrestricted context-switch sequences and hence leads
to the undecidability of the simple reachability problem. Next, we state our main theorem:



142 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

Theorem 27. Let M be an MPDS andΛ= (τ0,τ1, . . . ,τ2m) be a bounded-context-switch set over
M. For every constrained rational set of configurations C , PostL(Λ)∗(C ) is a constrained rational
set and effectively constructible.

The rest of this section is dedicated to the proof of Theorem 27. First we prove an ex-
tension of Lemma 52 that shows that in addition to computing pairs of the form (q,u, q ′,u)
such that there is a run π from (q,u) to (q ′,u′) one may in addition keep track of the number
iterations of L(Λ) seen along π.

Lemma 64. Let P = (Q,Σ,Γ,δ, q0) be an PDS and Λ = (τ0,τ1, . . . ,τ2m) be a bounded-context-
switch set over P such that τ j ⊆ δ. Let ] be a special symbol not included inΓ. Then it is possible
to construct, in exponential time in the sizes of P and Λ, an 5-tape finite-state automaton
T = (QT ,Q,Γ,Q,Γ, {]},δπ, q0,FT ) such that (q,u, q ′, v,]m) ∈ L(T ) iff (q,u) π−→P (q ′, v) for some
sequence π ∈ (L(Λ))m . Furthermore, the size of T is exponential in the sizes of P and Λ.

Proof. The proof of this lemma is based on the combination of the proof of Lemma 52 with
the fact the Parikh images of context-free languages can be effectively realised as a regular
languages. The aim is to build a rational automata T such that L(T ) = {(q,u, q ′, v,]m) | (q,
u) π−→∗

P (q ′v) ∧ π ∈ (L(Λ))m}. It is easy to see that for any two configurations (q,u) and

(q ′, v) in P , if (q,u) Λm−−−→∗
(q ′v) then clearly such a run can be split as (q,u′w) σ1−−→∗

w (q ′′,
w) σ2−−→∗

w (q ′, v ′w) for some w ∈ (Γ \⊥)∗⊥, σ1.σ2 = Λm and some u′, v ′ such that u = u′w,
v = v ′w . Let u′ = a1 · · ·a` and v ′ = b1 · · ·bm then clearly we can further split the run into
increasing and decreasing phase. If w 6= ⊥, then we can split it as

(q, a1 · · ·an w) σ1−−→∗
w (q1, a2 · · ·an w) σ2−−→∗

w · · ·−→∗
w (q ′′, w)−→∗

w (q ′
1,bn w)−→∗

w · · · σn−−→∗
w (q, v ′w)

Such that σ1 · · ·σn =Λm . Or if w =⊥ then we can split it as

(q, a1 · · ·an⊥) σ1−−→∗
⊥(q1, a2 · · ·an⊥) σ2−−→∗

⊥ · · ·−→∗⊥(q ′′
1 ,⊥) →⊥ (q ′′

2 ,⊥)−→∗⊥(q ′
1,bn⊥)−→∗⊥ · · ·
σn−−→∗

⊥(q, v⊥)

Note that these intermediate sequences σi need not fall at the Λ boundary. Given a run
(say (q, a1 · · ·an w) σ1−−→∗

w (q1, a2 · · ·an w)), the number of timesΛ sequences are executed and
completed in this part of run is regular (since this can be captured as parikh image of a push-
down system, which is known to be regular [62]). However only this information is not suffi-
cient to concatenate sequence of such runs. We also need to keep track of the position inside
Λ where the run ended.

For this purpose, we will construct a new pushdown automaton P = (S, {]},Γ,∆, p0,S) that
has embedded in it the information of which position in Λ it is executing. The states of such
a pushdown automaton are S = Q × [0..m]. The initial and final state of this pushdown is
not important at this point of time. In the newly constructed pushdown system, the input
alphabets (of the original system) are ignored. Further each time a context switch transition
of the form τ ∈ τ2i−1, i ∈ [1..m] is performed, the current position inside Λ is updated. The
pushdown system only includes the transitions from the bounded-context-switch set. The
transition relation ∆ is defined as follows. We will along with the definition of transition also
define a mapping g :∆ 7→ δ∪ {ε}, which will later be used in the proof.



8.3. ACCELERATION OF BOUNDED-CONTEXT-SWITCH SETS 143

1. for all τ= (p,Popi (a),b, p ′) ∈ τ2i , i ∈ [0..m], τ′ = ((p, i ),Pop(a),ε, (p ′, i )) ∈∆ and g (τ′) = τ
2. for τ= (p,Popi (a),b, p ′) ∈ τ2i−1, i ∈ [1..m], τ′ = ((p, i ),Pop(a),ε, (p ′, i +1)) ∈∆ and g (τ′) = τ
3. for all τ= (p,Pushi (a),b, p ′) ∈ τ2i , i ∈ [0..m], τ′ = ((p, i ),Push(a),ε, (p ′, i )) ∈∆ and g (τ′) = τ
4. for τ=(p,Pushi (a),b, p ′) ∈ τ2i−1, i ∈ [1..m], τ′= ((p, i ),Push(a),ε, (p ′, i+1)) ∈∆ and g (τ′) = τ
5. for all τ= (p,Inti (a),b, p ′) ∈ τ2i , i ∈ [0..m], τ′ = ((p, i ),Int,ε, (p ′, i )) ∈∆ and g (τ′) = τ
6. for τ= (p,Inti (a),b, p ′) ∈ τ2i−1, i ∈ [1..m], τ′ = ((p, i ),Int,ε, (p ′, i +1)) ∈∆ and g (τ′) = τ
7. for all τ= (p,Zeroi (a),b, p ′) ∈ τ2i , i ∈ [0..m], τ′ = ((p, i ),Zero,ε, (p ′, i )) ∈∆ and g (τ′) = τ
8. for τ= (p,Zeroi (a),b, p ′) ∈ τ2i−1, i ∈ [1..m], τ′ = ((p, i ),Zero,ε, (p ′, i +1)) ∈∆ and g (τ′) = τ
9. We also add τ= ((p,m),Int,], (p,0)) ∈∆ and we let g (τ) = ε

We extend the function g in the straightforward manner to sequence of transitions. It is

easy to see that, π = ((p, i ),u) σ−−→P((p ′, j ), v) iff (p,u)
g (σ)−−−−→P (p, v), further Σ(σ) = ]k if g (σ) ∈

τ∗2iτ2i+1τ
∗
2i+2τ2i+3 · · ·τ∗2mΛ

kτ∗0τ1 · · ·τ∗2 j , for some k ∈ N. We will call a sequence of the form

τ∗2iτ2i+1τ
∗
2i+2τ2i+3 · · ·τ∗2mΛ

kτ∗0τ1 · · ·τ∗2 j as (2i ,Λk ,2 j )

For any i , j ∈ [0..m], let L−((p, i ), a, (p ′, j )) = {Σ(σ) | ((p, i ), a) σ−−→P((p ′, j ),ε)}. The above
language recognises Σ(σ) = ]k if there is an execution sequence that starts at state p and
position τ2i in Λ, executes rest of sequence of Λ, iterates Λk−1, executes the Λ sequence up
to τ2 j , reaches state p ′ and in the process removes the letter a from the stack. Clearly such
a language is effectively regular and at most exponential in size of P. This follows from the
fact that Parikh image of pushdown automata are effectively regular [63]. We will assume the
finite state automaton recognizing such a language to be B−((p, i ), a, (p ′, j )).

Similarly let L+((p, i ), a, (p ′, j )) = {Σ(σ) | ((p, i ),ε) σ−−→P((p ′, j ), a)}. Let L=((p, i ), (p ′, j )) =
{Σ(σ) | ((p, i ),⊥) σ−−→P((p ′, j ),⊥)}. These languages are also regular for the same reason as
above. We will assume the finite state automata recognizing the Parikh image of L+((p, i ),
a, (p ′, j )) to be B+((p, i ), a, (p ′, j )) and we will assume the finite state automata recognising
the Parikh image of L=((p, i ), (p ′, j )) to be B=((p, i ), (p ′, j )).

We now show how to construct the rational automata T . Towards this, we will introduce
some notations. For any ?x ∈ {+,−,=}, we will refer to states of B ?x automata as State(B ?x ).
Similarly, we will refer to initial, final states and transitions as Initial(B ?x ) , Final(B ?x ) and
∆(B ?x ) respectively. We will further assume that the states of such automata are distinct. We
will simply use St=,St−, and St+ to refer to set of all states of all possible B=, B− and B+

automata respectively.

The idea behind construction of rational automata T is as follows. We need to ensure
that L(T ) = {(q,u, q ′, v,]m) | (q,u) π−→P (q ′, v)∧π ∈ (L(Λ))m}. The construction of T amounts
to guessing these intermediate points of the decreasing, zero and increasing phase, while
keeping track of the Parikh image of the languages generated during these runs on the 5th

tape.

Now the states of T is given by QT = ((Q×[0..m])∪St−)×((Q×[0..m])∪St+∪{⊥⊥⊥})∪St=∪{s,
f ,e}. It contains the states to recognise the decreasing slope, increasing slope, optional zero
phase and a final state. The first component of the state is used for the decreasing phase
and the second component of the state is used to simulate the increasing phase. When the
decreasing phase is active, the second component is ⊥⊥⊥. The initial state is s and set of final
states is FT = { f }.



144 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

We add (s, (q,ε,ε,ε,ε), ((q,0),⊥⊥⊥)) ∈ δT to start the simulation of the decreasing phase,
starting from q . We add for all i , j ∈ [0..m], a ∈ Γ \ {⊥} and q, q ′ ∈Q, we add (((q, i ),⊥⊥⊥), (ε, a,ε,
ε,ε), (Initial(B−((q, i ), a, (q ′, j )),⊥⊥⊥))) ∈ δT , this guesses the points of the decreasing phase that
removes a from the stack. Similarly we add ((Final(B−((q, i ), a, (q ′, j ))),⊥⊥⊥), (ε,ε,ε,ε,ε), ((q ′, j ),
⊥⊥⊥)) ∈ δT , this ensures that on completing the simulation of automaton, the control returns
back. The above transitions have the following effect. Towards simulating the automata, we
add for all (p, a, p ′) ∈∆(B−((q, i ), a, (q ′, j ))), the transition ((p,⊥⊥⊥), (ε,ε,ε,ε, a), (p ′,⊥⊥⊥)) ∈∆′.

The effect of these set of transitionsan be described as, from the initial state s on reading
a state q on tape-1, we start the decreasing phase by entering the state ((q,0),⊥⊥⊥). From any
state of the form ((q, i ),⊥⊥⊥), on reading a letter a from tape-2, it guesses the resulting state
(q ′, j ) of a run that ends up consuming a from stack and simulates the automata B−((q, i ), a,
(q ′, j )). We return to (q ′, j ) after completing to simulate the automata. It is easy to see that

s
(q,ε4))−−−−−→

∗
((q,0),⊥⊥⊥)

(ε,u,ε,ε,]m )−−−−−−−−→
∗

((q ′, j ),⊥⊥⊥) iff ((q,0),u) σ−−→∗
P((q ′, j ),ε), with σ ∈ (2i ,Λm−1,2 j ).

Similarly we add set of transitions to deal with the increasing slope. We add (((q,
i ),⊥⊥⊥), (ε,ε, q ′,ε,ε), ((q, i ), (q ′,m))) ∈ δT . This transition starts the simulation of increas-
ing slope. We add for all k ∈ [0..m], i , j ∈ [0..m], a ∈ Γ and p, q, q ′ ∈ Q, the transition
(((p,k), (q, i )), (ε,ε,ε, a,ε), ((p,k), Initial(B+((q ′, j ), a, (q, i ))))) ∈ δT . Similarly we add (((p,k),
Final(B+((q ′, j ), a, (q, i )))), (ε,ε,ε,ε,ε), ((p,k), (q ′, j ))) ∈ δT . Towards simulating the automata,
we add for all (p,#, p ′) ∈ ∆(B+((q, i ), a, (q ′, j ))), the transition (((q,k), p), (ε,ε,ε,ε,#), ((q,k),
p ′)) ∈ ∆′. We also add ((q,k), (q,k),ε5,e) ∈ ∆′ and (e, (ε, a,ε, a,ε),e) ∈ ∆′ and (e, (ε,⊥,ε,⊥,

ε), f ) ∈ ∆′. It is easy to see that ((q ′, j ),⊥⊥⊥)
(ε,ε,q,ε,ε)−−−−−−−→

∗
((q ′, j ), (q,m)) (ε,ε,ε,v,#m )−−−−−−−−→∗

((q ′, j ), (q ′,
j ))−→∗(e) (ε,w,ε,w,ε)−−−−−−−−→∗

(e) (ε,⊥,ε,⊥,ε)−−−−−−−→∗
( f ) iff ((q ′, w⊥) σ−−→∗

(q, v w⊥) with σ ∈ (2i ,Λm−1,2 j ).
To simulate the zero tests, we add the following transitions (((q ′, j ), (q, i )), (ε,⊥,ε,⊥,

ε), Initial(B=((q ′, j ), (q, i )))) ∈ ∆′ for all q, q ′ ∈ Q, i , j ∈ [0..m] and also the transitions

((Final(B=((q ′, j ), (q, i )))), (ε5), f ) ∈ ∆′. It is easy to see that if ((q ′, j ), (q, i )) (ε,⊥,ε,⊥,#n )−−−−−−−−→∗
f iff

(q ′,⊥) σ−−→∗
(q,⊥), with σ ∈ (2i ,Λm−1,2 j ).

Correctness of such a construction can be got by simply following the argument similar
to that in lemma 52

This allows us to prove Lemma 65, leading to the proof of Theorem 27.
From an MPDS M , one can construct a PDS Mi for each stack i , which simulates the

moves of M on the i th stack while guessing, non-deterministically, the effect of the moves
corresponding to the other stacks. Clearly, any run of M can be decomposed in to a tuple
of runs, one per Mi . However, because of the special structure of L(Λ), a converse of this
statement is true for runs of the form L(Λ)∗. Any tuple of runs, one from each Mi , which
agree on the number of iterations of L(Λ) seen along the run, can be composed together to
give a run M . We formalize these arguments now.

Let i ∈ [1..n]. For each transition t = (q,op, q ′) ∈∆, we represent the effect of the transition
t on the stack i by the transition t |i defined as follows: t |i = t if t ∈ ∆i , and t |i = (q,Inti ,
q ′) otherwise. We extend this operation to sets of transitions as follows: For a set T ⊆ ∆,
T |i = {t |i | t ∈ T }.

Let Mi = (1,Q,Γ,∆i ∪ {τ0,τ1, . . . ,τ2m}|i ) be a PDS simulating the i -th stack while taking
into account the effect of the other stack operations. We define also Λ|i to be the bounded



8.3. ACCELERATION OF BOUNDED-CONTEXT-SWITCH SETS 145

context/switches set defined by the tuple (τ0|i ,τ1|i , . . . ,τ2m |i ). Let Ti be the 5-tape finite state
automaton resulting from the application of Lemma 64 to the PDA Mi and the bounded-
context-switch set Λ|i . Then synchronising the multi-tape automata Ti on the number of
occurrences of the special symbol ] provides a relation between any possible starting config-
uration (q,u1, . . . ,un) with any configuration (q ′, v1, . . . , vn) reachable from (q,u1, . . . ,un) of M
by firing a sequence of transitions in L(Λ)∗.

Lemma 65. Let m ∈N. Then, (q,u1, . . . ,un) π−→M (q ′, v1, . . . , vn) for some sequence π ∈ (L(Λ))m

if and only if for every i ∈ [1..n], (q,ui , q ′, vi ,]m) ∈ L(Ti ).

Proof. (⇒) Let (q,u1, . . . ,un) π−→M (q ′, v1, . . . , vn) be a run in M such that π ∈ (L(Λ))m . By defi-
nition, π|i is clearly a valid sequence of moves in Mi ( |i is extended to a sequence in straight
forward manner) such that π|i ∈ (L(Λ|i ))m . We can easily prove by induction on length of the

run that if (q,u1, . . . ,un) π−→M (q ′, v1, . . . , vn) then (q,ui ) π|i−−→(q ′, vi ). By definition of L(Ti ), this
means that (q,ui , q ′, vi ,]m) ∈ L(Ti ).

(⇐)

The idea for the other direction is as follows. If (q,ui , q ′, vi ,]m) ∈ L(Ti ), then by definition
there are individual runs in pushdown systems such that this run is in Ł(Λ|i )m . Clearly Λ|i
contains some real transitions and some projected transitions. Note that the real transitions
are also part of our multi-pushdown system M . If we can find a shuffle of all the real transition
sequences of each of these runs such that the ordering among the sequence obey the original
ordering in the individual run, they are state-wise compatible and they form a word in L(Λ)m ,
then it is easy to see that such a transition sequence is also a valid transition sequence in the
multi-pushdown system M . We will attempt below to find one such valid sequence.

Let j ∈ [1..n] be the index of the stack such that τ0,τ2m ⊆ ∆ j . In the following, we will
prove a stronger claim than the one stated by Lemma 65. In fact we will prove that if we
can reach a particular state in a thread, we can reach it in all other thread and we can also
reach it by iterating Λ in MPDS , that is for every i ∈ [1..n], (q,ui , qi , vi ,]m) ∈ L(Ti ) then (q,
ui , q j , vi ,]m) ∈ L(Ti ) for all i ∈ [1..n], and (q,u1, . . . ,un) π−→M (q j , v1, . . . , vn) for some sequence
π ∈ (L(Λ))m .

The proof is done by induction on m.

Base Cases: The base case is when m = 0. This means that (q,ui ) = (qi , vi ) for all i ∈ [1..n]
and hence (q,u1, . . . ,un) π−→M (q j , v1, . . . , vn) for π= ε. Furthermore it is easy to see that (q,ui ,
q j , vi ,]m) ∈ L(Ti ) holds for all i ∈ [1..n].

Let us assume that m = 1. Let us assume that (q,ui , qi , vi ,]) ∈ L(Ti ) for all i ∈ [1..n]. From
Lemma 64, this implies that for every i ∈ [1..n], (q,ui ) πi−−→Mi (qi , vi ) with σ ∈ (L(Λ)). Then we

can rewrite the run (q,ui ) πi−−→Mi (qi , vi ) as follows (q,ui )
α(i ,0)−−−−→Mi (p(i ,1),u(i ,1))

α(i ,1)−−−−→Mi (p(i ,2),

u(i ,2))
α(i ,2)−−−−→Mi · · · α(i ,2m−1)−−−−−−→Mi (p(i ,2m),u(i ,2m))

α(i ,2m)−−−−−→Mi (qi , vi ) where α(i ,`) ∈ τ∗
`

for all ` ∈
[0..2m] such that α(i ,2r−1) = τ2r−1 for all r ∈ [1..m]. Then, it is easy to see that for every

i 6= j , (p(i ,2m),u(i ,2m))
α( j ,2m)|i−−−−−−→Mi (q j , vi ) with vi = u(i ,2m), this follows from definition of Λ|i .

This implies that (q,ui )
α(i ,0)·α(i ,1)···α(i ,2m−1)·α( j ,2m)|i−−−−−−−−−−−−−−−−−−−−→Mi (q j , vi ). Hence, (q,ui , q j , vi ,]) ∈ L(Ti ) for

all i ∈ [1..n] and so we have proved the first part of the claim.



146 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

Let s ∈ [0..2m], is be the index of the active stack (i.e., τs ⊆∆is ). Then we can show that for

every s ∈ [1..2m−1], (p(1,s),u(1,s),u(2,s), · · · ,u(n,s))
α(is ,s)−−−−→M (p(1,s+1),u(1,s+1),u(2,s+1), · · · ,u(n,s+1)).

Furthermore, we can show (q,u1,u2, . . . ,un)
α( j ,0)−−−−→M (p(1,1),u(1,1),u(2,1), · · · ,u(n,1)) and (p(1,2m),

u(1,2m),u(2,2m), · · · ,u(n,2m))
α( j ,2m)−−−−−→M (q j , v1, v2, . . . , vn). Now combining all these runs we get

that (q,u1,u2, . . . ,un)
α( j ,0)α(i1,1)···αi2m−1,2m−1α( j ,2m)−−−−−−−−−−−−−−−−−−−−−→(q j , v1, v2, . . . , vn). This complete the proof for

the base case.

Induction Step: Let us assume now that if for every i ∈ [1..n], (q,ui , q ′
i , vi ,]m) ∈ L(Ti ) then (q,

ui , q ′
j , vi ,]m) ∈ L(Ti ) for all i ∈ [1..n], and (q,u1, . . . ,un) π−→M (q j , v1, . . . , vn) for some sequence

π ∈ (L(Λ))m .
Let us show that if for every i ∈ [1..n], (q,ui , qi , vi ,]m+1) ∈ L(Ti ) then (q,ui , q j , vi ,]m+1) ∈

L(Ti ) for all i ∈ [1..n], and (q,u1, . . . ,un) π−→M (q j , v1, . . . , vn) for some sequence π ∈ (L(Λ))m+1.

Since (q,ui , qi , vi ,]m+1) ∈ L(Ti ) for all i ∈ [1..n], this implies that (q,ui ) πi−−→Mi (qi , vi )
for some πi ∈ L(Λ|i )m+1. We can then split the run (q,ui ) πi−−→Mi (qi , vi ) as follows: (q,

ui )
π′

i−−→Mi (q ′
i , wi ) π′′−−→Mi (qi , vi ) such that π′

i ∈ L(Λ|i )m and π′′
i ∈ L(Λ|i ).

Since for every i ∈ [1..n], (q,ui )
π′

i−−→Mi (q ′
i , wi ) such that π′

i ∈ L(Λ|i )m , we have (q,ui , q ′
i ,

wi ,]m) ∈ L(Ti ) from Lemma 64. Now we can apply the induction hypothesis to these runs
and we get that (q,ui , q ′

j , wi ,]m) ∈ L(Ti ) for all i ∈ [1..n], and (q,u1, . . . ,un) σ−−→M (q ′
j , w1, . . . ,

wn) for some sequence π ∈ (L(Λ))m .

On the other hand, since τ0 ⊆ ∆ j , we can show that (q ′
j , wi ) π′′′−−→Mi (qi , vi ) such that π′′

i ∈
L(Λ|i )m . This implies that (q ′

j , wi , qi , vi ,]) ∈ L(Ti ) from Lemma 64. Now we can apply the

induction hypothesis to these runs and we get that (q ′
j , wi , q j , vi ,]) ∈ L(Ti ) for all i ∈ [1..n],

and (q ′
j , w1, . . . , wn) σ′−−→M (q j , v1, . . . , vn) for some sequence π ∈ (L(Λ))m .

Since (q,ui , q ′
j , wi ,]m) ∈ L(Ti ) and (q ′

j , wi , q j , vi ,]) ∈ L(Ti ) for all i ∈ [1..n], we get

that (q,ui )
π′

i−−→Mi (q ′
j , wi ) and (q ′

j , wi ) π′′′−−→Mi (q j , vi ). Combining these two runs we get (q,

ui ) π′·π′′′−−−−→Mi (q j , vi ) for all j ∈ [1..n].
Now, we can also combine the following two runs (q,u1, . . . ,un) σ−−→M (q ′

j , w1, . . . , wn) and

(q ′
j , w1, . . . , wn) σ′−−→M (q j , v1, . . . , vn), we get (q,u1, . . . ,un) σ·σ′−−−→M (q j , v1, . . . , vn).

Remark: The ideas used in the proof of Lemma 64 can be used to compute more details such
as the number of occurrences of every transition (instead of number of iterations of L(Λ)). How-
ever, without the special structure of L(Λ), this does not seem to lead to a corresponding gener-
alization of Lemma 65.

Now, we are ready to prove Theorem 27. Let us assume now that we are given a (n+1)-tape
constrained finite-state automaton C = (A,φ) where A = (P,Q,Γ, . . . ,Γ,δ, p0,F ) and L(C ) =C .
In the following, we show how to compute a (n +1)-tape constrained finite state automaton
C ′ accepting the set Post(L(Λ))∗(C ). To do that, we proceed as follows: We first compose C with
the synchronized automaton (T1,true), synchronizing the second tape of T1 (containing the
stack contents at the starting configuration of the M1) with the second tape of A, to construct



8.4. CONCLUSION 147

a (n+5)-tape constrained automaton C1 =C ◦(2,2) (T1,true). We then need to synchronize the
starting states (i.e., the first tape of A with the first tape of T1). This can be done by intersecting
C1 with the (regular) language

⋃
q∈Q {q}× (Γ∗)n × {q}×Q ×Γ∗× ({]})∗. Let C ′

1 be the (n +5)-
tapes resulting of this intersection. Then, we project away the starting control state occurring
on the n +2-tape and the content of the second tape to obtain the (n +3)-tape constrained
automaton C ′′

1 =Πι(C ′
1) where ι= ([1..n +5] \ {2,n +2}).

Then, we need to compose C ′′
1 with the constrained automaton (T2,true), synchronizing

the second tape of T2 (containing the stack contents at the starting configuration of the M2)
with the second tape of C ′′

1 , to construct a (n +7)-tape constrained automaton C2 =C ′′
1 ◦(2,2)

(T2,true). We then need to synchronize the starting states (i.e., the first tape of C ′′
1 with the

first tape of T2). This can be done by intersecting C2 with the (regular) language
⋃

q∈Q {q}×
(Γ∗)n−1 ×Q ×Γ∗ × ({]})∗ × {q}×Q ×Γ∗ × ({]})∗. Let C ′

2 be the (n + 7)-tapes resulting of this
intersection. Then, we project away the starting control state occurring on the n+4-tape and
the content of the second tape to obtain the (n+5)-tape constrained automaton C ′′

2 =Πι′(C ′
2)

where ι′ = ([1..n +6] \ {2,n +4}).
This procedure is then repeated for all the constrained automata (Ti ,true), with i ∈ [3..n],

to obtain at the end the (3n +1)-tape constrained automaton C ′′
n . We can also project away

the starting state stored at the first tape from C ′′
n since it is not any more needed. So, let G be

(3n)-tape constrained automaton such that G =Π[2..3n](C ′′
n ).

Now, we need to synchronize the automata (Ti ,true) on their final states stored respec-
tively at the tapes 3(i −1)+1, with i ∈ [1..n], of G . To do that we intersect G with the (regular)
language

⋃
q∈Q {q}×Γ∗×({]})∗×{q}×Γ∗×({]})∗×·· ·×{q}×Γ∗×({]})∗. Let G ′ be the (3n)-tapes

resulting of this intersection. We can then project away the copies of the final control states
and only keep its first occurrence to obtain (2n +1)-tape constrained automaton G ′′ defined
as follows: G ′′ = Πι′′(G ′) where ι′′ = ([1..3n] \ {3i +1 | i ∈ [1..n −1]}). Let us assume that G ′′ is
of the form (A′,φ′) where A′ = (P ′,Q,Γ, {]},Γ,], . . . ,Γ, {]},δ′, p ′

0,F ′). Furthermore, let us assume
that for every i ∈ [1..n], δ′i is the subset of δ′ containing only the transitions of the form (p,v,
p ′) ∈ δ′ such that v[2i +1] = ]. Observe that by definition, we have v[ j ] = ε for all j 6= 2i +1.

From Lemma 65, we need to ensure the same number of the special letters ] in all the
tapes {2i +1|i ∈ [1..n]}, we need to augment the formula φ′ with additional constraints. Let
G ′′′ = (A′,φ′′) where φ′′ = φ′∧ (

∑
t1∈δ′1 t1 = ∑

t2∈δ′2 t2 = ·· · = ∑
tn∈δ′n tn). Finally, the n + 1-tape

constrained finite state automaton C ′ can be constructed from G ′′′ by projecting away the
tapes with symbol ] i.e. the tapes {2i +1|i ∈ [1..n]}. Hence, C ′ =Πι′′′(G ′′′) where ι′′′ = ([1..n] \
{2i +1|i ∈ [1..n]}). This completes the proof of Theorem 27.

8.4 Conclusion

In this chapter, we first showed that rational sets of configurations are stable w.r.t. bounded
context executions.

• We showed that under iterations of a loop of a regular set of transitions is always rational
while that of a rational set need not be rational.

• We then introduced a new representation for configurations called n-CSRE. We went on to
show that n-CSREs are indeed stable w.r.t iteration of loops.



148 CHAPTER 8. ACCELERATIONS ON MULTI-PUSHDOWN SYSTEMS

• We introduced a joint generalization of both loop iterations and bounded context execu-
tions called bounded context-switch sets. We showed that the class of languages defined
by n-dimensional constrained automata is stable w.r.t accelerations via bounded context-
switch sets.



Chapter 9

Parity games on MPDS

9.1 Introduction

In this chapter, we consider the problem of solving the parity games over the multi-pushdown
systems with bounded-phase restriction. Informally, a parity game is a two player game (
say player-0 and player-1), played on a graph. The vertices of the graph are partitioned into
player-0 and player-1 positions. Further each node in the graph is assigned a rank from a
finite set of natural numbers. The game starts with a token placed in a node designated as
the initial node. The play proceeds in rounds and the player of each round is determined by
the player of the node, in which the token is placed. During each round, the player moves
the token from the current node to one of its adjacent nodes. The winner of the game is
determined by the minimum rank visited infinitely often in the play. Now given any initial
position in the graph, one can ask if a particular player can play in such a way that he win
all plays starting from that position, irrespective of how the other player responds. Then we
say that the player wins from his position and has a winning strategy, formal definitions are
provided in the next section. Now given a parity game and a position in the game, one can
ask if there is a winning strategy for a particular player.

Parity games were originally introduced in [116] and subsequently studied as a winning
condition of games in [59]. Close connections of parity games withµ-calculus [58, 135] makes
this problem interesting and important. The parity games on finite state systems is well stud-
ied [86, 36, 87] and is known to be in UP ∩ co-UP. Solving parity games on infinite structures
has also been a topic of interest [50, 143]. Parity games on pushdown systems were studied in
[143] and was shown to be decidable. In [47, 93], it was shown that set of all winning positions
in a parity game on pushdown systems is regular.

In this chapter, we are interested in solving the parity game over a multi-pushdown sys-
tem with bounded-phase restriction. This problem was first studied by A. Seth in [133]. He
showed how to obtain a NON-ELEMENTARY decision procedure to solve the problem. Here,
we show a seemingly simpler and inductive argument for the same problem. For this, we
observe that any sub-game involving only one phase is essentially a game on a pushdown
system. Using this crucial fact, we then show how to reduce a parity games over a multi-
pushdown systems with k- phase restriction to a parity games over MPDS with k −1 phase

149



150 CHAPTER 9. PARITY GAMES ON MPDS

restriction, thus reducing the problem to pushdown games. The complexity of our construc-
tion is also NON-ELEMENTARY.

We next show how to reduce the problem of checking satisfiability of a first order formula,
with ordering relation FO(<) over natural numbers to solving a parity games over MPDS
with bounded-phase restriction. The satisfiability problem of FO(<) over natural numbers
is known to be NON-ELEMENTARY-COMPLETE [136]. This reduction shows that the high com-
plexity required to solve parity games on MPDS with bounded-phase restriction cannot be
avoided. With this, we settle the question posed by A.Seth [133], on whether such a high
complexity for solving parity games over MPDS with bounded scope is really required.

9.2 Parity Games

Definition 11. A Parity game is defined over game graph G = (V ,E ,τ,σ) where

• V is a (possibly infinite) set of nodes.
• E ⊆V ×V is a set of edges.
• τ : V 7→ [0,1] is a function that defines ownership of the node.
• σ : V 7→ [1..m] for some m ∈N is a ranking function that assigns a rank to each node.

For any node s ∈ V , we define E(s) = {s′ | (s, s′) ∈ E }. We say a π is a finite play of G iff
π= s1s2 · · · sn such that for all i ∈ [1 . . .n−1], (si , si+1) ∈ E and E(sn) =;. π is said to be infinite
play of G iff π= s1s1s2 · · · such that for all i ∈N, we have (si , si+1) ∈ E. We will assume w.l.o.g.
that graphs we deal with do not have any dead end nodes (i.e. there is no s such that E(s) =;)
and hence that all our plays are infinite.

For any infinite play π= s0s1s2 · · · , we let S∞
π to be the set of all nodes that appear infinitely

often in the play π. We define Parity(π) = min(inf (π)) mod 2, where inf (π) = {σ(s) | s ∈ S∞
π } i.e.

it is the parity of minimum rank that is seen infinitely often along the run. An infinite play π is
winning for player-0 iff Parity(π) is 0, otherwise it is winning for player-1.

For any i ∈ [0,1], we let Vi = {s | s ∈ V ∧τ(s) = i } i.e. it is the set of positions owned by
player-i . A strategy function f for player-0 is defined as f : V ∗V0 7→ 2V \;. An infinite play
π = v0v1v2 · · · is said to be confirming to a strategy function f iff for any prefix of the play
π′ = v0 · · ·vi ∈ V ∗V0, vi+1 ∈ f (π′). An strategy function f is said to be winning for player-
0 from any node s, if the set of all possible plays π starting from the node s, such that it
is confirming to the strategy function f are winning for player-0. The strategy function for
player-1 is defined analogously. We say a node s is winning for player-0 ( or player-1 ) iff there
is a strategy function that is winning for player-0 (or player-1) from that position.

A strategy function f of player-i is said to be a memoryless strategy or positional strategy
if it is of the form f : Vi 7→ 2V \;, i.e. it only depends on single node. Any given playπ= v0v1 · · ·
is said to be confirming to the memoryless strategy function f of player-i , if for all nodes
v j ∈ Vi ( j ∈ N), we have v j+1 ∈ f (v j ). We can now define the memoryless winning strategy
function analogous to the previous case.

A natural question in this setting is whether for any position s, one of the two players has a
winning strategy from that position (determinacy) and if so whether the strategy is memory-
less (memoryless determinacy). The determinacy of parity games follows from a very general



9.2. PARITY GAMES 151

result due to Martin’s determinacy theorem which establishes the determinacy for a much
wider class of games.

Memoryless determinacy theorem for parity games [59] establishes that we not only have
determinacy, we also have that the winning player has a memoryless winning strategy.

Theorem 28. [59] Given a parity game G = (V ,E ,τ,σ), there is a partition of nodes V , V =
W0 ]W1 and memoryless strategy functions σ0,σ1 such that σi is winning for player-i from
each positions in Wi .

This still leaves the interesting question of how to determine the winning sets and the
winning strategies in specific games. While this is easy for finite graphs, extensions to infi-
nite graphs is difficult. We refer the readers to [73] for a detailed survey on infinite games in
general.

9.2.1 Some useful results on parity games

In this section, we prove a couple of facts about parity games in general, that will be useful
later in the chapter. The following Lemma states that if there is a mapping from one game
graph to another such that any move in the former can be simulated in the latter, and if such
a simulation preserves the player and the rank at each position of the play, then the winning
positions are also preserved by the mapping.

Lemma 66. Let G = (VG ,EG ,τG ,σG ) and H = (VH ,EH ,τH ,σH ) be games graphs and let F :
VG −→VH be any function such that for any position x ∈VG

1. σG (x) =σH ( F(x)), the function is rank preserving.
2. τG (x) = τH ( F(x)) i.e. x and F(x) belongs to the same player i .
3. If x → x ′ then F(x) → F(x ′).
4. If F(x) → y then there exists x ′ such that x → x ′ and F(x ′) = y.

Then, any position x is winning for player 0 (player-1) in G if and only if F(x) is winning for
player 0 (resp player-1) in H.

Proof. (⇐) Firstly we will assume that player-0 is winning from the node F(x) in H (and
hence has a strategy function h that is winning from node F(x)) and show how to construct
a strategy function g for player-0 in G , which is winning from x. For any node v ∈ VG0 , we
let g (v) = {v ′ | F(v ′) ∈ h( F(v))}. Using item 4, we can conclude that g (v) 6= ;. Consider any
infinite play π = xv1v2 · · · that is confirming to strategy function g , we will show that such a
play is winning for player-0. For this, we will consider the play F(π) = F(x) F(v1) F(v2) · · · and
show that such a play is confirming to the strategy function h. Consider any node from the
play F(vi ) ∈VH0 , we need to show that F(vi+1) ∈ h( F(vi )). But notice that vi+1 ∈ g (vi ) since π
is conforming to g . By definition g (vi ) = {v ′ | F(v ′) ∈ h( F(vi ))} and hence F(vi+1) ∈ h( F(vi )).
Hence we have that for every infinitely play in G such that it is conforming to strategy func-
tion g , there is an infinite play in H that is confirming to h with an identical sequence of
ranks. Since h is a winning strategy, Parity(F (π)) = 0 and so Parity(π) = 0. Thus, we have
that g is winning for player-0. For the other direction, since parity games are determined via
memoryless strategies, it is enough to prove that if player-1 is winning from a node F(x) in H ,



152 CHAPTER 9. PARITY GAMES ON MPDS

then player-1 is winning from x in G . But this follows from similar argument as above. Hence
we have the result.

Given a game graph G = (V ,E ,τ,σ), U ⊆V is said to be a trap of G iff E ∩U × (V \U ) =;.
i.e. once the game enters U , there is no way for it to exit. The following Lemma states that
given any parity game graph, the game graph obtained by fusing all the winning positions of
player-0 ( and that of player-1), into one node, preserves the winning positions.

Lemma 67. Let G = (VG ,EG ,τG ,σG ) be a parity game and let VH ⊆VG be a trap of G. Suppose
VH 0 and VH 1 are the winning positions for player 0 and 1 in the subgame VH . Then, consider
the game graph G ′ = (VG ′ ,EG ′ ,τG ′ ,σG ′) constructed as follows:

1. Delete the subgame VH

2. Add two new positions qw and ql .
3. If s → t is an edge in E with s 6∈VH and t ∈VH 0 then add an edge from s to qw .
4. If s → t is an edge in E with s 6∈VH and t ∈VH 1 then add an edge from s to ql .
5. Add edges from qw to qw and ql to ql .
6. For all v ∈VG \VH , we let τG ′(v) = τG (v), τG ′(qw ) = 0, τG ′(ql ) = 1.
7. For all v ∈VG \VH , σG ′(v) =σ(v) and σG ′(qw ) = 0, σG ′(ql ) = 1.

Then, any position in VG that is not in VH is winning for any player in G if and only if it is
winning for that player in the game G ′.

Proof. To prove the above Lemma , we will first prove Lemma 68 which states that given any
game G = (V ,E ,τ,σ) and set of vertices VH ⊆ V which is a trap, any position x in game G is
winning for player-0 iff it is winning in a modified game G ′ = (V ,E ,τ,σ′) where the ranking
function for vertices in the trap that is winning for player-i is replaced by i (i ∈ {0,1}) and
remains unchanged for rest of the vertices.

Lemma 68. Let G = (V ,E ,τ,σ) be a parity game. Let VH be set of positions that is a trap, let
VH 0 ⊆ VH be set of positions that are winning for player-0 and VH 1 be set of positions that are
winning for player-1 in the subgame on VH , then any position x ∈ V , is winning for player-
0 in G iff it is winning in a game G ′ = ((V ,E ,τ),σ′) where σ′ is given by, for all v ∈ V \ VH ,
σ′(v) =σ(v), for all v ∈VH 0, σ′(v) = 0 and for all v ∈VH 1, σ′(v) = 1.

Proof. (⇒)
Let g be any strategy funtion of G which is winning for player-0 from node x. We will

show that the same strategy function is also winning in G ′. Assume any play π, starting at x
and which confirms to strategy function g . Note that π is also a valid play in G ′, confirming to
g . Supposing π is play that does not involve vertices from VH then there is nothing to prove,
since the ranking function is the same for nodes not in VH . So we will assume that π involves
nodes from VH .

Since π is winning for player-0 and by assumption involves vertices from VH , note that
VH is a trap, hence there is a finite prefix of π after which all the vertices visited are from VH ,
in-fact VH0 (since π is winning for player-0 and nodes in VH 1 are winning for player-1 in the



9.2. PARITY GAMES 153

subgame on VH ). Hence the minimum parity of nodes visited infinitely often for the play π
in G ′ is 0 and hence winning for player-0.

(⇐)
For this direction, from determinacy of parity games, we only need to prove that for any

node x, if player-1 is winning from it in G , he is also winning from the same node in G ′. But
such a proof is very similar to the case above.

Next we will prove Lemma 69 which states that any position x in a game G is winning for
player-0 iff it is winning in a modified game G ′ where the vertices that are winning for player-
0 in any trap are reassigned as player-0 positions and vertices that are winning for player-1
are reassigned as player-1 positions.

Lemma 69. Let G = (V ,E ,τ,σ) be any parity game, let VH =VH 0]VH 1 be a trap, where VH 0 are
winning positions of player-0 and VH 1 are winning positions of player-1 in VH . Any position
x is winning in G iff if it is winning in a similar game G ′ = (V ,E ,τ′,σ) where τ′(u) = τ(u) if
u ∈V \VH , τ′(u) = 0 if u ∈VH 0 and τ′(u) = 1 if u ∈VH 1

Proof. (⇒) Let g be any strategy funtion of G which is winning for player-0 from node x. We
will show how to construct a strategy function g ′ for player-0 in G ′ such that he can win any
play starting at node x.

• For any v ∈V \VH such that τ(v) = 0, we let g ′(v) = g (v).
• For any v ∈VH0 such that τ(v) = 0, we let g ′(v) = g (v).
• For any v ∈VH0 such that τ(v) = 1, we let g ′(v) = v ′ for some v ′ ∈ E(v).

It is easy to see that such a strategy function is winning for player-0 from node x. If the
play never enters VH , it is winning since g was originally winning. If it ever enters VH0 , notice
that g was winning for any arbitrary choice of player-1, from this we can conclude that g ′ is
winning.

(⇐) The other direction is obtained via the determinacy and the symmetric argument for
strategies for player-1.

With these two Lemmas in place, the proof becomes simpler. Now let G1 = (VG ,EG ,τG1 ,
σG ) be the game obtained from G , by applying Lemma 68 and let G2 = (VG ,EG ,τG1 ,σG2 ) be
a game obtained from G1, by applying Lemma 69. Now it is easy to see that we can define
a mapping F : VG2 7→ VG ′ which has the properties required by Lemma-66. The mapping
F : VG2 7→VG ′ is given by

• For any v ∈VG2 \VH , we let F(v) = v
• For any v ∈VH0 , we let F(v) = qw

• For any v ∈VH1 , we let F(v) = ql

From this it is easy to see that for any x ∈VG \VH is winning in G iff it is winning in G ′.



154 CHAPTER 9. PARITY GAMES ON MPDS

9.2.2 Parity games on pushdown system

Parity games on finite state system have been well studied, from the time they were first intro-
duced in [116]. Extensions of parity games to finitely described infinite structures have also
been studied in past. The key step in this direction has been the result of I. Walukiewicz [143],
showing how winners can be determined in pushdown games, i.e. games played on config-
uration graphs generated by a pushdown system. Since parity games has close connections
with model checking mu-calculus, such a result also provides an algorithm to model check
mu-calculus formulas over pushdown systems. We define parity game on pushdown systems
below.

Definition 12 (Parity game on PDS). Given a pushdown system P = (Q,Γ,∆, q0) and mappings
τ : Q 7→ [0,1] and σ : Q 7→ [1..m], parity game on PDS is simply a parity game played on the
game graph G = (C (P ),−→,τ,σ), where τ and σ are extended to configurations as follows. For
any configuration of the form c = (q,γ), τ(c) = τ(q) and σ(c) =σ(q).

In [47, 132], T. Cachat and O. Serre independently proved that the set of all winning po-
sitions of a particular player in a parity game played on a pushdown system is effectively
regular. This can also be obtained using tree automata techniques as shown in [93].

Theorem 29. [47, 132] The set of all winning positions for player 0 (or player 1) in a pushdown
game can be described by an effectively constructible, exponential sized finite state automaton
over the alphabet Γ∪Q which accepts a word w q ∈ Γ∗Q if and only if the configuration (q, w)
is winning for player 0 (or player 1).

We will use this finite representation in our construction for bounded-phase games.

9.3 Bounded phase parity games on MPDS

For purpose of defining the bounded-phase parity games, we will first enhance the configura-
tions of a multi-pushdown system with the information about number of phases remaining
and the identity of current stack.

Definition 13 ( Bounded-phase parity games). Given a multi-pushdown system M = (n,Q,
Γ,∆, q0) and a constant k, we define the set of enhanced configurations of M as E k (M) as
C × [0..n]× [1..k]. Such an enhanced configuration, apart from containing configuration of
the multi-pushdown system, also records the currently active stack and number of remaining
phases. We will omit the k and simply refer to it as E (M) when ever k is clear from the context.
At beginning of any computation, we let the (penultimate) current stack component of E (M)
to be 0, indicating that none of the stacks are active. From such a position, the stack gets active
on the very first pop or zero test. We define the transition relation as follows. Given any
two configurations (c, i , j ), (c ′, i ′, j ′) ∈ E (M), we say (c, i , j ) (c ′, i ′, j ′) iff c τ−→c ′ and one of the
following holds.

• If τ= (q,Popl , q ′) or τ= (q,Zerol , q ′) for some l ∈ [1..n] and i = 0 then j = j ′ = k and i ′ = l .

• if τ = (q,Pushk (a), q ′) or τ = (q,Intk , q ′) for some k ∈ [1 . . .n] or τ = (q,Popi , q ′) or τ = (q,
Zeroi , q ′) then i ′ = i , j ′ = j



9.4. DECIDABILITY OF BOUNDED PHASE PARITY GAMES 155

• if τ= (q,Popl (a), q ′) or τ= (q,Zerol , q ′) for some l 6= i and j > 1 then i ′ = l , j ′ = j −1

Let τ : Q 7→ [0,1] be a map that designates each state to a player, σ : Q 7→ [1..m] be a map
that assigns rank to each state and k be any natural number, then a k-bounded-phase parity
game is a parity game played on the game graph G = (E (M), ,τ,σ), where τ,σ are extended
to configurations as follows. For any (c, i , j ) ∈ E (M), we let τ((c, i , j )) = τ(State(c)) and σ((c, i ,
j )) =σ(State(c)). We will denote such a game as G = (k, M ,τ,σ)

Given a bounded-phase parity game G = (k, M ,τ,σ) and a node s ∈ E (M), we would like
to determine whether there is a strategy function g that is winning for player-0 from the node
s.

9.4 Decidability of bounded phase parity games

Our construction for solving the k bounded-phase parity game proceeds inductively on the
value of k. The intuitive idea is to first show that if the game is a single phase game, then the
game graph of such a game actually corresponds to just the positions of a pushdown game
and by Theorem 29 we know the set of winning positions are recognisable.

Secondly observe that that the positions in the game graph are stratified in the following
sense – if (c ′, i ′,k ′) is reachable from (c, i ,k) then k ′ ≤ k. From this, we know that if the game
were to enter the last phase, it will continue to remain in that phase. Hence any position in the
last phase corresponds to a position of a pushdown game, which is known to be recognisable.
Using this information, we will go onto show how to reduce the k bounded-phase game to a
k −1 bounded-phase game.

9.4.1 Decidability of 1-phase game

In an 1-phase game, the configurations can be of the form (c, i ,1) with i 6= 0 or of the form
(c,0,1). We will show in each of the cases that the set of positions winning for player-0 is
a recognisable set (i.e. it can be effectively determined). For the sub-game involving only
configurations of the form (c, i ,1), we will show that such positions correspond to positions
of a pushdown game. Now using the fact that set of all positions winning for player-0 in
pushdown game is a recognisable set, we will show that nodes that are winning for player-0
in sub-game involving configurations of the form (c, i ,1) is also a recognisable set. For the
case involving configurations of the form (c,0,1), we will reduce such a sub-game to a parity
game involving only finitely many states.We formalise the details below.

Lemma 70. Consider any bounded-phase parity game G = (1, M ,τ,σ), where M = (n,Q,Γ,∆,
q0). We can effectively determine the set of all positions of the form E 1(M), i ∈ [0..n] , that are
winning for player 0.

Proof. The nodes in E 1(M) are either of the form (c,0,1) or of the form (c, i ,1) for some i 6= 0.
We will first consider the nodes of the form (c, i ,1) and show that the winner can be de-
termined. The general idea of the proof is to first construct a pushdown system for each
i ∈ [1..n], from the given multi-pushdown system M . Such a pushdown system will simu-
late the moves of stack-i by using its own stack for any operations on stack i , and ignoring



156 CHAPTER 9. PARITY GAMES ON MPDS

the pushes on other stacks. The pushdown system (corresponding to stack-i ) is defined as,
Pi = (Q,Γ,δi , q0), where δi is defined as follows.

• For every τ= (q,Popi (a), q ′) ∈∆ , we add τ′ = (q,Pop(a), q ′) ∈ δi . We add similar transitions
for τ= (q,Zeroi (a), q ′) ∈∆, τ= (q,Pushi (b), q ′) ∈∆ and τ= (q,Inti , q ′) ∈∆

• For j 6= i and for every τ = (q,Push j (b), q ′) ∈ ∆ and τ = (q,Int j , q ′) ∈ ∆, we add τ′ = (q,Int,
q ′) ∈ δi .

The winning positions of each player of the sub-game with configurations of the form
(c, i ,1) with i 6= 0, can be captured using the pushdown game H = (C (Pi ),→,τ,σ). Let the
function F : E 1(M) 7→C (Pi ) be given by

F(((q,γ1,γ2, · · · ,γn), i ,1)) = ((q,γi ))

The function F simply disregards content of stacks other than i and keeps stack i intact.
Following set of claims shows that such a mapping will preserve the properties required by
Lemma 66.

Claim 11. For any v ∈ E 1(M), we have τ(v) = τ( F(v)) and σ(v) =σ( F(v)).

Proof. Straight forward from the fact that F preserves the state.

Claim 12. For any u = (c, i ,1), v = (c ′, i ,1) ∈ E (M), if (u v) then we have F(u)−→ F(v)

Proof. Since we have assumed i 6= 0, by definition the allowed operations does not include
the transitions of the form Q × (

⋃
a∈ΓPop j (a)∪Zero j )×Q for some j 6= i . Let us assume that

c = (q,γ1, · · · ,γn) and c ′ = (q ′,γ′1, · · · ,γ′n), then F(c) = (q,γi ) and F(c ′) = (q ′,γ′i )

• Suppose the transition used was of the form (q,Push j (a), q ′) ∈ ∆, for some j 6= i , then we
have that γ′j = aγ j and for all l 6= j , we have γ′l = γl (more specifically γi = γ′i ). Further by

construction, we also have the transition (q,Int, q ′) ∈ δi . From this we get (q,γi )−→(q ′,γ′i )

• Suppose the transition used was of the form (q,Pushi (a), q ′) ∈∆, then we have that γ′i = aγi

and for all j 6= i , we have γ′j = γ j . Further by construction, we also have the transition (q,

Push(a), q ′) ∈ δi . From this we get (q,γi )−→(q ′,γ′i )

• Suppose the transition used was of the form (q,Popi (a), q ′) ∈ ∆, then clearly for all j 6= i ,
γ′j = γ j and γi = aγ′i . By definition we have a transition (q,Pop(a), q ′) ∈ δi and so we have

(q,γi )−→(q ′,γ′i ).

• We will omit the other cases, since they are similar to one of the cases mentioned above.

Claim 13. Suppose for some v ∈ E (M), we have F(v)−→d, then there is an u ∈ E (M) such that
F(u) = d and v u

Proof. Let us assume that v = (q,γ1, · · · ,γn) then clearly F(v) = (q,γi ). Let d = (q ′,γ′i ).

• Suppose τ = (q,Pop(a), q ′) ∈ δi was the transition used in F(v)−→d . Clearly γi = aγ′i . By
construction, τwas added in first place due to existence of some transition τ′ = (q,Popi (a),
q ′) ∈∆. We will let u = ((q ′,γ1, · · · ,γi−1,γ′i , · · · ,γn), i ,1). Clearly v u and F(u) = d .



9.4. DECIDABILITY OF BOUNDED PHASE PARITY GAMES 157

• The case where τ = (q,Zero, q ′) ∈ δi or τ = (q,Push(a), q ′) ∈ δi was the transition used in
F(v)−→d is similar to case mentioned above.

• Suppose τ = (q,Int, q ′) ∈ δi was the transition used in F(v)−→d . Note that we have such a
transition in δi due to presence of a transition of the form τ′ ∈ (

⋃
j 6=i Q × ({Push j (a) | a ∈

Γ}∪ {Int j })×Q)∪ (Q × {Inti }×Q). We will assume that the transition τ was added due to
existence of τ′ = (q,Push j (a), q ′) ∈∆, rest of the cases are straight forward. In this case, we
will let γ′j = aγ j and for all l 6= j , we will let γl = γ′l . It is easy to see that v u and F(u) = d .

Thus using Lemma 66, the position (c, i ,1) in our subgame is winning for a player-i if and
only if F((c, i ,1)) is winning for player-i in the pushdown game (C (Pi ),→,τ,σ). Thus, the set
of all winning positions of a 1-phase game involving stack-i is given by S = {(c, i ,1) | F((c, i ,
1)) ∈ RPi } where RPi is the set of winning positions in the game (C (Pi ),→,τ,σ). It is easy to
see that S is recognisable set since RPi is recognisable by Theorem 29.

Finally we consider positions of the form (c,0,1). Any configuration (c ′, i ,k ′) reached from
configuration (c,0,1) must necessarily have k ′ = 1. Further, if the game ever enters a position
with i 6= 0, from the above, we may immediately determine the winner of the game from
thereon (Since we already know how to compute set of all winning positions of a 1-phase
game involving stack-i ). This allows us to formulate a finite state game whose solution deter-
mines the winning positions of the form (c,0,1). Note that the game can remain in a position
of the form (c,0,1) iff the transitions involve only push moves or internal moves. The moment
a pop move is made, the stack is fixed and the game enters a configuration of the form (c, i ,
1), for some i ∈ [1..n].

Let Bi = (QBi ,Γ∪Q, si ,δBi ,Fi ) be the deterministic finite state automaton that accepts
a word of the form ⊥wR q (where (q, w⊥) is a configuration of Pi ) iff it belongs to winning
positions of game (C (Pi ),→,τ,σ). Such an automata is guaranteed by Theorem 29, we note
that the size of such an automata is exponential in the size of the pushdown system. The finite
state game we have in mind is one which instead of keeping track of the contents of each
stack i , only keeps track of the top of stack symbol and the state reached by Bi on reading the
contents of that stack. We plan to do this only for the push and internal moves and hence it
is indeed feasible. Any pop or zero test moves would commit to a stack (in other words move
to a configuration of the form (c, i ,1) for i 6= 0), in which case we may immediately determine
the winner using the state of Bi . The details are formalised below.

The state space of the finite state game H is (Q ×Γn ×QB1 ×QB2 · · ·QBn )∪ {qw , ql }, we will
refer to this as V (H). The state qw is entered on determining that the game will be won by
player 0 and ql if it is determined that the game will be lost by player 0 (or equivalently won
by player 1). The edges −→H of the game graph are given as follows:

1. qw → qw

2. ql → ql

3. For all i ∈ [1..n], we have if (q,Pushi (b), q ′) ∈∆, then we have (q, a1, · · · , an , p1, · · ·pn) → (q ′,
a1, · · · ,b, · · · , an , p1, · · · ,δBi (pi , ai ), · · · , pn), for all a1, a2, · · · , an ∈ Γ and pi ∈QBi .

4. For all i ∈ [1..n], we have if (q,Inti , q ′) ∈∆ then (q, a1, · · · , an , p1, · · ·pn) → (q ′, a1, · · · , an , p1,
· · · , pn). This handles the case of internal moves.



158 CHAPTER 9. PARITY GAMES ON MPDS

5. If (q,Popi (ai ), q ′) ∈ ∆ then if δBi (pi , q ′) ∈ Fi , we have (q, a1, · · · , an , p1, · · · , pn) → qw else if
δBi (pi , q ′) 6∈ Fi , we have (q, a1, · · · , an , p1, · · · , pn) → ql

6. If (q,Zeroi , q ′) ∈ ∆ then, if δBi (si ,⊥.q ′) ∈ Fi , we have (q, a1, · · · , ai−1,⊥, ai+1 · · · , an , p1, · · · ,
pi−1, si , pi+1, pn) → qw else if δBi (si ,⊥.q ′) 6∈ Fi , we have (q, a1, · · · , ai−1,⊥, ai+1 · · · , an , p1,
· · · , pi−1, si , pi+1, · · · , pn) → ql

Now consider the ranking function σ′ that assigns 0 to qw , 1 to ql , i.e. σ(qw ) = 1 and
σ(ql ) = 0 and for all other positions of the form c = (q, a1, · · · , an , p1, · · · , pn), we have σ′(c) =
σ(c). Similarly, consider τ′ that assigns τ′(qw ) = 0 and τ′(ql ) = 1. Further τ′(c) = τ(c) for any
c = (q, a1, · · · , an , p1, · · · , pn), as in above case. We claim that nodes in the subgame involving
configurations of the form (c,0,1) can be reduced to the finite state parity game given by
H = (V (H),−→H ,σ′,τ′).

The idea now is to provide a mapping from positions of the form (c,0,1) in G to positions
in H . For this purpose, we wish to first eliminate from G , using Lemma 67, any positions of
the form (c, i ,1) for i 6= 0. Note that, the set of all position S = {(c, i ,1) | (c, i ,1) ∈ E (M), i 6= 0}
is a trap in G . Further let W ⊆ S be the set of winning positions for player-0 and let L ⊆ S
be the set of winning positions for player-1. Now consider the game graph G ′ obtained by
deleting S from G , adding two new vertices pwi n , plose replacing all edges to W by edges to
pwi n and edges to L by edges to plose . Then by application of Lemma 67 a position in E (M)\S
is winning for any player iff it is winning in G ′. Observe that the set E (M) \ S is exactly {(c,0,
1)|c ∈C (M)}

Our aim is now to use Lemma 66 to determine the winning position of players in G ′ using
the finite game graph H . Towards this, we will now provide a mapping F from positions of G ′

to positions in H as follows.

• F((q, a1γ1, a2γ2, · · · , anγn),0,1)) = ((q, a1, · · · , al ,δP
1 (x1,γR

1 ),δP
2 (x2,γR

2 ), · · · ,δP
n (xn ,γR

n ))
• F(pwin) = qw and F(plose) = ql .

Lemma 71. A position (c,0,1) is winning for player-i in G ′ if and only if F((c,0,1)) is winning
for player-i in H.

Proof. Proof follows directly from the following set of simple to see claims and Lemma-66.

Claim 14. For any (c,0,1), (c ′,0,1) ∈ E (M). if (c,0,1)
τ→G ′ (c ′,0,1), then F(c,0,1) →H F(c ′,0,1).

Further if (c,0,1) → pwin ((c,0,1) → plose), we have F(c,0,1) →H qw ( F(c,0,1) →H ql ))

Proof. We fix c = (q, a1γ1, · · · , anγn) for some q ∈Q, a1γ1, · · · , anγn ∈ Γ∗⊥.
Suppose (c,0,1)

τ→G ′ (c ′,0,1), where c ′ is of the form c ′ = (q ′,γ′1, · · · ,γ′n) for some q ′ ∈Q,γ′1,
· · · ,γ′n ∈ Γ∗⊥. From definition of F we have F(c,0,1) = ((q, a1, · · ·an , p1, · · · , pn), where pi =
δP

i (xi ,γR
i ). Clearly τ cannot be a transition of type Q ×⋃

i∈[1..n]{Popi (a) | a ∈ Γ}∪ {Zeroi }×Q
(i.e. it cannot be any transition that commits the phase to a stack).

Let us suppose that τ = (q,Pushi (a), q ′) ∈ ∆. Then clearly γ′i = aaiγi and for j 6= i γ′j =
γ j . By construction, we have τ′ = ((q, a1, · · · , an , p1, · · · , pn), (q ′, a1, · · · , ai−1, a, · · · , an , p1,
· · · ,δi (pi , ai ), · · · , pn) ∈ −→H . From this we have F(c,0,1) →H F(c ′,0,1) = ((q ′, a1, · · · , a, ai+1,
· · · an , p1, · · · , p ′

i , pi+1, · · · , pn).
The case for τ being of type Inti is similar to the above case.



9.4. DECIDABILITY OF BOUNDED PHASE PARITY GAMES 159

Now suppose (c,0,1) →G ′ pwin, then clearly (c,0,1)
τ→G (c ′, i ,1), for some (c ′, i ,1) ∈W . Let

c ′ = (q ′,γ′1, · · · ,γ′n) for some q ′ ∈Q,γ′1, · · · ,γ′n ∈ Γ∗⊥. Suppose τwas a pop operation Popi (ai ),
then γ′i = γi , since (c ′, i ,1) ∈W , we have δi (pi , q ′) = qw , hence we have F(c,0,1) →H qw . The
case where τ is a zero test or (c ′, i ,1) ∈ L are similar.

Claim 15. For any (c,0,1) ∈ E (M), if F(c,0,1) →H d for some d ∈V (H)\{qw , ql } , then we have
some (c ′,0,1) ∈ E (M) such that F(c ′,0,1) = d and (c,0,1)

τ→ (c ′,0,1). Further if d = qw (d = ql )
then we have (c,0,1)−→G ′ pwin ( (c,0,1)−→G ′ plose ).

Proof. We will first fix c = (q,γ1, · · · ,γn) then F(c,0,1) = (q, a1, · · · , an , p1, · · ·pn) → (q ′, a1, · · · ,
b, · · · , an , p1, · · · ,δP

i (pi , ai ), · · · , pn), where ai = Top(γi ), pi = δP
i (xi ,γR

i ).
Suppose that the transition used for the move F(c,0,1) →H d be any transition added in

3 (other case of transition being one added in 4 is similar ). We know that this was added due
to existence of a transition (q,Pushi (b), q ′) ∈ ∆i . Let c ′ = (q ′,γ′1, · · · ,bγ′i , · · ·γ′n), clearly (c,0,
1)−→(c ′,0,1) and F(c ′,0,1) = d .

If F(c,0,1) →H qw , then clearly the corresponding transition used to add such a transition
was either a pop Popi or a zero Zeroi move. Let us suppose that the transition was (q,Zeroi ,
q ′) ∈∆i ( the other pop case is similar). Clearly such a move fixes a stack i , let c ′ = (q ′,γ1, · · · ,
γ′i−1,⊥, · · · ,γn). Clearly we have (c,0,1) (c ′, i ,1). But such a position is a trap, further it is
clear that (c ′, i ,1) ∈W (i ) (since F((c,0,1) qw ). By definition of G ′, we have (c,0,1) ′

M pwin.

Claim 16. The function F preserves player position and rank.

Proof. Notice that functions τ and σ depend only on states, the proof is immediate from this
fact.

From this, proof of 71 follows.

In addition note that the set of positions of the form (c,0,1) that are winning for player 0
are precisely those in SWin = {w | f (w) is winning for player-0} and this clearly is a recogniz-
able set. This completes the proof of Lemma 70.

9.4.2 Decidability of k phase game

Next, using similar ideas to the ones elaborated above, we show that we can reduce the
problem of determining the winning positions of a k bounded-phase MPDS game to deter-
mining winning positions of a different k −1 bounded-phase MPDS game .

The idea is to use the fact that 1-phase sub-game of a k-phase game is determined and
reduce the k-phase bounded-phase MPDS game to a k − 1 phase MPDS game. Notice that
after execution of k − 1 phases, what remains is a 1-phase sub-game. In this 1-phase sub-
game, the stack contents of all other stacks (exclusing the currently active stack) are irrelevant
and hence it can easily be simulated by a pushdown automata. Let K = {(c, i ,1) | (c, i ,1) ∈



160 CHAPTER 9. PARITY GAMES ON MPDS

E k ∧ i ∈ [1..n]}. Recall the pushdown automata Pi constructed in Lemma 70. As in the case
of Lemma 70, we can provide a mapping F from the sub-game involving positions from K

to positions in the game H = (C (Pi ),−→,τ,σ), such that F satisfies the properties of Lemma
66 (as a matter of fact, the game graph K is isomorphic to the trap consisting of positions
of the form (c, i ,1), i 6= 0 in the game graph of a 1-phase parity game). From this, we get the
following Lemma which states that the set of winning positions of a 1 phase sub-game can be
effectively determined using the set of winning positions of the pushdown system Pi .

Lemma 72. s ∈ K is winning for player-0 iff F(s) is winning for player-0 in the pushdown
game H = (C (Pi ),−→,τ,σ)

Now to handle the case of k-phase game, we first invoke Theorem 29 to obtain Bi = (QBi ,
Γ∪Q, si ,δBi ,Fi ) that recognises the winning positions of the pushdown system Pi . Suppose
at the end of k −1 phase, we know the state that the automata Bi reaches on reading stack
i , then we can at the beginning of phase k determine whether player-0 is winning from that
position or not. The case for 1 phase game was easy since we had only pushes to contend with
(and hence it was possible to simulate Bi using only the state space). However, in case of a
k−1 phase game, we need to also handle pop operations. Hence it is not possible to simulate
Bi automata by just keeping it in state space. The informal idea is to keep the Bi automata as
part of state space and simulate it on each push onto the stack-i . In addition, on each push,
along with the stack symbol, we also store in the stack, the state of Bi that was reached before
the current push. Now each time a pop operation is performed, we can retrieve the correct
state of the Bi automata. The details are formalised below.

Let (k, M ,τ,σ) be a bounded-phase game with M = (n,Q,Γ,∆, q0) with k > 1. We define
the new MPDS as M(k) = (n,QM(k),ΓM(k),∆

′, q M(k)
0 ), where

• QM(k) =Q ×QB1 ×·· ·×QBn ×Γn × [0..n]× [2..k]∪ {qw , ql }
• ΓM(k) =⋃

i∈[1..n](Γ×QBi )∪ {⊥}
• q M(k)

0 = (q0, s1, · · · , sn ,⊥n ,0,k)

The transition relation ∆′ is defined as follows

1. if (q,Pushi (b), q ′) ∈∆ then we have for all i ∈ [1..n], pi ∈QBi , m ∈ [0..n], l ∈ [2..k] and ai ∈ Γ,
((q, p1, · · · , pn , a1, · · · , an ,m, l ), Pushi (ai , pi ), (q ′, p1, · · · , pi−1,δP

i (pi , ai ), · · · , pn , a1, · · · , ai−1,
b, ai+1, · · · , an ,m, l )) ∈ ∆′. We always store the top of stack in the state space. Every time
we push (say b), the previous top of stack in the state (ai ) is pushed into the actual stack
and the top of stack in the state is replaced with the current push. Further the component
corresponding to Bi automata in the state is also updated.

2. if (q,Inti , q ′) ∈∆ then we have for all i ∈ [1..n], pi ∈QBi and ai ∈ Γ, ((q, p1, · · · , pn , a1, · · · , an ,
m, l ), Inti , (q ′, p1, · · · , pn , a1, · · · , an ,m, l )) ∈∆′.

3. For each (q,Pop j (a j ), q ′) ∈∆ we add the following transitions.

• ((q, p1, · · · , pn , a1, · · · , an ,0,k),Pop j (b j , p ′
j ), (q ′, p1, · · · , p j−1, p ′

j , p j+1, · · · , pn , a1, · · · , a j−1,

b j , a j+1, · · · , an , j ,k)) ∈ ∆′, for all b j ∈ Γ. This transition corresponds to the case where
no pop or zero test operation were performed previously (currently active stack remains
zero), in this case the currently active stack is updated with j and the phase component
is left unchanged.



9.4. DECIDABILITY OF BOUNDED PHASE PARITY GAMES 161

• ((q, p1, · · · , pn , a1, · · · , an , j , l ),Pop j (b j , p ′
j ), (q ′, p1, · · · , p j−1, p ′

j , p j+1, · · · , pn , a1, · · · , a j−1,

b j , a j+1, · · · , an , j , l )) ∈∆′. The pop happens in the currently active stack and hence there
is no change in phase.

• For any l > 2, i 6= j , ((q, p1, · · · , pn , a1, · · · , an , i , l ),Pop j (b j , p ′
j ), (q ′, p1, · · · , p j−1, p ′

j , p j+1,

· · · , pn , a1, · · · , a j−1,b j , a j+1, · · · , an , j , l − 1)) ∈ ∆′. This transition corresponding to pop
from stack- j when the currently active stack is i . The phase number and the stack num-
ber are adjusted accordingly.

• For any i 6= j and δ(p ′
j , q ′) ∈ F j , ((q, p1, · · · , pn , a1, · · · , an , i ,2),Int, qw ) ∈∆′. During the last

phase, instead of entering the phase, we goto qw if the entered configuration is winning
for player-0

• For any i 6= j and δ(p ′
j , q ′) ∉ F j , ((q, p1, · · · , pn , a1, · · · , an , i ,2),Int, ql ) ∈∆′. During the last

phase, instead of entering the phase, we goto ql if the entered configuration is winning
for player-1

4. For each (q,Zero j , q ′) ∈∆ we add the following transitions.

• ((q, p1, · · · , pn , a1, · · · , a j−1,⊥, · · · , an ,0,k),Zero j , (q ′, p1, · · · , p j−1, · · · , pn , a1, · · · , a j−1,⊥,
· · · , an , j ,k)) ∈∆′.

• ((q, p1, · · · , pn , a1, · · · , a j−1,⊥, · · · , an , j , l ),Zero j , (q ′, p1, · · · , p j−1, · · · , pn , a1, · · · , a j−1,⊥,
· · · , an , j , l )) ∈∆′, for all l ∈ [2..k].

• For all l > 2 and i 6= j , ((q, p1, · · · , pn , a1, · · · ,⊥, a j−1, · · · , an , i , l ), Zero j , (q ′, p1, · · · , p j−1, · · · ,
pn , a1, · · · , a j−1,⊥, · · · , an , j , l −1)) ∈∆′.

• For any i 6= j and δ(s j , q ′) ∈ F j , ((q, p1, · · · , pn , a1, · · · , a j−1,⊥, · · · , an , i ,2), Int, qw ) ∈∆′.
• For any i 6= j and δ(s j , q ′) ∈ F j , ((q, p1, · · · , pn , a1, · · · , a j−1,⊥, · · · , an , i ,2), Int, qw ) ∈∆′.

5. We further add (ql ,Int, ql ) and (qw ,Int, qw ) to the transitions

Observe that any run of this system may involve at most k −1 phases, as every change of
phase results in a reduction in the last component (of the state) and after k − 1 reductions,
leads to one of the states qw or ql (where only skip moves are enabled).

For correctness of the construction, we first define a ranking function σ′ as follows.
σ′(qw ) = 0 , σ′(ql ) = 1 and for all other states s = (q, p1, · · · , pn , a1, · · · , an) ∈ QM(k), we let
σ′(s) =σ(q) . Similarly we define τ′ as τ′(qw ) = 0 , τ′(ql ) = 1 and for all other states s = (q, p1,
· · · , pn , a1, · · · , an) ∈QM(k), we let τ′(s) = τ(q) and we show that we may associate positions of
the form (c, i ,k) in the bounded-phase game on (k, M ,τ,σ) with positions of the form (d , i ,
k −1) in the bounded-phase game on (k −1, M(k),τ′,σ′) that preserves the winner.

For a sequence w = an an−1 . . . a1a0 ∈ (Γ \ {⊥})+⊥ and 1 ≤ j ≤ l , let ρ j (w) = (an−1,
pn−1) . . . (a2, p2)(a1, p1)(a0, p0)⊥ (we let ρ j (⊥) =⊥) where p0 = s j and pi = δB j (pi−1, ai−1) for
all i ∈ [1..n]. Further, let δ j (w) = δB j (pn−1, an−1) (we let δ j (⊥) = p0). We now define the map
F from the k-bounded-phase parity game on (k, A,τ,σ) to the k − 1-bounded-phase parity
game on the game (k −1, A(k),τ,σ) as follows:

- F((q,γ1, · · · ,γn), i , j ) = (((q,δ1(γ1), · · · ,δn(γn),Top(γ1), · · · ,Top(γl ), i , j ),ρ1(γ1), · · · ,ρl (γn)),
i , j ), if j > 1. Where Top is a function that returns top of the stack.

- F((q,γ1, · · · ,γn), i ,1) = qw if (q,γ1, · · · ,γn) is winning for player 0.
- F((q,γ1, · · · ,γn), i ,1) = ql if (q,γ1, · · · ,γn) is losing for player 0.



162 CHAPTER 9. PARITY GAMES ON MPDS

Lemma 73. The following holds

1. The map F preserves ownership and rank of all positions (c, i , j ) with j > 1.
2. For any configuration (c, i , j ) if (c, i , j ) → (c ′, i ′, j ′) with j ′ > 1 then F((c, i , j )) → F((c ′, i ′, j ′))
3. For any configuration (c, i , j ) if F(c, i , j ) → d for any d 6∈ {qw , ql } then there is (c ′, i ′, j ′) with

(c, i , j ) → (c ′, i ′, j ′), j ′ > 1 and F(c ′, i ′, j ′) = d.
4. if (c, i ,2) → (c ′, i ′,1), then F(c, i ,2) → qw iff (c ′, i ′,1) is a winning position.
5. if (c, i ,2) → (c ′, i ′,1), then F(c, i ,2) → ql iff (c ′, i ′,1) is a losing position.

Hence we can effectively determine the set of all positions that are winning for player 0, in
the bounded-phase parity game (k, M ,τ,σ) .

Proof. This proof is very similar to proof of Lemma 70, hence we will omit it.

Note that we have successfully reduced a k-bounded-phase game to a k − 1-bounded-
phase game. However note that each such reduction is exponential in the size of previous
system. Since we do as many such reductions as the number of phases, the overall complexity
will be a tower of exponents ( size of tower being the number of phases). Hence the overall
reduction is a NON-ELEMENTARY. The question now is whether such a NON-ELEMENTARY

construction can be avoided. We will in sequel show a lower bound that suggests that such a
complexity cannot be avoided.

9.5 Lower bounds for bounded phase parity games

We show that the satisfiability of a first order formula with ordering relation over natural num-
bers, can be reformulated as a bounded-phase parity game over MPDS. We first briefly recall
the first order theory of natural numbers with ordering relation (FO(<)).

Let V be countably infinite set of variables, we will use x, y, z, x1, x2 · · · to refer to the vari-
ables in V . The set of terms in FO(<) is defined as t := x | t < t | t = t . The set of formulas is
defined to be Ψ := t | ¬t |Ψ∨Ψ |Ψ∧Ψ | ∀xΨ | ∃xΨ. The notion of free, bound (quantified)
variable are defined as usual. We write FreeVar(Ψ) ⊆ V to denote the set of all free variables
(unquantified variables) of Ψ.

Given any formula Ψ over variables V , we define a valuation function as µ : V 7→N. The
notion of a valuation function satisfying a formula is inductively defined below.

• µ |= (x < y) iff µ(x) <µ(y)
• µ |= (x = y) iff µ(x) =µ(y)
• µ |= (¬Ψ′), iff µ 6|=Ψ′

• Ψ=Ψ1 ∨Ψ2 iff µ |=Ψ1 or µ |=Ψ2

• Ψ=Ψ1 ∧Ψ2 iff µ |=Ψ1 and µ |=Ψ2

• Ψ=∃x.Ψ1 iff there is a m ∈N such that µ[x ← m] |=Ψ1 , where µ[x ← m] is a new valuation
function µ′, such that for y 6= x, µ′(y) =µ(y) and µ′(x) = m.

• Ψ=∀x.Ψ1 iff for all m ∈N, we have µ[x ← m] |=Ψ1



9.5. LOWER BOUNDS FOR BOUNDED PHASE PARITY GAMES 163

Given any formula Ψ and a valuation function µ, we call µ a model of Ψ, iff µ |= Ψ. A
formula with no free variables is called a sentence. A sentence is said to satisfied iff there is
some valuation function that satisfies it.

Note that negation is defined only on the atomic formulas. However, given any formula
Ψ, we inductively define Dual(Ψ) as follows.

• Dual(x = y) =¬(x = y)
• Dual(x < y) =¬(x < y)
• Dual(Ψ1 ∧Ψ2) =Dual(Ψ1)∨Dual(Ψ2)
• Dual(Ψ1 ∨Ψ2) =Dual(Ψ1)∧Dual(Ψ2)
• Dual(∃x.Ψ) =∀x.Dual(Ψ)
• Dual(∀x.Ψ) =∃x.Dual(Ψ)

It is easy to see that for any given formula Ψ and a model µ, µ |=Ψ iff µ 6|=Dual(Ψ).

Given a formula Ψ and its model µ we define a linearisation of µ w.r.t. Ψ to be a word
of the form x1a j1 x2a j2 · · ·xn a jn⊥, where {x1, · · · , xn} = FreeVar(Ψ) and for each k ∈ [1..n], jk +
jk−1 · · · jn =µ(xik ).

Similarly, for any set of variables V , we say a string (α= xn ain xn−1ain−1 · · ·x1ai1 ) ∈ (V ∪a)∗

is a valuation string if for all l ,k ∈ [1..n], we have l 6= k =⇒ xl 6= xk (i.e. each xi appears at most
once ). Firstly, given any valuation string α = xn ain xn−1ain−1 · · ·x1ai1 and a set of variable V ,
we define µV

α as, for any j ∈ [1..n], µV
α (x j ) = ai j +ai j−1 +·· ·+ai1 , i.e. it maps the variables x j ,

to a value equal to number of a’s appearing before it in α. For any x ∈ V such that x does not
appear in α, we let µα(x) = 0.

Given any formulaΨ, we use C l (Ψ) to indicate the set of all formulas obtained by closing
the formula Ψ over subformulas. Note that even if Ψ is a sentence, elements of C l (Ψ) can
have free variables. We now show that satisfiability of first order formula over (N ,<) (known
to have non-elementary complexity [136]) can be reduced to parity games over bounded-
phase MPDS. With out loss of generality, we will also assume that each variable in the formula
occurs at most once.

LetΨ be the given formula and let µ be an initial valuation. We are interested in knowing
if µ |=Ψ. The informal idea is to construct an MPDS, in which the state space contains the
subformulas of the given formula Ψ (i.e. C l (Ψ)), along with some intermediary states. The
MPDS starts with the linearisation of the initial valuation in its stack and the formula Ψ. At
any point in the game, the MPDS maintains the unprocessed part of the formulaφ ∈C l (Ψ) as
part of its state space and the linear encoding (linearisation) of the current valuation µ (w.r.t.
φ) in its stack .

There are two parts to the game depending on whether the unprocessed part begins with
a quantifier or not. If the unprocessed part of formula begins with a quantifier ∀, then player-
1 strips off the quantifier and assigns a valuation to the corresponding variable by modifying
the stack. If it begins with a ∃ quantifier then the valuation is provided by player-0. For this, if
the valuation that the player wishes to provide is less than the some variables already in the
stack, the elements are moved to stack-2 till the appropriate position is found, the variable
is placed in this position and the elements from stack-2 are moved back onto stack-1. If the
valuation that the player wishes to provide is greater than all the variables present in the stack,



164 CHAPTER 9. PARITY GAMES ON MPDS

extra a’s are appended and the variable is placed.
If the outer most operator is ∧, then the player-1 chooses a subformula and the game

proceeds. If the outer most operator is ∨, then the player-0 selects a subformula. The game
proceeds till the unprocessed part is an atomic formula, in which case it can easily be verified
based on the valuations in the stack.

We will formally describe the construction of the required MPDS MΨ = (2,Q,Γ= {a,⊥}∪
FreeVar(Ψ),∆, q0). We will describe the construction in two parts. The first part describes the
moves till we reach an atomic formula. It contains the following set of states C l (Ψ)∪C l (Ψ)×
{lt,gt,m1,2,m2,1}∪C l (Ψ)×{m1,2,m2,1}×({a}×FreeVar(Ψ)). The transition relation∆ is defined
as follows. We will used ?x to denote either of ∃x or ∀x.

a.1 For all ψ1 ∧ψ2 ∈C l (Φ), the transitions (ψ1 ∧ψ2,Int,ψ1), (ψ1 ∧ψ2,Int,ψ2) ∈∆ .
a.2 For all ψ1 ∨ψ2 ∈C l (Φ), the transitions (ψ1 ∨ψ2,Int,ψ1) and (ψ1 ∨ψ2,Int,ψ2) ∈∆
a.3 For all ?x.ψ ∈ C l (Φ), we add (?x.ψ,Int, (?x.ψ, lt)) and (?x.ψ,Int, (?x.ψ,gt)) ∈ ∆, this transi-

tion enables guessing whether the current variable x needs to be inserted in between the
existing variable (valuation falls below the current maximum) or needs to be inserted on
top ( is greater than the current maximum).

a.4 We also add ((?x.ψ,gt),Push1(a), (?x.ψ,gt)) ∈∆ (pushes a into stack-1 to increase possible
valuation for x)

a.5 We also add ((?x.ψ,gt),Push1(x),ψ) ∈∆ (Marks position of x and shift to the sub-formula).
a.6 We add ((?x.ψ, lt),Int, (?x.ψ,m1,2)) ∈∆ (Begin moving from stack-1 to 2).
a.7 We add ((?x.ψ,m1,2), Pop1(a), (?x.ψ,m1,2, a)) ∈ ∆ and ((?x.ψ,m1,2, a),Push2(a), (?x.ψ,

m1,2)) ∈∆, ∀a ∈ Γ\ {⊥} (moves values from stack-1 to 2)
a.8 Similarly we add ((?x.ψ,m2,1), Pop2(a), (?x.ψ,m2,1, a)) ∈∆ and ((?x.ψ,m2,1, a), Push1(a),

(?x.ψ,m2,1)) ∈∆, ∀a ∈ Γ\ {⊥} ( moves values from stack-2 to 1)
a.9 We add ((?x.ψ,m1,2),Push1(x), (?x.ψ,m2,1)) ∈∆ (Begin moving from stack-2 back to 2)

a.10 We add ((?x.ψ,m2,1),Zero2,ψ) ∈∆ (Move to the next sub-formula) .

In the second part, we describe the state space starting at a state of the form (x = y) or
(x < y) that determines winner of the game. It contains the following set of states {x = y,
x < y, ay | x, y ∈V }∪ {T,F }. The transitions are described below.

b.1 (x = y,Pop1(z), x = y) ∈∆, for all z ∈V \ {x, y}∪ {a}, pop all elements other than x, y .
b.2 (x = y,Pop1(z), z ′) ∈ ∆, for z ∈ {x, y}, z ′ ∈ {x, y} \ {z}, as soon as one of {x, y} is seen (say x)

goto a state expecting to see the other variable (y if we saw x previously).
b.3 For x ∈ V , we add (x,Pop1(a),F ) ∈ ∆, if we see an a when we are expecting a variable in

x ∈V , we goto the losing state F .
b.4 For x, y ∈V , y 6= x we add (x,Pop1(y), x) ∈∆, if we see a variable other than x, we skip.
b.5 For x ∈V , we add (x,Pop1(x),T ) ∈∆, if we see a variable x, we goto winning state.
b.6 The set transitions needed for ¬(x = y) are similar
b.7 (x < y,Pop1(z), x < y) ∈∆ for all z ∈V \ {x, y}∪ {a}, pop all elements other than x, y .
b.8 (x < y,Pop1(x),F ) ∈ ∆, if you find x before y , clearly x > y in the valuation, goto losing

state.
b.9 (x < y,Pop1(y), ax ) ∈ ∆, if you find y before x, we need to verify if both values are not

equal.



9.5. LOWER BOUNDS FOR BOUNDED PHASE PARITY GAMES 165

b.10 (ax ,Pop1(a),T ) ∈∆, if you find a before x, we goto state T .
b.11 (ax ,Pop1(x),F ) ∈∆, if you find x before a, we goto state F .
b.12 For all z ∈V , z 6= x, we add (ax ,Pop1(z), ax ) ∈∆ to skip rest of the variables.
b.13 The set transitions needed for ¬(x < y) are similar.
b.14 We also add (T,Int,T ) and (F,Int,F ) to ∆.

We will now consider the bounded-phase parity game given by (|Ψ|,C (MΨ),τ,σ) where
σ : Q 7→ {0,1} and τ : Q 7→ {0,1} are defined as:

− We let σ(T ) = 0 and σ(F ) = 1.
− We let σ((∃x.Ψ′, g t )) = 1 and σ((∀x.Ψ′, g t )) = 0. This will ensure that either of the player

cannot simply win by just pushing elements onto the stack, for all other q ∈ Q, we let
σ(q) = 0.

− For any state s such that its subformula component is of the form, ∀x.Ψ′ or Ψ1 ∧Ψ2, we
let τ(s) = 1 (player-1 position). Otherwise, τ(s) = 0 i.e. we let all other states to be player-0
position.

Notice that along any positions in the game, where the state is only a subformula from C l (Ψ),
the stack content of the first stack α is a valuation string. This is easy to see since by nature
of the formula we have assumed that along any path, we can never encounter the same vari-
able twice. Clearly such a µV

α function is a valuation function. We show in Lemma 74, that
along positions in game graph where the state is only a subformula from C l (Ψ), the valuation
function constructed out of the content of stack 1 is actually a model of the subformula iff
player-0 has a winning strategy from that position.

Lemma 74. Give any configuration c ∈ C (M) which is of the form (Ψ,α⊥,⊥) where α =
xn ain xn−1ain−1 · · ·x1ai1 ∈ (V Γ∗)∗ is a valuation string containing all the free variables of Ψ,
then µV

α |=Ψ iff player-0 has a bounded-phase winning strategy from c.

Proof. (⇐) We will assume that player-0 has a winning strategy from (Ψ,α⊥,⊥) and show
µV
α |= Ψ , we will prove this by induction on structure of the formula. We let f to be any

winning strategy function for player-0.

• case when Ψ is of the form x = y is easy to see. Since the play is winning for player-0, it is
clear that the play eventually reaches the node T . By construction, reaching winning state
T is possible from (x = y,α⊥,⊥) if only if x, y are seen adjacently, which implies µV

α (x) =
µV
α (y). Case where the atomic formula is of the form ¬(x = y) is similar.

• case when Ψ is of the form x < y is also easy to see. By construction, reaching winning
state T is possible in this case only if x are seen first and is separated from y by an a, which
implies µV

α (x) <µV
α (y). Case where the atomic formula is of the form ¬(x < y) is similar.

• In case where Ψ=Ψ1 ∨Ψ2, the configuration c = (Ψ,α⊥,⊥) belongs to player-0. There are
two possible ways for player 0 to continue his game i.e. (Ψ1,α⊥,⊥) or (Ψ2,α⊥,⊥). Let f (Ψ,
α⊥,⊥) = (Ψ1,α⊥,⊥) (strategy corresponding to player-0 for this node). Clearly by induction
we have µV

α |=Ψ1 . Hence we also have µV
α |=Ψ .

• In case where Ψ = Ψ1 ∧Ψ2, the configuration c = (Ψ,α⊥,⊥) belongs to player-1, further
since node (Ψ,α⊥,⊥) is winning for player-0, from induction we can deduce that µV

α |=Ψ1

and µV
α |=Ψ2 are satisfiable. Hence we also have µV

α |=Ψ.



166 CHAPTER 9. PARITY GAMES ON MPDS

• In case where Ψ = ∃x.Ψ′. We know that c = (Ψ,α⊥,⊥) is winning for player-0. It is easy to
see that there is by construction, a node c ′ = (Ψ′,α′⊥,⊥) such that c−→∗c ′ and by induction
µV
α′ |=Ψ′. From this and the definition of satisfiability of a valuation function, it is easy to

see that µV
α |=Ψ .

• In case where Ψ=∀x.Ψ′. We know that c = (Ψ,α⊥,⊥) is winning for player-0. From nature
of construction, for every value m, possible for x, player-1 can reach a configuration c ′ from
c such that c ′ = (Ψ′,α′⊥,⊥) such that µV

α′(x) = m. Futher by induction, for each of these c ′,
µV
α′ |=Ψ′. From this it is easy to see that µV

α |=Ψ
(⇐)
For this direction, if player-0 is not winning from any position c = (Ψ,α⊥,⊥), then by deter-
minacy, player-1 is winning from it. Using arguments similar to that above, we now show
that if player 1 is winning from any node c = (Ψ′,α′⊥,⊥) then, µV

α′ |=Dual(Ψ).

Lemma 75. Given any configuration c ∈ C (M) which is of the form (Ψ,α⊥,⊥) where α =
xn ain xn−1ain−1 · · ·x1ai1 ∈ (V Γ∗)∗ is a valuation string containing all the free variables of Ψ,
then if player-1 has a bounded-phase winning strategy from c, then µV

α |=Dual(Ψ).

Proof. We will assume that player-1 has a winning strategy from (Ψ,α⊥,⊥) and show µV
α |=

Dual(Ψ) , we will prove this by induction on structure of the formula. We let f to be any
winning strategy function for player-1.

– case when Ψ is of the form (x = y) is easy to see. Dual((x = y)) = ¬(x = y). Since the
play is winning for player-1, it is clear that the play eventually reaches the node F . By
construction, reaching winning state F is possible from (x = y,α⊥,⊥) if only if x, y are not
seen adjacently, which implies µV

α (x) 6= µV
α (y). Case where the atomic formula is of the

form ¬(x = y) is similar.
– case when Ψ is of the form x < y is also easy to see. Firstly Dual((x < y)) = ¬(x < y).

By construction, reaching winning state F is possible in this case only if y are seen first
and then x, which implies µV

α (y) ≤ µV
α (x). Case where the atomic formula is of the form

¬(x < y) is similar.
– In case whereΨ=Ψ1∨Ψ2, the configuration c = (Ψ,α⊥,⊥) belongs to player-0. There are

two possible ways for player 0 to continue his game i.e. (Ψ1,α⊥,⊥) or (Ψ2,α⊥,⊥). Since
the node is winning for player-1, by induction we haveµV

α |=Dual(Ψ1) andµV
α |=Dual(Ψ2).

Notice that Dual(Ψ) =Dual(Ψ1)∧Dual(Ψ2). Hence µV
α |=Dual(Ψ).

– In case where Ψ =Ψ1 ∧Ψ2, c = (Ψ,α⊥,⊥) is a player-1 position. Since it is winning for
player-1. Without loss of generality, let c ′ = (Ψ1,α⊥,⊥) be the node reachable from c
using the strategy function, by induction µV

α |= Dual(Ψ1). Since Dual(Ψ) = Dual(Ψ1)∨
Dual(Ψ2), it follows that µV

α |=Dual(Ψ).
– In case where Ψ = ∃x.Ψ′. We know that c = (Ψ,α⊥,⊥) is winning for player-1. From na-

ture of construction, for every value m, possible for x, player-0 can reach a configuration
c ′ from c such that c ′ = (Ψ′,α′⊥,⊥) such that µV

α′(x) = m. Futher by induction, for each of
these c ′, µV

α′ |=Dual(Ψ′). From this it is easy to see that µV
α |=Dual(Ψ)

– In case whereΨ=∀x.Ψ′, the position c = (Ψ,α⊥,⊥) is a player-1 position. Since it it win-
ning for player-1, using the strategy function, we can find a c ′ such that c−→∗c ′ = (Ψ′,
α′⊥,⊥) from where player-1 is winning. By induction we have µV

α |= Dual(Ψ′). Since



9.6. CONCLUSION 167

Dual(Ψ) =∃Dual(Ψ′), the result follows.

Now, using Lemma 75 and the fact that µV
α |=Dual(Ψ) iff µV

α 6|=Ψ this we get µV
α 6|=Ψ.

Now the following corollary is easy to see.

Corollary 4. For any setence Ψ, Ψ is satisfiable iff (Ψ,⊥,⊥) is winning for player 0 in the
game (|Ψ|,C (MΨ),τ,σ). Thus deciding bounded-phase games has a NON-ELEMENTARY lower
bound.

9.6 Conclusion

In this chapter, we considered the problem of parity games over multi-pushdown systems
with bounded-phase restriction. We showed an inductive NON-ELEMENTARY procedure to
solve this problem. We also showed hardness for this problem by reducing the satisfiability
of FO(<) over natural numbers to a bounded-phase parity game.



168 CHAPTER 9. PARITY GAMES ON MPDS



Chapter 10

Discussion

In this thesis we have studied a number problems related to automata theoretic models of
concurrent recursive programs. We conclude with a short discussion on some directions to
extend the work reported here.

In chapter 3, we introduced a model called shared-memory concurrent pushdown sys-
tem. We showed that even when only two 1 counter systems are communicating via 1-bit
shared memory, the reachability problem is undecidable. We then introduced a new restric-
tion called the bounded-stage restriction. We showed that when there are two pushdowns
and one counter, the reachability under bounded stage restriction is undecidable. We then
showed that when at most one pushdown system is involved, the problem is decidable. In this
setting the case where there are only 2 pushdown systems involved is still open. This seems to
be a hard problem. Another possible direction to extend this work would be to reason about
omega regular properties of such systems under the bounded-stage restriction, or check for
the existence of a bounded-stage non-terminating ultimately periodic computation.

In chapter 4, we showed how to obtain a polynomial sized finite representation for down-
ward and upward closure of the language of a counter automata. We also showed how to
obtain a sub-exponential sized finite representation for the Parikh image abstraction of the
language of a counter automata. The question of whether such a sub-exponential sized rep-
resentation is optimal is still open. Also, language theoretic problems on 1 counter automata
seems to be not as well studied as CFLs or regular languages and a lot of work remains to be
done there.

In chapter 6, we showed how to solve the problem of model checking LTL formulas over
scope-bounded computations of an MPDS. The current lower bound for this problem de-
pends only on the size of the LTL formula. One possible extension to this work would be
to reason about exact complexity for the decision procedure when the LTL formula is fixed.
The global model checking on multi-pushdown systems with bounded-scope restriction also
remains to be investigated..

In chapter 7 we described the AOMPDS model and its applications. It remains to be seen
if there is a simple argument that shows the decidability of reachability for OMPDS via a re-
duction to AOMPDSs.

In chapter 9, we gave a NON-ELEMENTARY procedure to solve the parity game on multi-

169



170 CHAPTER 10. DISCUSSION

pushdown system with bounded-phase restriction. We also showed a matching lower bound
for the same. One question that arises is what happens if you consider a weaker restriction or
a weaker logic. In [19], we showed that even if we consider the bounded-context restriction
and an EF fragment of CTL, the model checking problem is still NON-ELEMENTARY HARD .
One can then ask if there is any weaker branching time fragment (for e.g. the EG fragment)
for which the problem is tractable.



Bibliography

[1] Parosh Aziz Abdulla. Well (and better) quasi-ordered transition systems. Bulletin of
Symbolic Logic, 16(4):457–515, 2010.

[2] Parosh Aziz Abdulla. Regular model checking. STTT, 14(2):109–118, 2012.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg. Analysis of mes-
sage passing programs using SMT-solvers. In ATVA’13, volume 8172 of LNCS, pages
272–286, 2013.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Roland Meyer, and Mehdi Seyed Salehi.
What’s decidable about availability languages? In FSTTCS’15, volume 45 of LIPIcs,
pages 192–205, 2015.

[5] Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg, Frédéric Haziza, and
Ahmed Rezine. Monotonic abstraction for programs with dynamic memory heaps. In
Computer Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ,
USA, July 7-14, 2008, Proceedings, pages 341–354, 2008.

[6] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of sys-
tems with unbounded, lossy FIFO channels. In Computer Aided Verification, 10th In-
ternational Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceed-
ings, pages 305–318, 1998.

[7] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels.
In Proceedings of the Eighth Annual Symposium on Logic in Computer Science (LICS
’93), Montreal, Canada, June 19-23, 1993, pages 160–170, 1993.

[8] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels.
Inf. Comput., 127(2):91–101, 1996.

[9] Parosh Aziz Abdulla and Aletta Nylén. Better is better than well: On efficient verifica-
tion of infinite-state systems. In 15th Annual IEEE Symposium on Logic in Computer
Science, Santa Barbara, California, USA, June 26-29, 2000, pages 132–140, 2000.

[10] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid au-
tomata: An algorithmic approach to the specification and verification of hybrid sys-
tems. In Hybrid Systems, pages 209–229, 1992.

171



172 BIBLIOGRAPHY

[11] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[12] Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of
single-pass list-processing programs. In POPL’11, pages 599–610, 2011.

[13] Aurore Annichini, Eugene Asarin, and Ahmed Bouajjani. Symbolic techniques for para-
metric reasoning about counter and clock systems. In E. Allen Emerson and A. Prasad
Sistla, editors, CAV, volume 1855 of LNCS, pages 419–434. Springer, 2000.

[14] Mohamed Faouzi Atig. Global model checking of ordered multi-pushdown systems.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, pages 216–227,
2010.

[15] Mohamed Faouzi Atig. VE ÌĄRIFICATION DE PROGRAMMES CONCURRENTS: DE ÌĄ-
CIDABILITE ÌĄ ET COMPLEXITE ÌĄ. PhD thesis, UNIVERSITE ÌĄ PARIS DIDEROT
(PARIS 7), 2010.

[16] Mohamed Faouzi Atig, Benedikt Bollig, and Peter Habermehl. Emptiness of multi-
pushdown automata is 2etime-complete. In Developments in Language Theory, 12th
International Conference, DLT 2008, Kyoto, Japan, September 16-19, 2008. Proceedings,
pages 121–133, 2008.

[17] Mohamed Faouzi Atig, Ahmed Bouajjani, Michael Emmi, and Akash Lal. Detecting fair
non-termination in multithreaded programs. In Computer Aided Verification - 24th In-
ternational Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, pages
210–226, 2012.

[18] Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan.
Linear-time model-checking for multithreaded programs under scope-bounding. In
Automated Technology for Verification and Analysis - 10th International Symposium,
ATVA 2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings, pages 152–
166, 2012.

[19] Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan.
Model checking branching-time properties of multi-pushdown systems is hard. CoRR,
abs/1205.6928, 2012.

[20] Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan.
On bounded reachability analysis of shared memory systems. In 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science,
FSTTCS 2014, December 15-17, 2014, New Delhi, India, pages 611–623, 2014.

[21] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis
for concurrent programs with dynamic creation of threads. In Tools and Algorithms for
the Construction and Analysis of Systems, 15th International Conference, TACAS 2009,



BIBLIOGRAPHY 173

Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 107–123, 2009.

[22] Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. Analyzing asynchronous
programs with preemption. In FSTTCS’08, volume 2 of LIPIcs, pages 37–48, 2008.

[23] Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. On the reachability anal-
ysis of acyclic networks of pushdown systems. In CONCUR 2008 - Concurrency Theory,
19th International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008.
Proceedings, pages 356–371, 2008.

[24] Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. On the reachability anal-
ysis of acyclic networks of pushdown systems. In CONCUR, volume 5201 of Lecture
Notes in Computer Science, pages 356–371. Springer, 2008.

[25] Mohamed Faouzi Atig, K. Narayan Kumar, and Prakash Saivasan. Adjacent ordered
multi-pushdown systems. In Developments in Language Theory - 17th International
Conference, DLT 2013, Marne-la-Vallée, France, June 18-21, 2013. Proceedings, pages
58–69, 2013.

[26] Mohamed Faouzi Atig, K. Narayan Kumar, and Prakash Saivasan. Adjacent ordered
multi-pushdown systems. Int. J. Found. Comput. Sci., 25(8):1083–1096, 2014.

[27] Mohamed Faouzi Atig and Tayssir Touili. Verifying parallel programs with dynamic
communication structures. In Implementation and Application of Automata, 14th
International Conference, CIAA 2009, Sydney, Australia, July 14-17, 2009. Proceedings,
pages 145–154, 2009.

[28] Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for
the sub- and superword closure of CFLs: Descriptional and computational complexity.
In LATA’15, volume 8977 of LNCS, pages 473–485, 2015.

[29] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. Automatic
predicate abstraction of C programs. In Proceedings of the 2001 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), Snowbird, Utah,
USA, June 20-22, 2001, pages 203–213, 2001.

[30] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In SPIN Model Checking and Software Verification, 7th International SPIN
Workshop, Stanford, CA, USA, August 30 - September 1, 2000, Proceedings, pages 113–
130, 2000.

[31] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. FAST: acceleration
from theory to practice. STTT, 10(5):401–424, 2008.

[32] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Philippe Schnoebelen. Flat accel-
eration in symbolic model checking. In ATVA, volume 3707 of LNCS, pages 474–488.
Springer, 2005.



174 BIBLIOGRAPHY

[33] Béatrice Bérard and Laurent Fribourg. Reachability analysis of (timed) petri nets using
real arithmetic. In CONCUR, volume 1664 of LNCS, pages 178–193. Springer, 1999.

[34] J. Berstel. Transductions and context-free langages. TeubnerStudienbucher Informatik,
1979.

[35] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker blast. STTT, 9(5-6):505–525, 2007.

[36] Henrik Björklund, Sven Sandberg, and Sergei G. Vorobyov. A discrete subexponential
algorithm for parity games. In STACS 2003, 20th Annual Symposium on Theoretical
Aspects of Computer Science, Berlin, Germany, February 27 - March 1, 2003, Proceedings,
pages 663–674, 2003.

[37] Bernard Boigelot. On iterating linear transformations over recognizable sets of inte-
gers. Theor. Comput. Sci., 309(1-3):413–468, 2003.

[38] Bernard Boigelot. Domain-specific regular acceleration. STTT, 14(2):193–206, 2012.

[39] Bernard Boigelot and Pierre Wolper. Symbolic verification with periodic sets. In CAV,
volume 818 of LNCS, pages 55–67. Springer, 1994.

[40] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In CONCUR, volume 1243 of LNCS, pages 135–150.
Springer, 1997.

[41] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown
automata: Application to model-checking. In CONCUR ’97: Concurrency Theory, 8th
International Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, Lecture Notes
in Computer Science, pages 135–150. Springer, 1997.

[42] Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of FIFO chan-
nel systems with nonregular sets of configurations (extended abstract). In Automata,
Languages and Programming, 24th International Colloquium, ICALP’97, Bologna, Italy,
7-11 July 1997, Proceedings, pages 560–570, 1997.

[43] Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of fifo-channel
systems with nonregular sets of configurations. Theor. Comput. Sci., 221(1-2):211–250,
1999.

[44] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model
checking. In Computer Aided Verification, 12th International Conference, CAV 2000,
Chicago, IL, USA, July 15-19, 2000, Proceedings, pages 403–418, 2000.

[45] Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi.
Multi-push-down languages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292,
1996.



BIBLIOGRAPHY 175

[46] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 10ˆ20 states and beyond. In Proceedings of the Fifth Annual
Symposium on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA,
June 4-7, 1990, pages 428–439, 1990.

[47] Thierry Cachat. Uniform solution of parity games on prefix-recognizable graphs. Electr.
Notes Theor. Comput. Sci., 68(6):71–84, 2002.

[48] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the expressiveness of parikh
automata and related models. In NCMA, volume 282 of books@ocg.at, pages 103–119.
Austrian Computer Society, 2011.

[49] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded parikh automata. Int.
J. Found. Comput. Sci., 23(8):1691–1710, 2012.

[50] Arnaud Carayol and Stefan Wöhrle. The caucal hierarchy of infinite graphs in terms
of logic and higher-order pushdown automata. In FST TCS 2003: Foundations of Soft-
ware Technology and Theoretical Computer Science, 23rd Conference, Mumbai, India,
December 15-17, 2003, Proceedings, pages 112–123, 2003.

[51] Didier Caucal. On the regular structure of prefix rewriting. Theor. Comput. Sci.,
106(1):61–86, 1992.

[52] Pierre Chambart and Ph. Schnoebelen. Post embedding problem is not primitive re-
cursive, with applications to channel systems. In FSTTCS, volume 4855 of Lecture Notes
in Computer Science, pages 265–276. Springer, 2007.

[53] Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking -
History, Achievements, Perspectives, pages 1–26, 2008.

[54] Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS,
44:178–186, 1991.

[55] Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS,
44:178–186, 1991.

[56] Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. MSO decidability of multi-
pushdown systems via split-width. In CONCUR 2012 - Concurrency Theory - 23rd In-
ternational Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012.
Proceedings, pages 547–561, 2012.

[57] E. Allen Emerson. The beginning of model checking: A personal perspective. In 25
Years of Model Checking - History, Achievements, Perspectives, pages 27–45, 2008.

[58] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of
programs (extended abstract). In 29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October 1988, pages 328–337, 1988.



176 BIBLIOGRAPHY

[59] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377, 1991.

[60] Javier Esparza and Pierre Ganty. Complexity of pattern-based verification for mul-
tithreaded programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, pages 499–510, 2011.

[61] Javier Esparza and Pierre Ganty. Complexity of pattern-based verification for multi-
threaded programs. In POPL’11, pages 499–510, 2011.

[62] Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem:
A simple and direct automaton construction. Inf. Process. Lett., 111(12):614–619, 2011.

[63] Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem:
A simple and direct automaton construction. Inf. Process. Lett., 111(12):614–619, 2011.

[64] Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pages
124–140, 2013.

[65] Javier Esparza, Pierre Ganty, and Tomás Poch. Pattern-based verification for multi-
threaded programs. ACM Trans. Program. Lang. Syst., 36(3):9:1–9:29, 2014.

[66] Javier Esparza and Stefan Schwoon. A bdd-based model checker for recursive pro-
grams. In Computer Aided Verification, 13th International Conference, CAV 2001, Paris,
France, July 18-22, 2001, Proceedings, pages 324–336, 2001.

[67] M. Faouzi Atig, D. Chistikov, P. Hofman, K Narayan Kumar, P. Saivasan, and G. Zetzsche.
Complexity of regular abstractions of one-counter languages. ArXiv e-prints, February
2016.

[68] Alain Finkel. A generalization of the procedure of karp and miller to well structured
transition systems. In ICALP, volume 267 of LNCS, pages 499–508. Springer, 1987.

[69] Alain Finkel and Jérôme Leroux. How to compose presburger-accelerations: Appli-
cations to broadcast protocols. In FSTTCS, volume 2556 of LNCS, pages 145–156.
Springer, 2002.

[70] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems every-
where! Theor. Comput. Sci., 256(1-2):63–92, 2001.

[71] Alain Finkel, Bernard Willems, and Pierre Wolper. A direct symbolic approach to model
checking pushdown systems. Electr. Notes Theor. Comput. Sci., 9:27–37, 1997.

[72] Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous pro-
grams. ACM Trans. Program. Lang. Syst., 34(1):6:1–6:48, May 2012.



BIBLIOGRAPHY 177

[73] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[74] Jim Gray. Why do computers stop and what can be done about it?, 1985.

[75] Hermann Gruber, Markus Holzer, and Martin Kutrib. More on the size of higman-
haines sets: Effective constructions. In MCU’07, volume 4664 of LNCS, pages 193–204,
2007.

[76] Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri
net languages. In ICALP’10, volume 6199 of LNCS, pages 466–477, 2010.

[77] Matthew Hague. Parameterised pushdown systems with non-atomic writes. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2011, December 12-14, 2011, Mumbai, India, pages 457–468, 2011.

[78] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and down-
ward closures of higher-order pushdown automata. In POPL’16, pages 151–163, 2016.

[79] Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded
analysis of multithreaded programs with counters. In CAV’12, volume 7358 of LNCS,
pages 260–276, 2012.

[80] A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicat-
ing pushdown systems. In FOSSACS, volume 6014 of LNCS, pages 267–281. Springer,
2010.

[81] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),
2(7), 1952.

[82] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279–
295, 1997.

[83] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation, Second Edition. Addison-Wesley, 2000.

[84] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM, 25(1):116–133, 1978.

[85] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM, 25(1):116–133, 1978.

[86] Marcin Jurdzinski. Deciding the winner in parity games is in UP \cap co-up. Inf. Pro-
cess. Lett., 68(3):119–124, 1998.

[87] Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A deterministic subexponential algo-
rithm for solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008.



178 BIBLIOGRAPHY

[88] Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst.
Sci., 3(2):147–195, 1969.

[89] Wayne Kelly, William Pugh, Evan Rosser, and Tatiana Shpeisman. Transitive closure of
infinite graphs and its applications. Journal of Parallel Programming, 24(6):579–598,
1996.

[90] Yonit Kesten, Oded Maler, Monica Marcus, Amir Pnueli, and Elad Shahar. Symbolic
model checking with rich assertional languages. Theor. Comput. Sci., 256(1-2):93–112,
2001.

[91] Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In
ICALP, volume 2719 of LNCS, pages 681–696. Springer, 2003.

[92] Eryk Kopczynski and Anthony Widjaja To. Parikh images of grammars: Complexity and
applications. In LICS’10, pages 80–89, 2010.

[93] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. An automata-theoretic approach
to infinite-state systems. In Time for Verification, Essays in Memory of Amir Pnueli,
pages 202–259, 2010.

[94] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-bounded analysis of
concurrent queue systems. In Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, pages 299–314, 2008.

[95] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing context-bounded
concurrent reachability to sequential reachability. In Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceed-
ings, pages 477–492, 2009.

[96] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Model-checking parame-
terized concurrent programs using linear interfaces. In Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceed-
ings, pages 629–644, 2010.

[97] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class
of context-sensitive languages. In 22nd IEEE Symposium on Logic in Computer Science
(LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages 161–170, 2007.

[98] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class of
context-sensitive languages. In LICS, pages 161–170. IEEE Computer Society, 2007.

[99] Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. Safety of parametrized asyn-
chronous shared-memory systems is almost always decidable. In CONCUR’15, vol-
ume 42 of LIPIcs, pages 72–84, 2015.



BIBLIOGRAPHY 179

[100] Salvatore La Torre and Margherita Napoli. Reachability of multistack pushdown sys-
tems with scope-bounded matching relations. In CONCUR 2011 - Concurrency The-
ory - 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-9,
2011. Proceedings, pages 203–218, 2011.

[101] Salvatore La Torre and Margherita Napoli. A temporal logic for multi-threaded pro-
grams. In Theoretical Computer Science - 7th IFIP TC 1/WG 2.2 International Con-
ference, TCS 2012, Amsterdam, The Netherlands, September 26-28, 2012. Proceedings,
pages 225–239, 2012.

[102] Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. Scope-bounded push-
down languages. In Developments in Language Theory - 18th International Conference,
DLT 2014, Ekaterinburg, Russia, August 26-29, 2014. Proceedings, pages 116–128, 2014.

[103] Salvatore La Torre and Gennaro Parlato. Scope-bounded multistack pushdown sys-
tems: Fixed-point, sequentialization, and tree-width. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012,
December 15-17, 2012, Hyderabad, India, pages 173–184, 2012.

[104] Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for AC-like
equational theories with homomorphisms. In RTA’05, pages 308–322, 2005.

[105] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. In Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, pages 37–51, 2008.

[106] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. FMSD, 35(1):73–97, 2009.

[107] Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas W. Reps. Interprocedural analy-
sis of concurrent programs under a context bound. In C. R. Ramakrishnan and Jakob
Rehof, editors, TACAS, volume 4963 of LNCS, pages 282–298. Springer, 2008.

[108] Leslie Lamport. ``sometime” is sometimes ``not never” - on the temporal logic of pro-
grams. In Conference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, USA, January 1980, pages 174–185, 1980.

[109] Jérôme Leroux. Acceleration for petri nets. In ATVA, volume 8172 of LNCS, pages 1–4.
Springer, 2013.

[110] Jérôme Leroux and Grégoire Sutre. Flat counter automata almost everywhere! In ATVA,
volume 3707 of LNCS, pages 489–503. Springer, 2005.

[111] Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-
theoretic abstraction refinement. In FASE’12, volume 7212 of LNCS, pages 362–376,
2012.



180 BIBLIOGRAPHY

[112] P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL, pages
283–294. ACM, 2011.

[113] Roman Manevich, Shmuel Sagiv, Ganesan Ramalingam, and John Field. Partially dis-
junctive heap abstraction. In Static Analysis, 11th International Symposium, SAS 2004,
Verona, Italy, August 26-28, 2004, Proceedings, pages 265–279, 2004.

[114] Zohar Manna and Amir Pnueli. Verification of parameterized programs. In in Specifi-
cation and Validation Methods, pages 167–230. University Press, 1995.

[115] K. L. McMillan. Symbolic Model Checking: an approach to the state explosion problem.
PhD thesis, Carnegie Mellon University, 1992.

[116] Andrzej Wlodzimierz Mostowski. Regular expressions for infinite trees and a standard
form of automata. In Computation Theory - Fifth Symposium, Zaborów, Poland, De-
cember 3-8, 1984, Proceedings, pages 157–168, 1984.

[117] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and David L.
Dill. CMC: A pragmatic approach to model checking real code. In 5th Symposium
on Operating System Design and Implementation (OSDI 2002), Boston, Massachusetts,
USA, December 9-11, 2002, 2002.

[118] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic test-
ing of multithreaded programs. In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, San Diego, California, USA,
June 10-13, 2007, pages 446–455, 2007.

[119] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic test-
ing of multithreaded programs. In PLDI, pages 446–455. ACM, 2007.

[120] Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. An approach to the
description and analysis of hybrid systems. In Hybrid Systems, pages 149–178, 1992.

[121] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, October 1966.

[122] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.

[123] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November
1977, pages 46–57, 1977.

[124] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, volume 3440 of LNCS, pages 93–107. Springer, 2005.

[125] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent soft-
ware. In Tools and Algorithms for the Construction and Analysis of Systems, 11th In-
ternational Conference, TACAS 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceed-
ings, pages 93–107, 2005.



BIBLIOGRAPHY 181

[126] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

[127] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copen-
hagen, Denmark, Proceedings, pages 55–74, 2002.

[128] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Antonio, TX, USA, January 20-22, 1999,
pages 105–118, 1999.

[129] Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In
CONCUR 2013 - Concurrency Theory - 24th International Conference, CONCUR 2013,
Buenos Aires, Argentina, August 27-30, 2013. Proceedings, pages 5–24, 2013.

[130] Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs with
asynchronous atomic methods. In Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, pages 300–
314, 2006.

[131] Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs with
asynchronous atomic methods. In CAV’14, volume 4144 of LNCS, pages 300–314, 2006.

[132] Olivier Serre. Note on winning positions on pushdown games with [omega]-regular
conditions. Inf. Process. Lett., 85(6):285–291, 2003.

[133] Anil Seth. Games on multi-stack pushdown systems. In Logical Foundations of Com-
puter Science, International Symposium, LFCS 2009, Deerfield Beach, FL, USA, January
3-6, 2009. Proceedings, pages 395–408, 2009.

[134] Anil Seth. Global reachability in bounded phase multi-stack pushdown systems. In
Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings, pages 615–628, 2010.

[135] Colin Stirling. Lokal model checking games. In CONCUR ’95: Concurrency Theory,
6th International Conference, Philadelphia, PA, USA, August 21-24, 1995, Proceedings,
pages 1–11, 1995.

[136] Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and
Logic. PhD thesis, MIT, Cambridge, Massasuchets, USA, 1974.

[137] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive lan-
guages. In LICS, pages 161–170. IEEE Computer Society, 2007.

[138] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In TACAS, volume 4963 of LNCS, pages 299–314. Springer, 2008.



182 BIBLIOGRAPHY

[139] Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Dis-
crete Mathematics, 21(3):237–252, 1978.

[140] Moshe Y. Vardi. Alternating automata and program verification. In Computer Science
Today, volume 1000 of LNCS, pages 471–485. Springer, 1995.

[141] Moshe Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In LICS, pages 332–344. IEEE Computer Society, 1986.

[142] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity of
equational horn clauses. In CADE-20, volume 3632 of LNCS, pages 337–352, 2005.

[143] Igor Walukiewicz. Pushdown processes: Games and model checking. In Computer
Aided Verification, 8th International Conference, CAV ’96, New Brunswick, NJ, USA, July
31 - August 3, 1996, Proceedings, pages 62–74, 1996.

[144] Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but regular state
spaces. In Computer Aided Verification, 10th International Conference, CAV ’98, Van-
couver, BC, Canada, June 28 - July 2, 1998, Proceedings, pages 88–97, 1998.

[145] Pierre Wolper and Patrice Godefroid. Partial-order methods for temporal verification.
In CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Ger-
many, August 23-26, 1993, Proceedings, pages 233–246, 1993.

[146] Karianto Wong. Parikh automata with pushdown stack. Diploma thesis, RWTH
Aachen, 2004.

[147] Georg Zetzsche. An approach to computing downward closures. In ICALP’15, volume
9135 of LNCS, pages 440–451, 2015.

[148] Georg Zetzsche. Computing downward closures for stacked counter automata. In
STACS’15, volume 30 of LIPIcs, pages 743–756, 2015.


	Introduction 
	Preliminaries
	Shared memory systems
	Introduction
	Shared memory concurrent pushdown System
	The Reachability Problem for SCPS

	Stage-bounded Computations
	Stage bounded reachability for Communicating FSS
	 Bounded-Stage Reachability of recursive processes 
	Undecidability of Bounded-Stage Reachability
	Bounded stage reachability for two pushdown case
	Decidability for single pushdown plus counters

	Conclusion

	Regular abstractions of one counter automata 
	Introduction
	Counter automata
	Simplified counter automata

	Computing upward closures
	Computing downward closures
	 Revisiting shared memory systems
	Parikh Images of Reversal Bounded PDAs
	Reversal bounding
	Parikh image under reversal bounds

	Conclusion

	Multi-pushdown systems (MPDS)
	Introduction
	Multi-pushdown system
	Bounded Context 
	Bounded Phase 
	Bounded Scope
	Ordered multi-pushdown run


	 Linear time model checking under bounded scope
	Introduction
	 Hardness for scope-bounded reachability 
	Infinite scope-bounded computations
	Model checking LTL on bounded scope executions 
	Bounded scope repeated reachability
	LTL Model checking 

	Conclusion

	Adjacent ordered MPDS
	Introduction
	Adjacent ordered multi-pushdown system
	Reachability on AOMPDS
	Hardness result 

	LTL Model Checking on AOMPDS
	Applications of AOMPDS
	An application to Recursive Queuing Concurrent Programs
	An application to bounded-phase reachability

	 Adjacent ordered restriction
	Conclusion

	 Accelerations on multi-pushdown systems
	Introduction
	Acceleration 
	Properties of rational languages
	Context-Bounding as an acceleration problem
	Accelerating Loops: Case of regular/rational sets
	Constrained Simple Regular Expressions

	Acceleration of Bounded-Context-Switch Sets
	Constrained Rational Languages

	Conclusion

	 Parity games on MPDS 
	Introduction
	Parity Games
	 Some useful results on parity games
	Parity games on pushdown system

	 Bounded phase parity games on MPDS 
	Decidability of bounded phase parity games
	 Decidability of 1-phase game
	 Decidability of k phase game 

	 Lower bounds for bounded phase parity games
	Conclusion

	Discussion

